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Summary 
In this paper, we have simulated a rectangular microstrip patch 
antenna for aerospace applications based on graphen as a 
conductor and a multilayer substrate .as a result of the use of the 
graphen patch we obtained a reconfigurable antenna on the 
frequency range (0.6-0.7 terahertz) with a gain up to 12 db. The 
simulation of this antenna has been performed by using CST 
Microwave Studio, which is a commercially available finite 
integral based electromagnetic simulator. 
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1. Introduction 

Recently, terahertz (THz) technology has been 
focused on astronomy applications. Over the past two 
decades, NASA has successfully designed and deployed 
scientific satellites equipped with THz instruments and 
sensors for astronomy applications [1, 2]. Recent research 
and development activities in THz technologies extend to 
different broader applications, such as security monitoring, 
medical imaging, sensors, and wireless communications 
[3-8]. The demand for data rates and wireless 
communication capacity for today's applications is 
unlimited. Thus, new spectrally efficient modulation and 
interference reduction technologies have been developed 
to enable the growth of data rates in recent years and to 
meet the future demand. To attain these high data rates, one 
feasible solution is to increase the available bandwidth, 
which is not possible below a frequency of 300 GHz, which 
is fully allocated. 

 
 
 
 

 
 

Fig 1. In the THz range of the frequency spectrum, multiple 
gigahertz channel bandwidths are possible. 

 
This demand is met by utilizing a new frequency spectrum 
i.e., THz spectrum, frequencies ranging from 300 GHz to 3 
THz (Fig 1), as it is unallocated [8]. With the development 
of technology and the needs of system-on-chip (SOC), the 
use of multilayer substrate has increased in this frequency 
range. The use of a multilayer substrate for microstrip 
transmission lines has many advantages, such as the ability 
to reduce losses and control the expansion coefficient. In 
addition, it is also an alternative solution to the circuit layout 
and the combination of the substrate and the semiconductor 
layer results in the slow-wave structure .The multilayer 
substrate is also used in antenna design where it has a good 
gain in surface wave immunity and improved bandwidth, in 
addition to good mechanical integration [9].In this paper, 
we have proposed rectangular microstrip patch antenna 
with a dielectric multilayer substrate at THz frequency for 
using higher speed wireless communication systems The 
design of this antenna is based on the principles of 
maximizing the current path for a given area using a 
multilayer substrate to reduce the radiation losses of surface 
waves to increase efficiency [10,13]. Surface waves can be 
reduced by short circuiting the poles due to the surface wave 
discontinuity used in triple dielectric layer structure. The 
organization of the paper is as follows. Section 2 concerns 
the microstrip THz antenna simulation model with copper 
and graphen patch. Section 3 discusses the validation results 
of the simulation and finally, Section 4 concludes the work. 

2. Geometry of the antenna 
A multilayered substrate material transmission line is 

shown in Fig 2. In this figure, a microstrip transmission line 
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of length l, width w, and conductor thickness t is shown. 
However, each layer has different relative dielectric 
permittivity and substrate thickness h s as shown in the 
figure 2.  

 
Fig2: microstrip multilayer antenna permittivity 

 
The proposed microstrip patch antenna consists of a 
rectangular patch on multilayer dielectric substrate 
materials with three different dielectric permittivity and 
thickness. The geometrical configuration of the antenna is 
shown in Figure 2. The dimensions of the antenna ground 
plane and radiating panel are shown in figure [3]. [9, 10] 

 

 

Fig 3 Geometrical configuration of the multilayer dielectric 
substrate single pin shorted microstrip line fed rectangular patch 

antenna 

The first substrate layer on ground plane is 50 µm thick 

having an   = 2.42 with tan ± = 0:0009. This layer is 

followed by 100µm thick substrate layer with an  = 2.2 and 

last layer with 55 µm thick having  = 6:15 with tan ± = 
0:0019.The choice of dielectric permittivity and substrate 
size will determine the surface wave losses. A thicker 
intermediate substrate layer has been used to achieve a wide 
bandwidth. The purpose of taking a high dielectric constant 

for the upper layer is to decrease the radiation loss from the 
feed line and a thinner substrate material has been used to 
achieve maximum bandwidth. When the substrate with high 
relative permittivity is above the substrate with low relative 
permittivity, surface wave suppression occurs. [16, 17]. The 
microstrip line feed used in the proposed antenna. As this 
feeding technique increases the input impedance, it is 
commonly used for matching purposes. The advantages of 
this feeding technique is that a conductive strip is connected 
directly to the edge of the rectangular microstrip antenna 
and  both the feed and the patch are on the surface of the 
substrate which gives a good impedance matching between 
the patch and the feed line. The simulation of the proposed 
rectangular microstrip patch antenna is performed on CST 
Microwave Studio simulator, which is finite integral based 
solver. For a three-layer antenna the effective dielectric 
permittivity of the multilayered substrate material is 
expressed as using the following: 
 

