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Summary 
Radar tomographic imaging's foundation is the radar cross-section 
(RCS) of the pattern and material of the investigative shape. RCS 
varies when the target's permittivity and conductivity differ in 
material profile and shape from other objects in the environment. 
This paper investigates the use of Multi-Layer Perceptron (MLP) 
for pattern recognition of shapes in the frequency domain. 
Supervised and Unsupervised Locally Linear Embedding (LLE) 
algorithms were used as a robust means of addressing the 
difficulties of nonlinear dimensionality reduction of scattering 
fields when domains have frequency complexity. The proposed 
algorithm is capable of recognizing a variety of shape profiles 
based on the scattering field measured by using a geometrically 
diverse tomographic radar scanning transmitter/receiver set up. 
The algorithm is trained in recognition of the patterns of different 
scattering fields with a scattering field of radar tomographic 
handwritten digits across the frequency domain, which can be 
extended to the 3D model. The theoretical basis of this work is 
validated using the results of simulations.  
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.1. Introduction 

Research into the employment of neural networks for 
geometry recognition recently has gained considerable 
attention for the radar system [1]–[4]. The geometry 
recognition of radar target represents an inverse problem 
involving harvesting information regarding the scatterer by 
analyzing the scattered field response that was discussed in 
the literature[5]–[8]. The identification of radar targets may 
occur either through the creation of images with a high 
enough resolution that human observers can recognize them 
or by the creation of signatures/target representations that 
can be automatically recognized by machines [9]–[12]. 
Tomographic Radar Imaging technology combining 
angular, spectrum, and polarization degrees of freedom can 
produce imagery of a target's scattering centers close to 
optical resolution. Despite this ability, sometimes it can be 
too expensive or too cumbersome to create the physical 
aperture required to provide the requisite angular degrees of 
freedom; at other times their simplicity is not the time to 
synthesize such apertures by a relative motion between the 
object being investigated and the radar system (e.g., using 
SAR or ISAR). This then creates the difficulty of 
identifying a target when the available information is 

insufficient for the creation of recognizable imagery. 
Several authors have recognized neural networks for target 
recognition in time domain radar signals which suffer from 
high complexity and noise generated through the process 
[13], [14]. Using a natural frequency-based neural network 
as an independent angle was proposed, which has less noise 
immunity. The work at [15], used principal-component 
analysis of the resonance of the radar signals to feed the 
multi-layer perceptron neural network in order to classify 
the target geometry where the generalized pencil-of-
functions method was used to process the data again in the 
time-domain in order for noise reduction. The method of 
dimensionality reduced space introduced by [16] has the 
advantage of increase the classification performance of the 
high-range resolution profile (HRRP) scattering. The 
HRRP suffers from a lack of information where the neural 
network feature extraction will typically just process a 
dominant scatterer data in the scene.  

For data dimension reduction, Locally Linear Embedding 
(LLE) algorithms are regarded as a robust tool for 
addressing the difficulties of nonlinear dimensionality 
reduction [17]. Dimensionality reduction relates to the 
difficulties of data mapping onto a low-dimensional 
embedding space when it is on or close to a low-
dimensional manifold in high-dimensional data space. 
Many standard techniques have been developed for linear 
dimensionality reduction [18]–[21], e.g., Multidimensional 
Scaling and Principal Component Analysis (PCA) [22]. 
Nevertheless, such methodologies do not work well when 
embedding nonlinear manifolds [23]. LLE, an unsupervised 
learning methodology [24], is being suggested as a practical 
algorithm to address the difficulties of dimensionality 
reduction, as it can obtain low dimensional and 
environmental data while not rejecting embeddings of high 
dimensional data. It has a number of advantages, including 
the speed of implementation and its ability to absorb fresh 
data without the need to run the whole algorithm over again.  

We shall demonstrate that collective nonlinear signal 
processing reduction LLE centered on MLP models in 
combination with the employment of appropriate target 
signatures provides the potential for reliable very high-
resolution target identification even when information is 
incomplete. We introduce a neuromorphic means of 
approaching target identification that can remove the 
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requirement for sizable expensive apertures required to 
image remote targets. This research further proposes that 
nonlinear multidimensional dynamical systems could offer 
a means of identifying targets using a single operating 
frequency. 

