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Summary

We are introducing very first time that the class of ¢ —
A — convex function, which is the generalization of class of
¢ —convex, h —convex, Godunova-Levin s —convex, s —convex
in the 2™¢ kind and convex, P —convex and GL-convex functions.
Next, we would like to state well-known Ostrowski inequality via
¢ — A —convex function by using the bifuzzy Reimann integrals.
In addition, we establish some bifuzzy Ostrowski type inequalities
for the class of functions whose derivatives in absolute values at
certain powers are ¢ — A —convex functions by Holder’s and
power mean inequalities. In this way we also capture the results
with respect to convexity of functions.
Key words:

Ostrowski inequality, convex functions, Fuzzy set,
Bifuzzy sets.

1. Introduction

In this section, from literature, we recall and introduce
some definitions for various convex functions.
Definition 1.1 [3] A functionn:I € R — R is said to be convex,
if
ntx+ 1A -y) <tn(x)+ A - nG),
vx,y €1,t € [0,1].

Definition 1.2 [3] A function n:/ c R - R is said to be
MT —convey, if n is a non-negative and

vt Vit
n(tx + (1= y) < ;7=n) + 5 =n0),

vx,y € 1,t € [0,1].

Definition 1.3 [17] We say that n: ] c R - R is a P —convex
function, if n is a non-negative and vx,y € [ and t € [0,1] we
have

n(tx + (1 —)y) <nx) +n@).

Definition 1.4 [20] We say thatn:1 c R —» R is a Godunova-
Levin convex function, if n is non-negative and vx,y € I and t €
(0,1) we have

n(tx + (1 - 6)y) < 71() + =10

Definition 1.5 [4] Lets € [0,1]. A functionn:I < [0,00) = R is
said to be s —convex in the 2% kind, if

n(tx + (1 —)y) < t°n(x) + (1 —)n),
vx,y € 1,t € [0,1].
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Definition 1.6 [9] We say that the functionn:I € R - [0, ) is
of Godunova-Levin s —convex function, with s € [0,1], if

1 1
ntx+ (1= 0y) < 5000 + 75100,

1=t
vt € (0,1) and x,y € I.

Definition 1.7 [30] Let h:J € R — [0, ) with h not identical to

0. We say that n is an h —convex function if Vx, y € I, we have
n(tx + (1 = 8)y) < h(On(x) + h(1 = On(y),

vt € [0,1].

Definition 1.8 [10] Let ¢:(0,1) = (0,00) be a measurable
function. We say that the n: I — [0, ) is a ¢ —convex(concave)
function on the interval I if for all x, y € I we have

n(tx + (1 - )y) < (2)tp(On(x) + (1 — )1 — On(y),(1.1)
vt € (0,1).

Theorem 1.9 [29] Let ¢: [p,, o] = R be differentiable function

on (pa, pp) With the property that |@'(t)] <M for all te
(Pas Pp)- Then

L x_pa;fpb 2
Pa) ris Pb—Pa

for all x € (pg, pp). The constant % is the best possible in the kind

1 Pp
— [ p(0dt| < M(py -

oo -

Pb

) (1.2)

that it cannot be replaced by a smaller quantity.

Now we present the extension of definitions of fuzzy
numbers and their results as from the [6], [7], [26] and [19].
Definition 1.10 A BF-Number is ¢: R — [0,1] can be defined as
1. [¢]° = Closure({r € R:T¢(r) > 0,F¢p(r) > 0}) is compact.
2. ¢ is Normal.( ie, 3715 € R such that Tep(ry) =1 and
gFp(ry) =0).
3. ¢ is BF-convex, i.e, Vry, 1, € R, € [0,1]

To(ry + (1 —mrz) =2 min{Te(r1), TP (r2)},

Fo(m + (1 —m)rp) < max{Fp(r1), Fo(r2)}-

4. V715 € R and € > 0, 3 Neighborhood V (1), such that Vr €
R, Top(@) < Tp(ry) + eand FPp(r) = ¢p(1p) — €,

Definition 1.11 For any ({;,{;) € [0,1]%, and ¢ be any BF-
number, then ¢ — level set [p]€v%D ={re R:Top() =

31 F(r) < G} Moreover [p]6 = [6+6), 9] v(¢,,¢,) €
[0,1]2.

Proposition 1.12 Let ¢, ¢ € BFR(Set of all BF-Numbers) and n €
R, then the following properties holds:
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. [¢ (p](<1 $2) = [¢]((1 ,$2) + [(p]@p(z)_
[ ]({1 $2) = n[d)]({l {2)

1
2
3
4.
5
V(e
RI(r) = (10).

