
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

247

Manuscript received September 5, 2021
Manuscript revised September 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.9.33

Conceptual Data Modeling: Entity–Relationship Models as
Thinging Machines

Sabah Al-Fedaghi

Computer Engineering Department, Kuwait University, Kuwait

Summary
Data modeling is a process of developing a model to design and
develop a data system that supports an organization’s various
business processes. A conceptual data model represents a
technology-independent specification of structure of data to be
stored within a database. The model aims to provide richer
expressiveness and incorporate a set of semantics to (a) support the
design, control, and integrity parts of the data stored in data
management structures and (b) coordinate the viewing of
connections and ideas on a database. The described structure of the
data is often represented in an entity–relationship (ER) model,
which was one of the first data-modeling techniques and is likely
to continue to be a popular way of characterizing entity classes,
attributes, and relationships. This paper attempts to examine the
basic ER modeling notions in order to analyze the concepts to
which they refer as well as ways to represent them. In such a
mission, we apply a new modeling methodology (thinging machine;
TM) to ER in terms of its fundamental building constructs,
representation entities, relationships, and attributes. The goal of this
venture is to further the understanding of data models and enrich
their semantics. Three specific contributions to modeling in this
context are incorporated: (a) using the TM model’s five generic
actions to inject processing in the ER structure; (b) relating the
single ontological element of TM modeling (i.e., a thing/machine
or thimac) to ER entities and relationships; and (c) proposing a
high-level integrated, extended ER model that includes structural
and time-oriented notions (e.g., events or behavior).

Key words:
Conceptual modeling, entity–relationship diagrams, relational
databases, thinging machine model

1. Introduction

In According to Silvert [1], one of the universal scientific
activities is modeling. In scientific contexts, a model is a
simplification of a phenomenon that provides insights about
the object of study and contributes to its understanding [2].
In engineering, it is now established that models are a useful
means of understanding and interacting with both products
and processes [3]. According to Suppes [4], models are not
just representations but tools constructed with an eye toward
achieving specific practical purposes.

1.1 Data Models

In software engineering, software development models
often represent a networked sequence of activities, objects,
and transformations utilizing certain notation, syntax, or

semantics suitable for computational processing [5]. Models
serve in visualizing the design of processes, aiding in idea
generation, problem-solving and evaluation, and facilitating
the interaction and communication [5]. However, in this
context, modeling is quite a recent development, and
phenomena that can be expressed in models and the ways in
which models can be used and interpreted are still not fully
understood [6].

In this paper, we take an interest in data models in
database systems. According to Elmasri and Navathe [7],
data are known facts that can be recorded and that have
implicit meaning. Data are sometimes defined as the
representation of facts, concepts, or instruction in a formal
manner that is suitable for understanding and processing.
Data can be represented in symbols such as alphabets (A-Z,
a-z), digits (0-9), and special characters (+,-.#,$, etc.); for
example, 25, “ajit” etc. [7].

We find many data models with the aim of providing
increased expressiveness and incorporating a richer set of
semantics into a database [8]. Databases require a data model
that facilitates the expression of consistency requirements
and depicts information semantics. The data model stresses
the required information and the ways it should be
coordinated, as well as illustrates the design, control, and
integrity parts of the data stored in data management
structures, where the role of a conceptual model coordinates
the ability to see connections and ideas in a database. [9].

However, according to West [10], data models can be
difficult to read unless considerable care is taken in laying
them out. Typically, a data model is contrasted with process
models where “tension and confusion” occur between those
who have a data focus and those who have a process focus
[10]. Most people find process models more natural and
therefore see data models as “difficult”; however, it is
essential that the process and data models are mutually
supportive [10]. The object process methodology [11] is
based on the paradigm that views, processes, and objects are
equally important in the system model. The thinging
machine (TM) model (see [12] and its sources) goes further
by viewing projects and processes as two faces of a dual
ontological element called a thimac (thing/machine). The
TM approach enforces the necessity in finding the core
processes that the organization performs as a first
requirement in modeling. A unique contribution of TM
modeling is identifying generic processes (actions) upon

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

248

which all other processes can be built. Thus, the mission in
this context is reduced to allocating processes in the system
structure because their descriptions are already available in
terms of these generic actions.

1.2 Conceptual Data Modeling

The conceptual data model represents the overall
structure of data that are independent of any database or
physical storage structure. According to Tupper [13],
conceptual data modeling is one of the most powerful and
effective analytical techniques for understanding the
information required to support any organization. An
example of such modeling is the entity–relationship (ER)
model, which employs basic constructs that include entities,
attributes, and relationships. According to West [10], if one
has not provided the necessary entity types, relationship
types, and attributes in a data model, the data cannot be held.
The term conceptual in data modeling refers to the things in
the business and the relationships among them, rather than
data about those things: “So in a conceptual data model,
when you see an entity type called car, then you should think
about pieces of metal with engines, not records in databases”
[10].

One problem intrinsic in data modeling of any enterprise
is “the difference between the human’s perception of the
enterprise and the computer’s need to organize the structures
in a particular way for efficient storage and performance” [8].
This raises the possibility of distinct levels of modeling that
span several planes of abstraction, from conceptual to logical
and physical [14]. This paper focuses on the
conceptual/logical levels of data models. A conceptual data
model and a logical data model can be very similar, or even
the same, for the same subject area, depending on the
approach that is taken with each [10].

Conceptual models are technology independent and can
be used for discussions with business people, allowing the
concepts in the domain to be represented, discussed, and
agreed upon. The logical model gives a formation to shape
the basis of the physical model and expands the conceptual
model, adding more detail but still typically remaining
technology neutral and allowing analysts to discuss and
agree on logical structures [9][14]. In general, data models
use two types of data modeling techniques: (a) ER modeling
and (b) Unified Modeling Language (UML) [9]. The object–
relational model is a blend of the object-oriented and
relational models, and it fills the gap between the relational
and object-oriented models. However, “The issue with this
model is that it can get intricate and hard to deal with” [9].
This paper concentrates on ER modeling.