Generally, approaching the radar target identification 
thought couple methods. One is to form a radar image that 
will then be examined and identified by human observation 
or an artificial intelligence system. In this case, system 
designers investigate the methodologies and concepts that 
can produce the highest possible resolution images to make 
human identification as accurate as possible. The twin aims 
of this type of method are generally economic viability and 
close to optical resolution. The second way of approaching 
the problem is to have the target automatically recognized 
by a machine that can identify appropriate representations 
of target signatures. This is the optimal method when there 
is insufficient information regarding the Radar Cross 
Section (RCS) of different sections of an object so that it 
can be defined. This method concerns how accurate 
identification can be made when information is incomplete 
or thin no matter what the target range, aspect, or location 
by using a system that can robustly accomplish this that can 
deal with any faults. For this type of approach, the 
processing undertaken by the artificial intelligence system 
to identify images in the alternative approach has to be 
replicated by machinery. There are a number of reasons for 
selecting automated recognition, amongst the most 
important of which are speed and economy. Both of these 
approaches require amplitude/phase measurement for radar 
echoes from irregular and complex objects using the 
functions of polarization, frequency, and orientation by 
employing the same equipment generally used to make 
intricate RCS measurements.  

This paper has designed a classification system of 
tomographic measurement domain that represented as the 
handwritten digit’s frequency response (0, 1,……, 9) from 
the MNIST database employing dimensionality reduction 
based on supervised LLE  and unsupervised LLE 
classification techniques based on MLP. The frequency 
response data of the measurement domain contain multiple 
data such as amplitude and phase for each step frequency in 
the bandwidth beside the spatial information. 

2. Methodology 
This paper will investigate the second of the approaches 
detailed in the previous section and demonstrate the links 
between the processes and how to target representation. The 
processes of radar imaging must be understood in order to 
formulate a methodology to identify targets automatically. 
The motivation of this research is to improve nonlinear 
dimensionality reduction through the employment of LLE 
for radar data. An additional purpose is to reduce the 
potential costs of any radar diversity imaging system. The 

intention is to be able to develop an automated recognition 
using incomplete information, particularly when there is so 
little target information available that it is practically 
impossible to formulate a clear image. The focus on neural 
signal processing is natural, taking into account the 
associative memory attributes for artificial intelligence 
systems, how it can complete or supplement any absent 
information, and the seemingly effortless and swift way in 
which it can resolve untidy problems frequently found 
within speech, vision, and cognition processes. Neural 
processing offers a novel and robust means of processing 
signals that can easily cope with flawed information. 

When using artificial neural networks, machine recognition 
is reliant on generating target signatures (target 
feature/attribute representations) that can provide forms of 
recognition that are "distortion tolerant," i.e., in which the 
range, orientation, or location of the target (otherwise scale, 
rotation, and shift-invariant recognition) are not 
handicapping factors. This paper presents how artificial 
neural networks can take scanty information regarding 
complex scattering objects and develop recognition of 
extremely high resolution. 

Radar Tomography looks at targets from numerous angles 
following the way the transmitters and receivers are 
spatially distributed. Having a diverse geometric 
distribution leads to an increase in the amount of 
information that can be obtained through measurement. The 
environment that contains the targets requiring imaging is 
surrounded by multiple (N) dipole transmitters and M dipole 
receivers. The location of the transmitter n is 𝒓𝒏

𝒕  with 
polarization 𝐚ො𝐧

𝐭 ; for receiver m the location is 𝒓𝒎
𝒓  and 

polarization 𝐚ො𝐦
𝐫 . This arrangement is illustrated in Figure 1, 

which shows the area to be measured and a single pair of 
transmitters and receivers. Only one transmitter emits a 
known waveform at a time, with the other transmitters 
remaining inactive. The target echoes are harvested by the 
receivers [25]. 

 
 

Fig. 1. 3-D model of the target of interest 
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By employing this geometry, it is possible to introduce 
elaborations to basic/inverse models in time-harmonic 
electric fields. It should be noted that time-domain 
waveforms may be given expression within time-harmonic 
fields employing stretch processing or simply the Fourier 
transform. 

The assumptions made about the measurement domain is a 
free space medium having an unknown contrast function 
𝜏ఋሺ𝑟ᇱሻ in which 𝑟ᇱ is a position vector. We can express the 
scattered field 𝐄𝑺ሺ𝒓𝒏

𝒕 , 𝒓𝒎
𝒓 ሻ for transmitter n and receiver m 

by employing the Born approximation, as shown below, 

𝐄𝑺ሺ𝒓𝒏
𝒕 , 𝒓𝒎

𝒓 ሻ ൌ 𝑘଴
ଶ ∭ ሾ𝐚ො𝐦

𝐫 ∙ 𝐆ഥሺ𝒓𝒎
𝒓 , 𝐫ᇱሻሿ ∙ ሾ𝐆ഥሺ𝐫ᇱ, 𝒓𝒏

𝒕 ሻ ∙஽
𝐚ො𝐧

𝐭 ሿ𝜏ఋሺ𝐫ᇱሻ𝑑𝐫ᇱ                 (1) 

For the equation above, k is the wavenumber, and  
𝐆ഥሺ𝒓𝒎

𝒓 , 𝐫ᇱሻ is the Green's function. The Born approximation 
has a linear relationship with the contrast function, and the 
above equation may be represented as matrix multiplication. 
In this instance, we may express the relationship as[25]: 

                    𝐄𝑺ሺ𝒓𝒏
𝒕 , 𝒓𝒎

𝒓 ሻ ൌ 𝐋ሺ𝜏ఋሺ𝐫ᇱሻሻ                                
(2) 

in which the forward model can be implemented through 
multiplication by the L matrix. The L operator must 
undergo inversion for computation of the scattering field. 
For the general case, we just need to obtain the scattering 
field from tomographic scanning mode to feed it into the 
low reduction algorithm.  