[0,1], where iEBFR, defined by Vre

Definition 1.13 Let D: BFy X BFr — R, U {0}, defined as
D(¢, )
= sup max{|T¢(O T¢(O| |T<p(O T(p({)|}
¢e[0,1]
i @ @ @ Fep®
+561H)‘f1]m1n{|F¢_ JFoy |,|F<p_ JFog |}

V¢, € BFg. Then D is metric on B Fp.

Proposition 1.14 Let ¢, ¢, 3, ¢, € BFg and n € BFy, we have
. (BFg, D) is complete.
. D(¢p1 © 93,02 @ P3) = D (1, P2).
DM O d1,1m O ¢) = n|D(P1, P2)-
. D(hy @ G2, 5 ® ds) = D(1, b3) + D (b2, ba).
- D(¢1 @ ¢,,0) = D(¢1,0) + D(¢p2, 0).
- D(¢1 @ @2, $3) = D(¢1,$3) + D(¢,0),
Where 0 € BFy, defined by Vr € R,0(r) = (0,1).

AN A LN =

Definition 1.15 Let ¢, € BFg, if 36 € BFg, such that ¢ =
@ @ 0, then 0 is H —difference of ¢ and ¢, denoted by 8 = ¢ ©

Q.

Definition 1.16 A function ¢:[ry, 19 +€] = BFg s
H —differentiable at r, if 3 ¢'(r) € BFy, i.e both limits
Pr+)S9(r) ¢(7‘)9¢(T 0]
lim lim
h-0* h " h>0+
exists and are equal to ¢’'(7).

Definition 1.17 Let ¢: [pg, pp] = BFg, if V{ > 0,31 > 0, for any

partition P = {[u, v]: 6} of [pg, pp] With norm A(P) < n, we have
DX (v —w)¢(8),9) <,

then we say that ¢p is BF-Riemann integrable to ¢ € BFy, we

write it as

¢ = (BFR) [)" p(x)dx.

2 BF — Ostrowski type inequalities via ¢p —
A —convex functions

In this section, we are introducing very first time the
concept of ¢ — A —convex function, which contain many classes
of convex functions in litrature.

Definition 2.1 Let A € (0,1],¢:(0,1) — (0, o) be a measurable
function. We say that the n:1—-[0,0) is a ¢—
A —convex(concave) function on the interval I if for all x,y € I
we have

n(tx + (1= )y) < ()t*e(On(x) + (1 = ) $p(1 -

), 2.1

vt € (0,1).

Remark 2.2 In Definition 2.1, one can see the following.
1. If we put A =1, in (2.1), then we get the concept of
¢ —convex (concave) function.

2. If we denote [(t) = t, and by takingA =1, h =
we get h —convex (concave) function

3. If we take A = 1, ¢(t) = — with s € [0,1] in (2.1), then we
get the class of Godunova- Levm s —convex (concave) functions.
4. Ifweputd =1, ¢(t) =
Godunova-Levin convex (concave) function.

5. ifwe putd =1, ¢(t) = t51 with s € [0,1] in (2.1), then we
get the concept of s —convex (concave) in 2™% kind.

6. Ifweputd=1,¢(t) = %in (2.1), then we get the concept of
P —convex (concave) function.

7. Iif weput A =1, ¢(t) = 1in (2.1), then we get the concept of
ordinary convex (concave) function

8. Ifweputd=1, ¢(t) =

l¢ in (2.1),

= in (2.1), then we get the concept of

$ in (2.1), then we get the

concept of MT —convex (concave) function.

In order to prove our main results in next section, we
need the following lemma.
Lemma 2.3 Let ¢: [p,, pp] = BFr be an absolutely continuous

mapping on  (pg,pp) With pg <pp. If @' € Crlpg, pp] N
Lr[pa, pp), then for x e (pa, pp) the following identity holds:

—— O (BFR) [ p(©)dt @ L2 0
(BFR) [} t © ¢'(tx + (1 — t)p,)dt

= 9() ® X220 (BFR) J; t O
@'(tx + (1 — t)pp)dt. (2.2)

We make use of the beta function of Euler type, which
is for x, y > 0 defined as

B(xy) = [, t7'(1
where ['(x) = fooo e *“u*"1du.