1.3 Entity–Relationship Model: Review

ER modeling was one of the first data modeling
techniques to be developed [15], and it is likely to continue
to be a popular way of characterizing entity classes,
attributes, and relationships [16]. According to Spaccapietra

et al. [17], the extended entity–relationship (EER) models
are most frequently seen as offering the richest semantic
expressiveness in conceptual modeling. An EER “represents
the structure or foundation of your database solution. The
EER is so important; I can’t imagine designing even the
smallest project without one” [18]. The ER model has also
evolved into one of the most important structural data
analysis and design techniques. According to Kashyap [19],
the ER approach preempts the approach that is based on the
assumption of only examining the processes, transactions,
outputs, or data flows of a system. This last approach gives
partial information about the environment of the system.
Alternatively, the ER approach helps one to arrive at a true
or complete picture of the real world for which a database is
to be built, and it involves the identification and definition
of entities of the concerned real world, entity grouping, and
description, keeping in view the problem area context [19].
An ER diagram is utilized as a pictorial instrument for
addressing the ER model, assisting in communicating ideas
to a wide range of stakeholders because of its simplicity. In
the ER model, platform-specific information and other
implementation details, such as procedures, are excluded [9]
[14].

In the ER model, an entity and entity type are defined within
the context of the organization whose database is supposed
to be built. An entity in ER is something that involves
information. It is usually identifiable. Each entity has certain
characteristics, known as attributes. A grouping of related
entities becomes an entity set [20]. Classifying entities into
groups and subgroups depends on such factors because the
entities can play a role in one organization but not in another
[21]. Additionally, the ER model supports a relationship
between the entity types themselves.

Yarlagadda and Syed [9] described the ER model as a
blueprint of a database that can be actualized as a database.
It is a high-level data model that defines data components
and their relationships. In many cases, ER modeling is used
to produce a semantic data model for a relational database
and its requirements. According to Yarlagadda and Syed [9],
an ER model can be handily changed over the relational
model. The relational model has a modeling methodology
independent of the details of the physical implementation;
According to Osborne [18], “For example, an entity is a
person and a collection of people would be a table with each
record in that table holding the information describing a
unique person. A field in the people table might be hair color,
height or anything describing a person for which there is one
choice.”

According to Yarlagadda and Syed [9], an industry standard
for building up an ER model does not exist, and developers
may utilize documentation that is not perceived by various
designers. The model does not offer a sufficiently rich
conceptual model for problems that do not map onto tables
in a straightforward fashion [8]. According to West [10], ER
diagrams have sometimes been considered “confusing” and
limited in what they can express, as follows.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

249

 If one entity type happens to be an instance of
another, then there is no way to say this in an ER
diagram. The problem with this is that the
relationships are really classes of a relationship. For
example, in Each pump is a member of exactly one
equipment type, it is not the entity type pump that
is an instance of equipment type but an instance of
pump that is a member of an instance of equipment
type.

 One cannot show a subtype relationship between an
entity type and an instance of any entity type in the
data model.

 Entity type definitions are often ambiguous or
unclear [21].

Additionally, according to West [10], real-world
relationships do not automatically align with the lines in the
ER models, and hence it would be confusing to use the word
“relationship” for both of them. In the ER technique,
relationship types (lines) are second-class objects, in that
they are dependent on that to which they relate. According
to Osborne [18], “Relationships are the easiest and hardest
thing to understand. They are based on a simple
mathematical equation, but so many people, including
myself, struggle with them. What helped me understand
them better [is that] the relationships are just questions you
are asking your data. The question is expressed in terms of a
mathematical equation but is still just a simple question, like
‘show me the records that equal this value.’ It’s really that
simple.”
1.4 Outlines

The ER model has undergone a variety of changes and
extensions over the years [22]. However, the focus in this
paper is on the basic ER model as presented in Chen [23].
The paper applies a new modeling methodology, TM, to the
ER model in terms of its fundamental building constructs,
representation methodologies for the objects, and the
methods to express the semantics of the application
environment. The goal of this venture is to suggest enriching
the semantics of the ER model by reducing all operations to
five generic actions and providing a basis for the notion of
system behavior at a level above the static description level.
Accordingly, the following is an outline of this paper:
 In Section 2, we review the TM model, which forms the

theoretical foundation of work in the paper.
 Section 3 provides illustrations of TM representations:

sets, subsets, individuals, and relationships. The section
can be thought as an introduction to applying TM to ER
notions.

 In Section 4, we show how to build a TM model that
includes events and behavior. We concentrate on basic
operations (e.g., inserting a tuple that preserves the
integrity constraints in the database schema).

 In Sections 5 and 6, we further pursue our objective of
translating ER diagrams into the TM model. We
introduce a case study that represents a more
complicated ER diagram.

 In Section 7, we express functional dependency in a TM
model.

2. Thinging Machine Modeling

Schematic models are abstractions of reality that are
developed to understand things and processes. The TM
model is a conceptualization of how things/processes can be
merged into a complex of interrelated thimacs (i.e., things
that are simultaneously machines). All things (thimacs) are
created, processed, and transported (acted on), and all
machines (thimacs) create, process, and transport other
things (thimacs; see Fig. 1). Things “live” or “pass through”
other machines. Machines house other things and provide
roads for their flow. The unity of thing and machine forms a
thimac. In such a blend, a single thimac is a fusion of two
manifestations. The thing flows within machines, and it also
serves as a machine for other flowing things. A complete
machine is shown in Fig. 2. The machine in Fig. 2 is more
complete than the known input-process-output model. For
example, suppose that we study the productivity of a
particular organizational unit. It is not sufficient to examine
only the output; we also have to examine what is being
created. What is created may or may not be output.