3. Algorithm Description 

Numerous machine learning problems start when raw 
multidimensional data sets have to be preprocessed, e.g., 
spectral histograms, speech signals, objects, etc. The aim of 
preprocessing the scattering field of radar tomographic data 
is obtaining data representations for the operations that 
follow that are more descriptive, informative, and useful, 
such as outlier detection, clustering, visualization, 
classification, etc. One purpose of data preprocessing is to 
reduce dimensionality. High dimensional data may contain 
numerous correlations and redundancies that conceal 
fundamental relationships; preprocessing aims to remove 
any redundancies in the processed data. There are two ways 
in which data dimensionality may be reduced, either 
supervised, in which data labels are supplied and 
unsupervised, without data labels. In the majority of 
practical instances, there will be no prior data knowledge 
available, as assigning labels to data samples is both 
expensive and time-heavy. 

A. Unsupervised Locally Linear Embedding 
(LLE) 

Let the scattering field vector X be a set of N points a high-
dimensional data space RD as the following 

𝑋 ൌ ሼ𝑥ଵ, 𝑥ଶ, . . . 𝑥ேሽ                    (3) 
The scattering field as the frequency response of the 
handwritten digits is a nonlinear manifold of intrinsic 
dimensionality d < D  (typically d <<D). D is received 
scattering field dimension at a different tomographic angle, 
which can be extended into the received scattering field at a 
set of bandwidth.  We create a sufficient frequency response 
sample from the manifold to find a low reduction of the 
frequency response sample using LLE by mapping the 
multidimensional data (D) into one global coordinate 
system in  Rd.  Let the frequency response sample has N 
samples in the embedding space RD by 

𝑌 ൌ ሼ𝑦ଵ, 𝑦ଶ, . . . 𝑦ேሽ                    (4) 
 
 
Each pattern is 𝐷 ൈ 1 vector. In our case 𝐷 ൌ 841 , M is 
the number of classes and N is the number of patterns 

𝑋 ൌ ൥
𝑋ଵ
⋮

𝑋஽

൩                           (5) 

 
1) Proximity matrix 

Identify the K nearest neighbors using Euclidean distance 
in the D-dimensional space for each data point 𝑥௜. For each 
data point 𝑥௜𝜖 𝑋 , find the set 𝑁௜ of K nearest neighbors of 
𝑥௜. 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ൌ ฮ𝑋௜ െ 𝑋௝ฮ
ଶ

               (6) 

 
The dimension of the proximity matrix is 𝑘 ൈ 𝑁. Where the 
first row is the indices of all the neighbors of the first pattern, 
the second row is the indices of all the neighbors of the 
second pattern and so on. 
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Fig. 2. The dimensionality reduction of unsupervised LLE. 

 
2) Compute the weights 𝑊௜௝  

Define each data point 𝑋௜ as a weighted combination of all 
its neighbors. 

𝑋ప෩ ൌ ∑ 𝑊௜௝ 𝑋௝
ே
௝ୀଵ                      (7) 

 
 𝑊௜௝ ൌ 0  if 𝑋௜ and 𝑋௝ are NOT neighbors. 
Where 𝑊௜௝ is a square matrix with 𝑁 ൈ 𝑁 dimensions. 

 

𝑊௜௝ ൌ ൥
𝑤ଵଵ ⋯ 𝑤ଵே 

⋮ ⋱ ⋮
𝑤ேଵ ⋯ 𝑤ேே

൩            (8) 

 
 

The error can be calculated using the following equation 

 𝐸ሺ𝑊௜ሻ ൌ  ฮ𝑋௜ െ ∑ 𝑊௜௝ 𝑋௝
ே
௝ୀଵ ฮ

ଶ
                (9) 

The total error 

𝐸ሺ𝑊ሻ ൌ ∑ ฮ𝑋௜ െ ∑ 𝑊௜௝ 𝑋௝
ே
௝ୀଵ ฮ

ଶே
௜ୀଵ          (10) 

 
This error should be minimized to find the best 
reconstruction weights 𝑊௜௝ . Subject to ∑ 𝑊௜௝ ൌ 1  ே

௝ୀଵ to 
have rotation, scaling translation invariance (sum to one 
condition). 
By using the Raleigh-Ritz theorem, we can solve the system 
of k2 equations with variables k2 

 

𝐸ሺ𝑊௜ሻ ൌ  ቯ𝑋௜ െ ෍ 𝑊௜௝ 𝑋௝

ே

௝ୀଵ

ቯ

ଶ

 