= |஽ଵ|ା|஽ଶ|ା|஽ଷ|

|஽ଵ/ఌଵ|ା|஽ଶ/ఌଶ|ା|஽ଷାఌଷ|
       (1) 

Where 

                   D1= 
௄ሺ௞ଵሻ

௄ᇱሺ௞ଵሻ
                             (2) 

 

D2=
௄ሺ௞ଶሻ

௄ᇱሺ௞ଶሻ
 - 

௄ሺ௞ଵሻ

௄ᇱሺ௞ଵሻ
                           (3) 

 

D3= 
௄ሺ௞ଷሻ

௄ᇱሺ௞ଷሻ
െ ௄ሺ௞ଶሻ

௄ᇱሺ௞ଶሻ
 - 

௄ሺ௞ଵሻ

௄ᇱሺ௞ଵሻ
           (4) 

And in general, 

Kn = 
ଵ

ୡ୭ୱ୦ሺ
ഏೢ

రሺ೓೙శ೓ሺ೙షభሻశ೓ሺ೙షమሻ……శ೓భ

  (5) 

 
௞ሺ௞௡ሻ

௞ᇱሺ௞௡ሻ
=
ଵ

గ
lnሺ2 ଵା√௞௡

ଵି√௞௡
) (6) 

 
Applying equations 2, 3,4,5,6 in 1 

We found that our antenna is presented by the following parameters 

Tab 1: OPTIMIZED DIMENSIONS OF THE PROPOSED 
ANTENNA 

Design Parameters Dimensional Value (μm) 
Length of the patch (L) 170,80 

Width of the patch (w) 225,18 

Width of the feed(Wf ) 20 

Length of the ground and substrate 800 

Width of the ground and substrate 800 

Thickness of the patch (t) 5 
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3. Result and discussion 

In Figure 4, we present the return loss characteristic of 
the microstrip patch antenna with the copper patch 

 
Figure 4. Return loss of the copper-microstrip patch antenna 

 
As depicted in this figure, the use of copper as patch 
material as well as feed line material gives a frequency of 
resonance at 0.68 THz with a return loss of only −14 db. 
We replaced the copper patch by the graphen 0.345nm 
patch which is an intelligent material that have agile 
electromagnetic properties, the graphene is a 2D material. 
We have replaced the volumetric patch made of copper 
which presents a thickness equal to 5microns, by a planar 
patch with monoatomic thickness [18, 22]. As shown in 
Figure 5 the return loss S11 for different values of the 
chemical potential EF which Corresponds to different 
values of the external applied electric field. From this figure, 
we can see a reconfiguration in the frequency of the 
coefficient S11. The resonant frequency can be tuned 
continuously from 0.63 THz to 0.7 THz as Fermi level is 
shifted by the applied voltage gate 
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Fig5 Graphene-microstrip patch antenna return loss 

adjustment vs Fermi level value EF. 

 

For this value of EF, the return loss peak reaches −26 dB 
which is almost twice the value obtained with the copper 
patch as represented in  figure 6.Also the gain of the antenna 
shown in figure 7 is above 12 dB at the frequency of  700 
Ghz . This antenna presents a strong gain thanks to the 
amplification of the current on the graphene patch induced 
by the very high mobility of the electrons in the grapheme. 
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Fig 6. Comparison between the return loss of the   copper and 

graphene microstrip patch antenna 
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Fig 7: gain vs. frequency 

In the table below we have shown a comparison between 
the performances of single-layer antenna [9] and the multi-
layer antenna, presented in this paper, which clearly showed 
a significant gain increase in the same frequency band    

Tab2: Comparison between monolayer and multilayer substrate 
antennas at 0.7 THZ with different patches 

antenna 

structure 

monolayer 

antenna(copper)

monolayer 

antenna 

(graphen) [9] 

3 layer 

antenna 

(copper) 

3 layer 

antenna 

(cgraphen) 

gain (dB) 5.63 7.11 7.16 12.2 

directivity 

(dB) 
6.76 8.24 9.31 14.23 
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4. Conclusion 
The comparison of the radiation properties of a patch 

antenna where the patch is made either of Copper or 
Graphene show that the surface conductivity of graphene 
allows a reconfiguration of the radiating Proprieties and the 
multilayer structure give the antenna a remarkable gain 
enhancement. 
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