Fig. 1 A yin-yang symbol is a circle divided by an S-shaped line into
two segments representing a thing and machine, each being a version of the
other. A thing flows into a machine, and a machine becomes a thing.

Fig. 2 Flow of things in a thinging machine Model.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

250

As shown in Fig. 2, a TM machine can be viewed as a
coordinated system of flow (a change in the action position).
The flow is not a type of link (e.g., a class of relationship in
ER); it is rather a transformation from one state to another.
Fig. 2 can be described in terms of the following generic (has
no more primitive action) actions:
Arrive: A thing moves to a machine.
Accept: A thing enters the machine. For simplification, we
assume that all arriving things are accepted; hence, we can
combine the arrive and accept stages into one stage: the
receive stage.
Release: A thing is ready for transfer outside the machine.
Process: A thing is changed, but no new thing results.
Create: A new thing is born (being found/manifested) in the
machine. Things come into being in the model by “being
found.” Creation in metaphysics involves bringing the
entities from the state of nonbeing into existence. The TM
model limits this creation to the appearance in the model.
Create x in a model means “there is” x. After the instance of
creation, the entity may move to be processed or released, or
it may stay in the creation state.
Transfer: A thing is input into or output from a machine.

Additionally, the TM model includes the mechanism of
triggering (denoted by a dashed arrow in this study’s figures),
which initiates a flow from one machine to another. Multiple
machines can interact with each other through the movement
of things or through triggering. Triggering is a
transformation from one series of movements to another.

Conceptualizing a thimac as a thing presents no indication
as to the content of the thing, whereas conceptualizing a
thimac as a machine forces a definite structure of actions
with flow of other things. The thimac is a device to district a
segment (this term is taken from [24]) from the other
segments in the universe. The totality of the universe is also
a thimac. In TM, a set and relationships are also thimacs. For
notational convenience, they can be drawn differently. Thus,
a binary ER relationship (i.e., customer, product) is a thimac
that includes two subthimacs, customer and product, with
their machines, as will be illustrated in the next section.

An important distinction in TM is between static thimacs and
events. We would expect that the static description, as an
organizational (structural)/formational/topographical level,
does not specify the instances or events. In the static form
(e.g., TM diagram/subdiagram), everything is there; nothing
corresponds to time (past, present, or future), and nothing
corresponds to, say, the principle of no contradiction.
However, what is “there” is loaded with potentiality that can
be exemplified by actuality. For example, an order of a
product, its processing, and its response (negative or
positive) are present in the picture side by side. An event is
a static thimac that has a time “breath” (subthimac) that
infuses dynamism in the thimac. Dynamism is a regulating
mechanism of the static form that aligns it with reality
through such machinery as igniting and chronologizing
actions, logicalizing, and executing/controlling processes.

For example, Create x as a static description is analogous to
create Pinocchio, but the event gives Pinocchio the ability
to flow in the model. Dynamism involves the development
of actuality and the realization of static form through time.

Accordingly, a thing with a time subthimac is considered an
instance (individual). Individuals are things that exist in
space and time. Examples (taken from Milton and
Kazmierczak [25]) of individuals are as follows:
 An accountant named Freda qualified with the time of

being an accountant and an individual named Freda.
 The annual financial statement for Ericsson is an

individual if it is fixed (created and continued) with a
specific time.

 Orly International Airport is an individual from the time
of its construction.

3. Illustration of Thinging Machine
Representations: Sets, Subsets, Individuals,
and Relationships

In this section, we begin to explore the expression of ER
notions using TM. The examples in this exploration also
introduce TM modeling of ER examples in the coming
sections. We discuss two issues in this section:
 TM, as an engineering diagram, includes all needed

specifications for actual realization. If simplification is
needed, then TM can be reduced to the ER description.
 The TM model distinguishes between the static and
the dynamic levels by drawing time events over the
original static diagram. The ER counts time as an
attribute of an entity.

Example: Consider the example described in Green [26] as
an instance of relationship of association among two or more
entities: Customer ‘Smith’ orders product ‘PC42.’ In TM
modeling, we find that the given relationship is replaced with
static and dynamic machines, as shown in Figs. 3 and 4,
respectively.

Create

Process:
extract

Custome

Order
Releas Transfe Transfe Receive

 Name
“Smith”

 Product “PC42”

T
ra

ns
fe

r

R
ec

ei
ve

P
ro

ce
ss

T
ra

ns
fe

r

R
el

ea
se

T
ra

ns
fe

r

R
ec

ei
ve

P
ro

ce
ss

T
ra

ns
fe

r

R
el

ea
se

 Time

Event 1 Event 2
Create

Create

Fig. 4 The relationship ‘Smith’ orders product ‘PC42’ as two events
in TM

Fig. 3 The static TM model of relationship Customer-Product.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