 ൌ ฮ∑ 𝑊௜௝ ሺ𝑋௜ െ 𝑋௝ሻே
௝ୀଵ ฮ

ଶ
            (11) 

 

𝐸ሺ𝑊௜ሻ ൌ  ∑ ∑ 𝑊௜௝ 𝑊௜௞ሺ𝑋௜ െ 𝑋௝ሻே
௞ୀଵ

ே
௝ୀଵ ሺ𝑋௜ െ 𝑋௞ሻ  (12) 

 
 
 

∑ 𝑊௜௞ ሺ𝑋௜ െ 𝑋௝ሻே
௞ୀଵ ሺ𝑋௜ െ 𝑋௞ሻ ൌ 1,

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗  (13) 
 

System of 𝑘ଶ linear equations with 𝑘ଶ  variables. 
 

𝑔௝௞ ൌ ሺ𝑋௜ െ 𝑋௝ሻሺ𝑋௜ െ 𝑋௞ሻ                      (14) 
 

 ∑ 𝑊௜௞ ே
௞ୀଵ 𝑔௝௞ ൌ 1        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 ൌ 1,2, … 𝑁 

(15) 
 

3) Compute the d dimensional embeddings 
Compute the d dimensional embeddings best reconstructed 
based on the weight’s matrix 𝑊௜௝  obtained. This 
corresponds to minimizing the following function: 

 

Φሺ𝑌௜ሻ ൌ ฮ𝑌௜ െ ∑ 𝑊௜௝ 𝑌௝
ே
௝ୀଵ ฮ

ଶ
                   (16) 

 
We create another set of data 𝑌௜  using the same weight 
matrix 𝑊௜௝.  
𝑌௜ is the low dimensional representation of 𝑋௜  and it is a d-
dimension vector, and 𝑋௜  is the D-dimension vector. The 
total error can be calculated through the following: 
 

                        Φሺ𝑌ሻ ൌ ∑ ฮ𝑌௜ െ ∑ 𝑊௜௝ 𝑌௝
ே
௝ୀଵ ฮே

௜ୀଵ
ଶ
            

(17) 
 
(17) is an ill-posed problem, in order to create the well-
posed problem [26]: 

  
 

∑ 𝑦௜ ൌ 0ே
௜ୀଵ                              (18) 

భ
ಿ

  ∑ 𝑦௜ 𝑦௜
்ே

௜ୀଵ ൌ 𝐼                      (19) 
 

𝑦௜   is reconstructed input vector with d-dimension, and I is 
an identity matrix with 𝑑 ൈ 𝑑 dimension. Furthermore, the 
weight matrix 𝑊௜௝ is updating the 𝑀 matrix: 

 
𝑀 ൌ ሺ𝐼 െ 𝑊ሻ்ሺ𝐼 െ 𝑊ሻ                  (20) 

 
Where 𝐼 , 𝑊 , and 𝑀  are three matrices with 𝑁 ൈ
𝑁 dimension. We apply the Eigenvalue analysis on matrix 
M to choose d Eigenvectors corresponding to the lowest d 
non-zero Eigenvalues. Usually, the value of d is equal to the 
number of classes minus one.  
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B. For testing: 
 
1) We have the test pattern 𝑋௧௘௦௧, 𝑤ℎ𝑒𝑟𝑒 𝑡he 

𝑋௧௘௦௧  is D-dimension 
 

𝑋௧௘௦௧ ൌ ൥
𝑋ଵ
⋮

𝑋஽

൩                     (21) 

 
2) Find the k-nearest neighbors. 
3) Solve the following system of linear 

equations 
 

∑ 𝑊௧௘௦௧,௞ ሺ𝑋௧௘௦௧ െ 𝑋௝ሻே
௞ୀଵ ሺ𝑋௧௘௦௧ െ 𝑋௞ሻ ൌ

1        𝑓𝑜𝑟 𝑗 ൌ 1,2, … 𝑁 (22) 
 

 ∑ 𝑊௧௘௦௧,௞ ே
௞ୀଵ 𝑔௝௞ ൌ 1       (23) 

 
𝑋௝ and 𝑋௞ are the data points in the training 
set which are k neighbors of 𝑋௧௘௦௧. 
 
 𝑊௧௘௦௧,௝ ൌ 0 if 𝑋௧௘௦௧  and 𝑋௝   are NOT 
neighbors. 
 
and     ∑ 𝑊௧௘௦௧,௝ ൌ 1  ே

௝ୀଵ  sum to one. 
By solving the system of equations, we get 
the matrix 𝑊௧௘௦௧,௝, 𝑗 ൌ 1,2, . . . , 𝑁 

4) Compute 𝑌௧௘௦௧ 
 

𝑌௧௘௦௧ ൌ ∑ 𝑊௧௘௦௧,௝ 𝑌௝
ே
௝ୀଵ             (24) 

 
𝑌௧௘௦௧ and 𝑌௝ is d-dimension. 𝑌௝’s are the 
reduced dimensional representation of 𝑋௝ ( k 
neighbors of 𝑋௧௘௦௧). 

 
C. Supervised Locally Linear Embedding (SLLE) 

 
The main disadvantage of the LLE is complexity. In the 
SLLE, we use class information instead of using all the data 
point as one class (in LLE). 
 

1) Proximity matrix 

Identify the K nearest neighbors using Euclidean distance 
in the D-dimensional space for each data point within the 
class (the neighborhood of a data point only from those 
points that belong to the same class) 
 

 

 
Fig. 3. Dimensionality reduction of supervised LLE. 

              Wherer mth  class A matrix should be shifted by 
∑ 𝑁௜

௠ିଵ
௜ୀଵ  

2) The same procedure in the LLE to compute the 
weighted matrix 𝑊௜௝. 

𝑊௜௝ is 𝑁 ൈ 𝑁 dimension. 
3) The same procedure in the LLE to compute 

another set of data 𝑌௜ 

𝑌௜  is the low dimensional representation of 𝑋௜  as d-
dimension. (d<<D). For the testing, the part is the same as 
LLE. 
 
 
4. Classification using a Multi-Layer 

Perceptron 
 
Train a Multi-layer perceptron network to classify the low 
dimensional data to their respective 
classes ( the input data is Yi with d-dimension, and the 
output is ten classes), as shown in Fig. 4. 
 

 
Fig. 4. Multi-layer Perceptron Block diagram processing low dimension 

tomographic radar data. 

For those working with high-dimensional data, 
dimensionality reduction is a significant means of allowing 
us to discover the essential relationships between data 
points and the primary modes that vary in the data. In 
dimensionality reduction procedures, high dimension data 
is input, with an output of a map of the data on a low-
dimensional manifold. Neighborhoods should be preserved 
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in dimensionality reduction, i.e., if points are adjacent in 
high dimensional space, they should still be adjacent in the 
calculated low dimensional space. Also, dimensionality 
reduction methods ought to provide for nonlinear low-
dimensional manifolds. The essential assumption of LLE is 
that even when we consider the whole of a manifold 
embedded in high dimensional space as being nonlinear, we 
may still assume it to be locally linear if all its data points 
and their neighbors are situated on or close to a patch of the 
manifold that is locally linear. All data points may be 
represented through the weighted linear combination of the 
closest neighbors. For this research, local linear embedding 
is employed for the reduction of the high dimensional data 
set into a suitable low dimensional data set. Firstly, we 
employ supervised LLE, and then unsupervised LLE. 

5. Simulation Results 

For the Tomographic radar imaging response, we calculated 
the scattering field of the measurement domain, which is, in 
our case, the handwritten digits to provide more diversity in 
shape looking. The handwritten images, as shown in Fig. 6, 
is divided into 28 ൈ 28  pixels as experimental 
measurement domain. Each pixel is 0.0037 ൈ 0.0037 𝑚. 
In order to apply the Forward problem to obtain the 
theoretical scattering field of the measurement domain, we 
calculated the Green’s function of the in the measurement 
domain. We design the simulation to have the dimension of 
the 2D measurement domain in 0.105 ൈ 0.105 𝑚 . We 
operate the simulation at a single frequency was sat up to be 
8 𝐺𝐻𝑧 ሺ𝜆 ൌ 0.0375 𝑚ሻ  to function the scanning system. 
We used 28 transmitters and 28 receivers that placed 
equally spaced circularly. The transmitters are located 2 𝑚 
away from the center of the measurement domain, while the 
receivers are located 0.4 𝑚 away from the center as shown 
in Fig. 5. The scattering field matrix is 29 ൈ 29, which leads 
to D a vector of 841 complex elements that represent the 
scattering field in the frequency domain for only a single 
frequency was obtain by the forward problem. The 
scattering field power density of the measurement domain 
is shown in Fig. 7 where we can see the varying due to the 
change of the handwritten digit shape. The phase of the 
scattering field and the Eigen-function of the measurement 

domain is shown in Fig. 8 and Fig. 9, respectively. 

 
Fig. 5. The location of the transmitters and the receivers. 

The training and testing sets are selected and rearranged 
before the inputs are applied (𝑋௜ , i=1, 2… 841). For the 
training, 1000 scattering field of handwritten digit images is 
chosen (100 images per digit). In this process, the first 100 
images called with the digit "0", the second 100 images 
accord with the digit "1", and so on. In addition, 100 images 
are employed for testing (10 images for each digit), and the 
testing image is rearranged so that the initial 10 images are 
for the digit "0" and the second 10 images for the digit "1". 
The input data sets are then normalized. For this research, 
we use D=841 (input pattern dimension), N=1000 (number 
of data point (training set number)), M=10 ( number of 
classes), d=M-1=9 (low dimension sets dimension (𝑌௜)), and 
k=18 ( numbers of neighbors). 