251

In Green [26], the time in Customer ‘Smith’ ordered product
‘PC42’ on January 11, 2005 is just an attribute, but in TM
modeling, the time moves the data Customer ‘Smith’
ordered product ‘PC42’” to the level of realization as an
event. Conceptually, this is an important difference between
the ER model and the TM. From the TM point of view, the
ER representation is a static representation that is incapable
of modeling dynamism. TM modeling has two levels of
abstraction: static and time. January 11, 2005 is a thimac
located at a higher level of abstraction, whereas ‘Smith’
ordered product ‘PC42’ is a region (of the static TM
diagram) that has an association with the time January 11,
2005. Thus, January 11, 2005 “lifts” the thimac ‘Smith’
ordered product ‘PC42’ from the static level to the level of
dynamism (events).
Example: Karukonda [27] provides a classic example of ER
modeling, as shown in Fig. 5, that represents the red-colored
ball broke the glass window. Karukonda commented that the
example indicates that the semantic primitives provided by
the ER approach are more fine-grained than the semantic
primitives provided by a semantic net are. The ER approach
maintains a distinction between entities, relationships, roles,
attributes, and values. Fig. 6 shows the corresponding TM
model. On the left of the figure, we find the ball and its
attribute color. The ball moves to the window, specifically
to the glass part of the window, “causing” the break.
Comparing the two representations, we note that the TM
representation includes structure and actions. If we remove
the five TM actions, we obtain Fig. 7, which can easily be
converted to the ER diagram where “break” forms the
relationship. We can conclude that the relationship “break”
in the ER graph is replaced by actions and the state “break”
(or being broken) in the TM model.

We can see that the relationship in this example stands
for actions in TM. If we look at the corresponding language
expression, ER representation stands for the red ball breaks
the glass of the window. The TM representation stands for
the red ball flies and hits the widow, causing the glass to
break. We avoid the issue of which representation has, in
Karukonda’s [27] words, “more fine-grained semantic
primitives.”

It is generally claimed that the ER diagram represents the
conceptual structure of a problem domain being modeled
(e.g., [28]). As this example shows, the actions of such a
model are sometimes hidden under the relationship. As we
will see later in this paper, what is called relationship in this
example contains the roots of behavior of things (what the
thing does) where events are the product of the encounter
between a series of actions and time. Thus, behavior is an
intrinsic integration of actions and time. Fig. 8 shows the
generic actions in the red-colored ball broke the glass
window. Fig. 9 shows the chronology of these generic events.

In the ER model, behavior is defined through another
mechanism (e.g., Petri nets), such as a set of states and
transactions that bring about state transitions. Nevertheless,
the TM version of the ER diagram tells us there are
embedded actions hidden by the ER relationship. Actions

mean change and movement; hence, these in time lead to
events. TM representation exposes what is hidden in the ER
notation and similar other models, such as UML activity
diagrams, and those representational methods are too weak
to model behavior.

It is interesting to explore this notion of an event using
TM representation. Suppose the event Ej happens after Ei.
This succession of events can be modeled in TM. In TM
modeling, an event is a fuzzy concept. According to this TM
view, all thimacs are placed with time as an order of
succession, as well as in space (or staticity: subdiagrams of
the TM static model) as an order of situations. Such a
statement imitates Newton’s famous statement, “All things
are placed in time as to order of succession; and in space as
to order of situation” [29].

Fig. 5 The ER model of the red-colored ball broke the glass window.

Fig. 6 The static TM model of the red-colored ball broke the glass window.

Fig. 7 Removing the TM actions.

Fig. 8 Events are an intrinsic integration of actions and time.

Fig. 9 Behavior of the red-colored ball broke the glass window.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

252

In this sense, we understand that the staticity (i.e., the TM
subdiagram) exists (i.e., create in the diagram) and is resting
in this existing time (create), but happening happens in the
flowing time (transfer, receive, process, release, and transfer;
see Fig. 10).

Example: Consider the activity diagram shown in Fig. 11.
The semantics of the arrow in this diagram raise some
questions. We can distinguish between logical sequence and
time sequence. Since there is no mention of time, we assume
there is a logical sequence (e.g., first, do Press Power, which
is followed by computer does the posting, then starts OS).
The arrows also imply a time sequence (e.g., Press Power at
time t1 the Post happens at t2, t1 < t2). Suppose the event of
t1 happened in the year 1980 and the event of t2 happened
in 2020. The diagram is still valid. Hence, practically, the
diagram does not imply a time sequence, and the arrows
denote only a logical sequence because the number sequence
1, 2, 3, 4 implies an order. Contrary to the common claims,
we can conclude that the activity diagram has nothing do
with behavior because behavior involves change (flow or
triggering), time (thimac), and events (staticity plus time).
The same conclusion is applied to other modeling diagrams,
including ER and even state diagrams. On the other hand, in
TM modeling, time, which is a thing, does not allow empty
or unoccupied instants.

4. Sets and Subsets in ER and TM Modeling

The issue discussed in this section relates to class-based
modeling that deals with such matters as classes, subclasses,
and elements in these classes, as well as whether a constraint
holds among a given set of classes.

Consider the ER diagram in Fig. 12 that represents the
relationship between customers and addresses. Fig. 13
shows the customers part in the corresponding TM model,
where there is an explicit distinction between the set (entity
type) customers and an individual customer. Both customers
and custom in Fig. 13 have being (possibility) [29] in the
system. Instances or individuals are realized (have existence;
i.e., actuality) when thimacs have time subthimacs as shown
in Fig. 14.

That is, an instance of customers is created at (and during) a
given time. If the time subdiagram is not included, then
customers is just a static description. The issue here is related
to the difference between extension and intension in logic.

Fig. 12 The relationship between Customers and Customers
Addresses (adopted from Sparx [14]).

Fig. 11 An activity diagram (from Ruppel [33]).

Fig. 10 “What happens in time, and what exists in time; but these two ways of being in time are different” [29].

Fig. 13 TM representation of customers.