A. Unsupervised Locally Linear Embedding 
(LLE) 

The initial stage in using the LLE algorithm is to discover 
the neighborhood for all data points 𝑋௜ , i=1,2,....N. This 
may be achieved either through the identification of a set 
number of nearest neighbors K for each data point in 
relation to the Euclidean distance or by selecting every point 
inside a fixed-radius sphere. For this research, the 
neighborhood is identified using Euclidean distance. Thus 
for every data point, we have N-1 Euclidean distance. A 
proximity matrix is then constructed employing every 
neighbor for every data input. The proximity matrix 
measures 𝑘 ൈ 𝑁 ሺ18 ൈ 1000ሻ. We will employ this matrix 
in the second stage. 

Once we have found K nearest neighbors for every data 
point and defined each data point Xi as being a weighted 
combination of every neighbor, the next stage is to find an 
assigned weight for each pair of neighboring points. The 

y-
ax

is
 (

m
)
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weights comprise a weight matrix 𝑊௜௝ , i,j=1,2,…,N, with 
every element (𝑊௜௝) characterizing the degree of closeness 
for a pair of specific points ( 𝑥௜ 𝑎𝑛𝑑 𝑥௝ ). Naturally, the 
weighted matrix is a square matrix having dimensions (𝑁 ൈ
𝑁 ሻ(in this instance 1000×1000). This means that apart from 
the elements 𝑋௝, neighbors of 𝑋௜, the majority of elements 
in the matrix are zeros (non-active). For every row of the 
weight matrix, there is a k number of W୧୨ ് 0 and k-N 
number of 𝑊௜௝ =0. Besides, at this stage, we have the 
condition (sum to one) referred to in the second stage that 
requires satisfaction for the provision of rotation, scaling, 
and translation invariance. We can obtain the weighted 
matrix through the resolution of a system of linear equations. 

The final stage is the computation of the low dimensional 
embedding 𝑌௜ . Employing the weighted matrix 𝑊௜௝ , the 
computation of the embedded coordinates 𝑌௜  is achieved 
through the minimization of the function 𝛷ሺ𝑌ሻ (referred to 
in step 3).  At this stage, two conditions need to be satisfied 
( ∑ 𝑦௜ ൌ 0ே

௜ୀଵ  and  భ
ಿ

  ∑ 𝑦௜ 𝑦௜
்ே

௜ୀଵ ൌ 𝐼  ). We must then 
compute the matrix M employing the formula for stage 3. 
The M matrix represents a square matrix having dimensions 
𝑁 ൈ 𝑁 (1000×1000 in this instance). We can now apply the 
eigenvalue analysis to this matrix. d=9 eigenvectors are 
selected that correspond to the lowest non zero eigenvalues. 
Having completed this step, we arrive at another set of data 
Yi (with low dimension). The Y dimension is 𝑑 ൈ 𝑁 (9 ൈ
1000 in this instance). 
For the element of testing, we first need to find the k nearest 
neighbors and then resolve the systemic linear equation for 
computation of 𝑊௧௘௦௧,௝ with two condition constraints 
𝑊௧௘௦௧,௝ =0 if 𝑋௧௘௦௧   and 𝑋௝   are NOT neighbors, and 
∑ 𝑊௧௘௦௧,௝ ൌ 1  ே

௝ୀଵ  sum to one ), then calculate the 𝑌௧௘௦௧ as 
illustrated in the testing section for the algorithm. 

B. Supervised Locally Linear Embedding (SLLE) 
About the supervision of LLE, this approach employs class 
information. Rather than treating every data point as a 
single class and revealing the k nearest neighbors, we search 
for each class's k nearest neighbors. We then obtain the 
proximity matrix cab through a concatenation of every 
proximity matrix in every class. The same procedure as was 
used for the unsupervised LLE algorithm is employed to 
find the weighted matrix and to compute the low 
dimensional embedding 𝑌௜. 
Generally, looking at the last tables and bar charts, learning 
conversion characteristics and testing performance for MLP 
are dependent on numerous elements. Reducing 
dimensionality can make the system less complex. Low 
dimensional data sets must retain the crucial information 
that was held in high dimensional data sets. The advantages 
of dimensionality reduction are frequently employed to 
obtain compact data representations before the application 
of classifiers. In this instance, the chief aim is the obtaining 
of low dimensional data representations with good class 