Fig. 13. TM representation of customers

Fig. 14. Instances are realized in time

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

253

 In TM modeling, all notions should be represented
explicitly. If a reason exists to erase the difference between
any two notions (e.g., set and subset, for the sake of
simplification), then the TM diagram can be simplified
starting from the original complete diagram. The idea is that
any engineering diagram should be a complete diagram
ready for realization (e.g., programming). For example, any
engineering system can be represented by block diagrams,
which are interconnected blocks that each describes a
portion of the system. Block diagrams usually adhere to a
mathematical system of rules (e.g., in control engineering).
A block diagram can be simplified using various methods.
For example, block diagrams can be simplified using a
signal flow graph [30], which uses the rules of block diagram
algebra. Nevertheless, simplification should be based on the
original diagram.

In Fig. 13, a set called customers includes multiple
members, where each member is called customer. For
notational clarity, we can draw double-line edges or boxes
to denote the multiplicity of individuals. For simplicity’s
sake, we can use a single-line box under the assumption that
the name of the thimac reflects the distinction between a set
and its members (e.g., customers vs. customer). Additionally,
the action create indicates the appearance of the thimac in
the global system. In the TM representation, what “exists” is
that which appears (is captured) in the TM diagram, or, in
Gruber’s [31] words, “that which can be represented.” As
will be done in this paper, create may be omitted under the
assumption that the presence of a box with a name is
sufficient to indicate the presence (being) of the thing (type)
in the system.

The relationship 1-n is also a thimac as shown in Fig. 15.
It is drawn as a dotted box for emphasis. It can be created
and transferred. If we want to simplify the TM model to
extract an ER-like description, we can eliminate the
distinction between a set and a member, then represent the
relationship with a diamond shape.

5. Integrating Operations in Structure

In this section, we show how to build a TM model that
includes events and behavior. We demonstrate that we can
build a set of operations using the structural framework of
the example developed in the previous section. This is in line
with the ontological thesis of the TM that unifies things and
machines, as well as structures and processes. Typically, in
data models, the operations are defined as algebraic
operations. The user specifies the data of interest, and new
relations (tables) are formed by applying relational operators.
In this section, we concentrate on basic operations, such as
insert, delete, and update, that preserve the integrity
constraints in the database schema. We focus on such
referential integrity specified between two tables and used to
maintain the consistency among tuples in the tables.
Constraints typically arise from the relationships among the
entities in the relational schemas. Note that the main aim of
specifying the operations is to demonstrate one way of
implementing it without regard to such

 considerations as efficiency or optimum algorithms. We
leave such an issue to the design and implementation stages
of development. We can say that the aim at the conceptual
stage to describe what we want, not how to do this in a good
way.

5.1 Insertion Operation: Static Model

Using the customer/address example discussed previously,
we assume, without the loss of generality, that a user request
includes two elements of data: the customer identification
(ID) and the customer’s address to be inserted (see Fig. 16,
pink number 1). In the figure:

 The request flows to the system, (2) where it is processed (3)

to extract the customer ID (4).
 On the other hand, the system has the customers file (teal color

5). The customer box does not include the relationship 1-n that
was discussed previously because such a constraint is not
needed in the operation if one is inserting an address. In a later
example, when we discuss the update operation, the TM
representation of the 1-n relationship will be included.

 The file customers is processed (6) to extract the record of a
single customer, and it is sent to check whether it is the record
of the given ID (7, 8, and 9).

 If the record extracted from the file customers is not a record
of the customer with the given ID (10), then this triggers the
extraction of the next record in the customers file, and the
process of comparison is repeated.

 If the record extracted from the file customers is the record of
the customer with the given ID (11), then the given data (ID
and address) are processed (12) to extract the address (13) and
to rebuild the retrieved record from customers (14). This is
done by processing the new address and the record (15) for
inclusion in the customers file instead of in the old record, thus
creating a new customers file (16).

 If no record is found that matches the given ID (end of the file
[EOF] – 17), then a new record is constructed (18 and 19).
Hence, a process (20) inserts the new record into the
customers file, thus creating a new file (21).

5.2 The Events Model

In preparation for developing the behavioral model in the
TM representation, we identify the events over the static
model of Fig. 16. Fig. 17 shows the following events where,
for the sake of simplification, time is not included.

Fig. 15. The relationship is also a thimac.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

254

E1: A request to insert a new address for a customer has
arrived.
E2: The request is processed to extract the ID. Note that
extracting the ID indicates the arrival of the ID (transfer-
receive), which is embedded in the request.

E3: The customer file is processed to retrieve a record.
E4: The input ID and the retrieved customer record are
processed to determine whether the record is of the input ID.
E5: The input ID is not the same as the ID in the retrieved
record.

Fig. 16 The TM model of the insert operation.

Fig. 17 The TM model of the insert operation in the customer/address example.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

255

E6: The input ID is the same as the ID in the retrieved record.
E7: The input request is processed to retrieve the address.
E8: The address and the customer file are processed to add
the address to the found record.
E9: A new customer file is created with the updated record.
E10: The ID does not correspond to any record.
E11: The input request is processed to create a new record.
E12: The newly created record and the customer file are
processed.
Fig. 18 shows the behavioral model of the customer/address
example.

6. From ER to TM

In this section, we further pursue our objective of translating
ER diagrams into the TM model. We introduce a case study
that represents a more complicated ER diagram taken from
Elmasri and Navathe [7] as shown in Fig. 19. The figure
involves a simplified sample COMPANY database. The
employee number, SSN, is assumed to be the key for
EMPLOYEE in Fig. 19.

6.1 Representing Roles

According to Elmasri and Navathe [7], the ER model in Fig.
19 includes the following roles.
 A WORKS FOR relationship n-1 exists between

EMPLOYEE and DEPARTMENT.
 PROJECT has a 1-n relationship with DEPARTMENT.
 EMPLOYEE can work on PROJECT.
 A single employee and a single project belong to a

single department.
In a TM, as discussed previously, it is necessary to
distinguish between sets and subsets for reasons related to
such relationships as n-1, n-1, and m-n that involve subsets
of the sets. Thus,

 The set EMPLOYEES can also be represented as a
set of subsets SUBEMPLOYEES (see subsection
4.2).