separability. In this paper, we employed the LLE approach 
for compacting all the available data into low dimensional 
data sets rather than high dimensional ones. Dimensional 
reduction employing LLE goes through three central stages: 
discover the k nearest neighbors for every point 𝑋௜ in the 
original space, undertake computation of the weighted 
matrix 𝑊௜௝ in order to achieve the optimal reconstruction of 
each point 𝑋௜  from its neighbors in accordance with the 
requirement to keep rotation, scaling, and translation 
invariant, and finally the d-dimensional embedding is 
calculated using the best reconstruction with the weighted 
𝑊௜௝ . Following these three stages, the new data sets are 
obtained, these being a low dimensional representation of 
the original high dimensional data sets. To test these, we 
map test data sets onto an identical low dimensional space, 
which is the unsupervised LLE. It is called unsupervised 
because there is no information available regarding the data, 
e.g., labels, target output, etc., and so data processing must 
be undertaken using a methodology that does not require 
label information to be inputted. With supervised LLE, the 
k nearest neighbors are found using previous class 
knowledge. With the MLP in LLE and SLLE, the 
conversion characteristics move towards zero error, as 
illustrated in Fig. 10 and Fig. 11. It is conjectured that the 
most likely cause of this is that rather than working with 
high dimensional data that generally carries redundant 
information (a.k.a. noise), we are working with low 
dimension data that comprises almost exclusively relevant 
information. Naturally, extraneous or redundant 
information adds to the system's complexity. This is why 
training of the MLP is undertaken with minor fluctuations. 
To achieve good data separation, the embedded space's 
dimensionality, d, should be lower than the number of 
classes, M, by one. As we have ten classes, they must be set 
at nine. The parameter k has no significant impact on 
SLLE's ability to achieve good data separation. By good 
separation, we mean that every point from the identical 
class in the high dimensional space can be mapped onto a 
single point in the embedded space. We are aware that LLE 
has also been named a piecewise approach, meaning that the 
complete nonlinear manifold is divided into sections of the 
linear hyperplane. Should the k value be increased, the 
number of pieces increases as well, and more complexity is 
introduced to the system. Alternatively, there is a linear 
hyperplane. 
A balance has to be struck between system performance and 
the number of nearest neighborhoods. Fig. 10 and Fig. 11 
show the testing performed for the handwritten digit 
recognition system employing LLE and SLLE. Looking at 
these results, it is clear that for either case, the system is 
performing acceptably. With SLLE, the system 
performance was slightly superior to that with LLE. For 
LLE, test results varied between 50% and 70%, while with 
SLLE, the variation was between 73% and 90%. It is the 
nature of the original data sets that prevent the percentages 
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reaching more than 90%. The system performance could be 
improved by segmenting the patterns and cropping the 
handwritten digits (handwritten digital dictation) at the 
center of the patterns. Additionally, there is some similarity 
between the shapes of the patterns, e.g., numbers 3 and 8 
have similarities, as do numbers 9 and 6.  
From simulation results, it is obvious in table 1 and table 2 
that SLLE give much better results than LLE because in 
SLLE the comparison between the test image and the other 
training images will be from the same family; thus the 
nearest neighbors is much more accurate than if the 
comparison is made with different digits i.e. the error 
probability is much less in the case of SLLE than LLE. 
Moreover, the number of iteration and time needed for 
SLLE is much less than the LLE case. This, due to the same 
reason, i.e., calculating the nearest distance from the same 
family of the testing image, takes less time and gives more 
accurate results. Furthermore, the Error percentage for each 
did digit is varying with changing the settings of the input 
images; this is due to the shape of the image itself, for 
specific images the number’s picture has a big difference if 
we compared it to the other numbers of the same family, so 
the results give higher error and vice versa. Also, the Error 
percentage for each digit and the total error are changed for 
each execution, this because of varying the initial weighting 
matrix. 

 

 

Fig. 6. The handwritten digit images examples from the MNIST data set. 

 
 
 

 

Fig. 7. The Power density of the measurement domain for various 
handwritten digits. 

 

TABLE I 
DISPLAYS ERROR PERCENTAGE FOR EACH DIGIT FOR BOTH LLE & SLLE 

Digits LEE ERROR %  SLLE ERROR %  

0 12.9032 3.2258 
1 29.7297 5.4054 
2 57.1429 28.5714 
3 56 32 
4 62.963 37.037 
5 64.2857 25 
6 48.2759 17.2414 
7 37.931 17.2414 
8 70.9677 32.2581 
9 51.3514 27.027 
   

 
TABLE 2 

THE TOTAL ERROR, NUMBER OF ITERATIONS, AND REQUIRED TIME OF LLE 

AND SLLE 

 LEE  SLLE  

Total Error % 48.3444 21.8543 
No of iteration 610 5.4054 
Required time (sec) 235.811385 252.760857 
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Fig. 8. The phase of the scattering field of the measurement domain for 
various handwritten digits. 

 

 

Fig. 9. The Eigen-function of the the measurement domain for various 
handwritten digits. 

 

 

 

Fig. 10. Convergence characteristic of the MLP network during the 
training using SLLE, with a large database (10,000 images for training 
from 0 to 10,000. 