 The set DEPARTMENTS can also be represented
as a set of subsets SUBDEPARTMENS, but in this
example, this is not necessary for the roles above.

 The set PROJECTS can be represented as
SUBPROJECTS.

Fig. 20 shows the initial TM specifications of Elmasri and
Navathe’s [7] simplified ER model. Note that the roles are
drawn in color as thimacs. For example, SUBEMPLOYEES
is a subset of EMPLOYEES. A SUBEMPLOYEE

participates in the relationship called n-1 with an individual
department. In contrasting Fig. 20 with the ER diagram of
Fig. 19, we see that TM explicitly brings a relationship that
involves subsets. Note that in Fig. 20, relationships are
modeled as thimacs. Thus, we have five additional top
thimacs (in colors), for example, “top” refers to thimacs that
are not the subthimacs of higher thimacs. Each of these
thimacs represents an ER relationship. We will next describe
how the relationship between EMPLOYEE and
DEPARTMENT is implemented in TM. Fig. 21 specifies
this thimac as an individual employee belonging to an
individual department. How do we preserve this relationship
between any employee and his/her department? First, we
consider the operation of inserting an employee into a
department.

Fig. 19 An ER schema diagram for the COMPANY database (incomplete
from [7]).

Fig. 18 The behavioral model of insert an address.

Fig. 20 A TM initial diagram that specifies the relationships.

Fig. 21 The role: one individual is in one individual department.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

256

6.2 Operations

To implement such an operation as inserting a record of the
new employee in a given department, for example, INSERT
(employee NO. [SSN], department ID), we first need to
check the following as shown in Fig. 22. Note that for
illustrative purposes, the EMPLOYEES box is drawn with
double lines to indicate that it is a set.
1. To find whether a record of the employee is already in

the database, we assume that this can be accomplished
by comparing the SSN with every record in
EMPLOYEES, the set of all records in the database.
Note that at this conceptual level, no consideration is
made for efficiency. Hence, in Fig. 22, after the
insertion request (pink number 1) is received, the SSN
is extracted (2) Additionally, the database of
EMPLOYEES (3) is processed (4) to retrieve a single
record (5) that is processed (6) to extract its SSN. The
employees’ numbers coming from the insertion request
(2) and the one extracted from the database record (6)
are compared (7). Accordingly,
- If they are equal, this indicates an error because the

employee already has a record in the database (8).

- If the two employee numbers are not equal, then
the database is processed to retrieve the next
record in the database (9).

- If on is at the EOF, then this indicates that the new
employee is currently in the database; thus, the
insertion process continues (10).

2. A new employee record is constructed (11).
3. With the department number of DeptN that is extracted

from the insertion request, the file of EMPLOYEES in
DeptN is identified (12, 13, and 14).

4. The file of DeptN EMPLOYEES and the new record
are processed to insert the new record into the file (15,
16, and 17).

5. A new file for EMPLOYEES of DeptN is created and
replaces the current file (18).

Fig. 23 shows the corresponding event diagram divided
according to the following events.
E1: The insertion request is received and processed.
E2: The SSN is extracted.
E3: EMPLOYEES is processed.
E4: A single record is retrieved.

Fig. 22 The TM static model.

Fig. 23 The TM event model.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

257

E5: The SSN in the record is extracted.
E6: The two employee numbers from the insertion request
and the retried record are compared.
E7: The two numbers are equal, hence error.
E8: The two numbers are not equal; hence, another record is
retrieved.
E9: EOF; hence, continue.
E10: A new employee record is constructed.
E11: The department number is extracted, and the
EMPLOYEES of the department are released.
E12: The constructed new employee record flows to be
processed
E13: The new employee record is inserted into the
EMPLOYEES of the department.
E14: New EMPLOYEES of the department are created and
replace the current ones.
Fig. 24 shows the behavior model of the request for
employee insertion.

It is interesting to again analyze the relationship where an
employee belongs to a single department. In Fig. 22, this
relationship is drawn as a machine that includes the
employee (individual) and the department (individual).
However, in Fig. 22, the relationship between the employee
(individual) and the department (individual) is constructed
in two steps:

1. Check that the employee does not exist in the
database, and if this is true, then

2. Insert the employee into the subset of employees
in the department.

The first step guarantees that no other department includes
the new employee. The second step asserts the presence of
the new employee in his/her department. Accordingly, the
relationship between the employee (individual) and the
department (individual) has two requirements. The
employee belongs to a department, and he/she does not
belong to any other department. Employee x belongs to
department y and only y. Hence, one solution to the
specification of the involved relationship is shown in Fig.
25, which is a subdiagram of Fig. 20 with the subthimac
(attribute) uniqueness added to the department. The point of
such a discussion is to demonstrate that the TM model
presents a more refined specification of some ER notions.

7. Modeling Functional Dependency

The ER modeling is used to build the conceptual model of
the relational database. In this context, dependencies—for
example, functional dependencies (FDs)—are used to
“normalize” these relations (tables). ER diagrams and
normalization are generally discussed as two independent
concepts with no link between them [32]. According to
Dhabe et al. [32], normalization should be viewed as a
process of refining ER diagrams, as these two concepts are
so closely related to each other. Existing ER diagrams
cannot accommodate FD information; this makes it

compulsory to enter FD information at some later time with
user interaction.

Any modifications made to the attributes of entities in
existing ER diagrams may lead to inconsistent descriptions
of FD information as well as the attribute descriptions of
entities [32]. Additionally, the automation of normalization
will be achieved if a single diagram (e.g., ER plus FDs) is
used [32]. Apparently, this problem is the result of limiting
the conceptual model to the structural aspects of the system.
FDs are constraints on the behavior of the system that can be
expressed in terms of behavior.

Example: Assume the data model of the relation R
(Employee ID, Start_Date, Employee Name, Address,
Telephone, DOP, Age) as shown in Fig. 26, subject to the
FDs [32]:
1. Employee_ID, Employee_Name → Start_Date
2. Employee_Name → Address, Telephone-Number, DOB
3. Employee_ID → Dependent_Name

Fig. 27 shows a simplified TM representation where actions
are deleted. Such a figure includes the attributes and FDs.
Each FD is expressed as a two-tuple constraint, where the
same two values of a subset of the attributes of any two
tuples trigger the same values as another subset of attributes.

Fig. 26 The entity diagram of EMPLOYEES (incomplete form [32]).

Fig. 24 The TM behavior model

E8

E2E1

E7

E9

E11

E10

E3 E4 E5

E6 E12

E13 E14

Fig. 25 In the relationships, an employee belongs to a single department.
The department should be qualified as unique.

Employee

EMPLOYEES

DEPARTMENTS

Department
Create

Uniqueness
Create

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

258

As mentioned in previous sections, all types of roles and
constraints are viewed in a TM as thimac. As an example,
Fig. 28 shows the definition of Employee_ID,
Employee_Name → Start_Date.

Consider the operation of updating by inserting a new value
of the address given the Employee
Name that preserves the FD Employee Name → Address
(blue dashed arrow in Fig. 27). This involves the following
operations:
- Finding tuples with the Employee Name value that are

equal to the given value of the Employee Name (call the
set of these tuples R2). R2 tuples have a single Address
value because R already obeys the FD Employee Name
→ Address.

- Replacing the values of the Address in R2 with the
given new value of the Address

Fig. 29 shows the TM representation of such an updating
operation as follows.

Fig. 27 Relation R (Employee ID, Start_Date, Employee Name, Address, Telephone, DOP, Age) where any two tuples have functional
dependencies as shown.

Fig. 28 The machine of Employee_ID, Employee_Name → Start_Date

Fig. 29 The TM representation of enforcing Employee Name → Address when one performs the operation that updates Address.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

259

 The first R (the relation/table) is processed (number
1 in the figure) to extract a tuple (2) that is, in turn,
processed to extract the value of the employee
number in the tuple (3).

 The extracted value of the employee ID is
processed (compared - 4) with the given employee
ID value.

 Accordingly,
- If the two values are equal (5), the next tuple in R
is released (2).
- If the two values are equal, then the tuple and the
input new value of the Address are processed (6, 7,
8) to construct a new tuple (9), which is inserted
into R in place of the old tuple (10 and 11).

Fig. 30 shows the event diagram of this segment of enforcing
the FD Employee Name → Address, and Fig. 31 shows the
corresponding behavioral model.

The results in this example show the viability of the TM
language to express operations while preserving constraints.
This provides a tool for analyzing the semantics of the ER
model that involves FDs, and it furthers the general
understanding of data models and enriches their semantics.
The main specific contributions of modeling in this context
are incorporating the TM five generic processes to inject
processing into the ER structure.

8. Conclusion

In this paper, we have examined the basic ER modeling
notions to analyze the concepts they refer to, and we have
represented them. We apply a new modeling methodology
(TM) to ER in terms of its fundamental building constructs,
representation entities, relationships and attributes. The
goal of this venture is to further the understanding of data
models as well as the enrichment of their semantics. The
preliminary results indicate that a TM introduces a new
language to express ER notions at a finer level of detail.
Specifically, infusing the ER diagram with TM actions
presents a combined conceptual picture of structure and
actions. Additionally, the clear TM separation of the static
and dynamic levels provides a comprehensive framework
for developing behavior.

Fig. 31 The behavioral model that realizes the FD.

Fig. 30 The event model of enforcing Employee Name → Address when one is performing the operation that updates Address.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.9, September 2021

260

The ER model includes a large body of work and research
materials, especially in the area of using the ER model as a
conceptual foundation for the relational database model.
Thus, future work on applying the TM to the relational
database model would provide an extension to this paper.
The results in this study seem to point to the benefit of
further investigation in this direction.

References
[1] Silvert, W.: Modelling As a Discipline. International Journal

of General Systems 30(3), 261–282 (2000). DOI:
10.1080/03081070108960709

[2] Beal, J.: From the Mechanistic Modeling of Signaling
Pathways in Cancer to the Interpretation of Models and Their
Contributions: Clinical Applications and Statistical
Evaluation. Ph.D. Thesis, University of Paris, September
2020.

[3] Frigg, R., Hartmann, S.: Models in Science. Zalta, E.N. (ed.)
The Stanford Encyclopedia of Philosophy, Spring 2020 ed.
Volume(issue), xx–yy (Year).
https://plato.stanford.edu/archives/spr2020/entries/models-
science/.

[4] Suppes, P.: Models of Data. Logic, Methodology and
Philosophy of Science. In: Proc. of the 1960 International
Conference, Nagel, E., Suppes, P., Tarski, A. (eds.) & 7 more.
Stanford University Press (1962)

[5] Marciniak, J.J. (ed.): Encyclopedia of Software Engineering,
2nd ed.. John Wiley and Sons, Inc., New York (2001)

[6] Eckert, C.M., Stacey, M.K.: What Is a Process Model?
Reflections on the Epistemology of Design Process Models.
In: Eckert, C.M., Stacey, M.K. (eds.) Modelling and
Management of Engineering Processes, pp. 3–14. Springer,
London (2010). DOI:10.1007/978-1-84996-199-8

[7] Elmasri, R., Navathe, S.B.: Fundamentals of Database
Systems, 7th ed. Pearson, Boston (2016)

[8] Peckham, J., Maryanski, F.: Semantic Data Models. ACM
Computing Surveys 20(3), 153–189 (1988).
DOI:10.1145/62061.62062

[9] Yarlagadda, R. T., Syed, H. H.: Data Models in Information
Technology. International Journal of Innovations in
Engineering Research and Technology 3(2), xx–yy (2016).