 

 

Fig. 11. Convergence characteristic of the MLP network during the 
training using LLE, with a large database (10,000 images for training from 
0 to 10,000. 
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Fig. 12. Bar chart of LLE testing performance for each digit. 

 

Fig. 13. Bar chart of LLE testing performance for each digit. 

6. Further Discussion 
 
In the majority of real-world applications, we do not have 
prior knowledge regarding data, due to the cost and time 
burden of applying labels to data samples. In addition, 
human operatives could label the same data sample 
differently, which could create false discovery of data 
sample relationships, which would then impact upon the 
outcomes of any further calculations. Dimensionality 
reduction is undertaken through the division of a whole data 
point (nonlinear hyperplane) into sections of the linear 
hyperplane. Three stages are undertaken for the production 
of new data sets, having low dimensionality, weighted 
matrix, k nearest neighbors, and embedding into a low 
dimensional space. The MLP is undertaken to employ a low 
dimensional data set with both LLE and SLLE. For both 
algorithms, the training process's convergence 
characteristics were plotted. To undertake to test, behind 
dimensional data set was mapped onto an identical low 

dimensional space that was employed during training. 
Tables and bar charts are used to illustrate how the system 
performed with LLE and SLLE. The chief drawbacks of 
employing LLE and SLLE is their complexity and the time 
they take. SLLE has slightly superior performance to LLE. 
An advantage of both SLLE and LLE is that they only 
require a few parameters, i.e., k, the number of nearest 
neighbors, and d, the dimensionality of the embedded space. 
System performance is only slightly affected by the number 
of nearest neighbors, but this is significantly affected by the 
number of eigenvectors selected. 
Additionally, system performance was directly impacted by 
the data set's nature. How these elements are balanced, and 
how complex the system becomes, must be decided with 
reference to the task at hand. In order to achieve optimal 
training/testing performance, a multiplicity of factors must 
come into consideration. 
3D tomographic imaging radars can provide shape 
estimations for 3D distribution within a scattering field. The 
resolution of this type of system is dependent on the spectral 
and angular windows employed to acquire data and also on 
polarization diversity. Employing polarization, angular, and 
spectral degrees of freedom in this type of imaging system 
increases the amount of information available for object-
scattered wavefields. This allows for broadband 
polarization-selective array apertures to gain a greater 
amount of information regarding scattering objects than 
they would in monochrome (i.e., on one frequency) or with 
a single polarization, as these results demonstrate. There is 
a useful balance that can be struck between angular and 
spectral degrees of freedom. As angular degrees of freedom 
have associations with the quantity of elements/stations in 
an array, replacing them with more economic spectral 
degrees of freedom, which have associations with the 
quantity and frequency points employed in data acquisition, 
may reduce costs and therefore significantly increase the 
economic viability of the system. Although microwave 
diversity imaging systems are attractive, there can be times 
when either synthetic or physical baselines needed for the 
realization of the wide-angle windows required for 
achieving high resolution are either unavailable or 
insufficient to create an identifiable image. There may be 
important implications of this research for automated object 
identification systems, either microwave or other types, and 
it is worthwhile searching for the next phase of automated 
neuromorphic radar recognition systems that can 
accomplish target identification with the minimal 
examination. Much of the outcomes of this research also 
have applicability to the robotic recognition and machine 
vision fields. Transferring the technology into these areas 
does introduce greater complexity as the objects to be 
identified will not be discovered in complete isolation, as 
aerospace targets are. 
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7. Conclusion 
 
Numerous difficulties with machine learning starts when 
we preprocess raw multidimensional data sets, such as the 
scattering field of the target in frequency response. One 
reason for data preprocessing is to reduce dimensionality. 
As high dimensional data often carries many redundancies 
and correlations that leave essential relationships hidden, 
the aim of the operation is the elimination of redundancy in 
the processed data. In this paper, a pattern classification 
system was created for classification of tomographic radar 
image frequency domains for handwritten digits (0, 1,…., 9) 
in the MNIST database employing LLE-based 
dimensionality reduction and MLP-based classification 
methods. The database employed for training/testing was a 
normalized complex frequency domain vector for 
handwritten digits. The system was trained using 1000 
images and tested using 100. For data mining, 
dimensionality reduction is crucial. The aim is to obtain a 
low-dimensional representation of high-dimensional data 
without losing any of the data's essential characteristics. 
Generally, dimensionality reduction is employed as a 
preprocessing stage prior to data analysis. The low 
dimensional representation of data is a description of the 
data's true structure because the reconstruction weights 
capture and preserve information regarding the data's local 
neighborhoods. These are invariants in terms of scaling, 
rotation, and translation. Supervised (with data labels) and 
unsupervised (without data labels), LLE algorithms are 
used to reduce dimensionality in the input patterns.  
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