[10] West, M.: Some Types and Uses of Data Models. In:
Developing High Quality Data Models, pp. 23–36. Elsevier
Inc. (2011). DOI:10.1016/C2009-0-30508-5

[11] Kohen, H., Dori, D.: Improving Conceptual Modeling with
Object-Process Methodology Stereotypes. Appl. Sci.
2021(11), 2301 (Year). DOI:10.3390/ app11052301

[12] Al-Fedaghi, S.: UML Modeling to TM Modeling and Back.
International Journal of Computer Science and Network
Security 21(1), 84–96 (2021).
DOI:10.22937/IJCSNS.2021.21.1.13

[13] Tupper, C.D.: Model Constructs and Model Types. In: Data
Architecture From Zen to Reality, pp. 207–221. Elsevier Inc.
(2011). DOI:10.1016/B978-0-12-385126-0.00011-5

[14] Sparx Systems: Database Models. Enterprise Architect
(2017). https://sparxsystems.com/resources/user-
guides/model-domains/database-models.pdf

[15] Beconytė, G.B., Beconytė, G.: Entity-Relationship Modelling
and Cartographic Transcription. Geodezija ir Kartografija
29(3), 78–83. DOI: 10.1080/13921541.2003.10552997

[16] Nyerges, T.: Conceptual Data Models. Wilson, J.P. (ed.), The
Geographic Information Science and Technology Body of
Knowledge volume(issue), xx–yy (2017).
DOI:10.22224/gistbok/2017.1.3

[17] Spaccapietra, S., Parent, C., Vangenot, C., Cullot, N.: On
Using Conceptual Modeling for Ontologies. In: Proc. Web
Information Systems Workshops. LNCS 3307. Springer-
Verslag (2004)

[18] Osborne, J.M.: Planning, Philosophy of Filemaker. Blog
(2017).
https://philosophyoffilemaker.com/zoom.php?recid=421

[19] Kashyap, M.M.: Likeness Between Ranganathan’s
Postulations- Based Approach to Knowledge Classification
and Entity Relationship Data Modelling Approach.
Knowledge Organization 30(1), 1–19 (2003.

[20] Thalheim, B.: Entity-Relationship Modeling: Foundations of
Database Technology. Springer-Verlag, Berlin (2000)

[21] West, M.: Developing High Quality Data Models. EPISTLE
(the European Process Industries STEP Technical Liaison
Executive), ver. 2.0 2(1), (2003)

[22] Hitchman, S.: The Entity Relationship Model and Practical
Data Modeling. Journal of Conceptual Modeling volume(31),
xx–yy (2004)

[23] Chen, P.P.: Entity-Relationship Modeling: Historical Events,
Future Trends, and Lessons Learned. In: Software Pioneers:
Contributions to Software Engineering. Broy, M., Denert, E.
(eds.), pp. 100–114. Springer-Verlag, Berlin (2002)

[24] Leonard, H. S., Goodman, N.: The Calculus of Individuals
and Its Uses. The Journal of Symbolic Logic 5(2), 45–55
(1940)

[25] Milton, S.K., Kazmierczak, E.: An Ontology of Data
Modelling Languages: A Study Using a Common-Sense
Realistic Ontology. Journal of Database Management 15(2),
19–38 (2004). DOI: 10.4018/jdm.2004040102

[26] Green, T.J.: Conceptual Modeling Using the Entity-
Relationship Model. Lecture notes, Department of Computer
Science, University of California, Davis (Year).
https://web.cs.ucdavis.edu/~green/courses/ecs165a-w11/2-
er.pdf, accessed Aug. 1, 2021.

[27] Karukonda, S.K.: Entity Relationship Approach to
Knowledge-Based Systems. LSU Historical Dissertations
and Theses, 4575 (1988).
https://digitalcommons.lsu.edu/gradschool_disstheses/4575

[28] Song, I.Y., Chen, P.P.: Entity Relationship Model. Ling, L.,
Tamer Özsu, M. (eds.) Encyclopedia of Database Systems,
2009 ed. volume(issue), 148 (Year). DOI:10.1007/978-0-
387-39940-9

[29] van Fraassen, B.C.: An Introduction to the Philosophy of
Time and Space. Nousoul Digital Publishers, Location (2015).
https://www.princeton.edu/~fraassen/BvF%20-%20IPTS.pd
f

[30] Mason, S.J.: Feedback Theory: Further Properties of Signal
Flow Graphs. Proc. IRE 44(7), 920–926 (1956).

[31] Gruber, T.R.: Toward Principles in the Design of Ontologies
Used for Knowledge Sharing. Technical Report 93-04,
Knowledge Systems Laboratory, Palo Alto, CA, Stanford
University.

[32] Dhabe, D.P., Patwardhan, M.S., Pundlik, S.P., Dhore, M.,
Barbadekar, B.V., Abhyankar, H.K.: Articulated Entity
Relationship (AER) Diagram for Complete Automation of
Relational Database Normalization. International Journal of
Database Management Systems 2(2), 84–100 (2010). DOI:
10.5121/ijdms.2010.2206

[33] Ruppel, S.R.: System Behavior Models: A Survey of
Approaches. Thesis, Naval Postgraduate School, Monterey,
CA, June 2016. https://apps.dtic.mil/sti/pdfs/AD1026811.pdf