FeOr)

—£)Y-1d4t =
7 dt r(x+y)’

Theorem 2.4 Suppose all the assumptions of Lemma 2.3 hold.
Additionally, 2 € (0, 1] ¢:(0,1) - (0,0) be a measurable

function with ¢ (t) ;t —, D(¢',0) be a ¢ — A —convex function on

[pa pp] @nd D(¢' (x) 0) < M. Then for each x € (pg, pp) the
following inequality holds:

D (<p(x), pbi O (BFR) flib (p(t)dt) <
M ([} (1) +t(1 - ) (1 - )dt ) I(x), 2.3)
where I(x) = —(x p";;;p p=0)°
Proof. From the LemmaaZ 3,
(cv(x) @ (BFR) f (p(t)dt)
2 Pa
(M O (BFR) f tO ' (tx + (1 — pg)dt,
Pb
(pp — %)? , _
o —pa © (BFR)fO tO@'(tx+ (1 t)pb)dt>,

2
<D <M 0 (BFR)f t O ¢'(tx + (1 - )pg)dt, o)
Pb

+D (M ) (BFR)f t O ¢'(tx + (1 — t)pp)dt, o)
Pp
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_ (x = pa)? ( 1 , 3 ~>
=, 2\ | OvecH -0
(pp — %) , 3 _
+WD <(BFR)f tO @'(tx + (1 —t)py)dt, 0),
< (Zb p;) f tD((p (tx + (1 —t)py), O)dt
(fj: ’,f) Iy tD(¢'(tx + (1 = t)py), D), 24

Since D (¢',0) be ¢ —convex function and D(¢’(x),0) < M, we
have

D < t*¢p()D(¢'(x),0) + (1 — )1 — )D(¢'(po), 0)
< M[trp(t) + (1 — ¢ (1 —1)] (2.5)

D <t*¢()D(¢'(x),0) + (1 = )*dp(1 — t)D(¢'(pp), 0)
<M[t*p(®)+ 1 -1 —-1)].  (26)
Now using (2.5) and (2.6) in (2.4) we get (2.3).

Corollary 2.5 In Theorem 2.4, one can see the following.

1. If one takes A =1, in (2.3), one has the BF — Ostrowski
inequality for ¢p —convex function:

D< () ——— O (BFR) f pb (t)dt>
¢ ’pb_ a Pa ¢

1
<M (f t2pt) +t(1 -1
0

- t))dt> 1(x).

2. If one takes A = 1,I(t) = t, the identity function, then by
taking h = l¢, in (2.3), one has the BF — Ostrowski inequality
for h —convex function:

1 Pb d
D(w(x), —— 0 ®R) l,, KO t)

1
<M < f (th(t) + th(1 — t))dt)l(x).
0

3. If one takes A = 1,¢(t) = t~6*D in (2.3), then one has the
BF — Ostrowski inequality for Godunova-Levin s — convex
functions:

M (ﬁ) 1().

4. If one takes A = 1, ¢p(t) = t5~* where s € (0,1] in (2.3), then
one has the BF — Ostrowski inequality for s —convex functions in
27 kind:

<<0(x)

5. Ifone takes A = 1, ¢(t) = t~1 in (2.3), then one has the BF —
Ostrowski inequality for P —convex function:

((p(x) O (BFR)f (p(t)dt) < MI(x).

D (9@, - O (BFR) [} p(t)dt) <

O (BrR) J (p(t)dt) < M(l—is)l(x).

6. If one takes A = ¢(t) = 1 in (2.3), then one has the BF —
Ostrowski inequality for convex function:

<<p(x) — 0 (BFR) f w(t)dt) <),

7. If one takes A =1, ¢(t) = 2 t(l = in (2.3), then one has the

BF — Ostrowski inequality for MT —convex function:

(<p(x) O (BFR) f <p(t)dt> <" 1)

Theorem 2.6 Suppose all the assumptions of Lemma 2.3 hold.
Additionally, A € (0,1], ¢:(0,1) = (0,00) be a measurable

function with ¢(£) # =, [D (¢, 0)]% for g > 1 be ¢ — 1 —convex

function on [p,, pp] and D(¢'(x),0) < M. Then Vx € (g, Pp)
the following inequality holds:

1 Pb
p (<p(x>, ——oem <o(t)dt>

Pa

< ME (f; @ +ta - ' - D)t 1. @7)

Proof. From the inequality (?7) and power mean inequality [31]

D (00O BFR) [ () <
(;b p;)Z (f tdt) 5( t[D(¢'(tx + (1 = t)py), 0)] dt)a
%(fol tdt) 5( t[D(¢'(tx + (1 — t)pp), 0)] dt)E 2.8)

Since [D(¢',0)]9 be ¢ —convex function and D(¢’(x),0) < M,
we have
[D(¢'(tx + (1 = £)pg), 0)]"
< t)‘¢(t)[D((p’(~x), 0]+ -0t
- [D(¢'(pa), 0)]"
<MItrp(0) + (1 - D1 —1)], (2.9)

[D(¢'(tx + (1= t)py), 0)]" <
o@[D (o', 0)]" + (1 - /61 — 0[P (¢ (), 0)]"

< MItrp(0) + (1 - (1 —1t)], (2.10)
Now using (2.9) and (2.10) in (2.8) we get (2.7).

Corollary 2.7 In Theorem 2.6, one can see the following.

1. If one takes g = 1, one has the Theorem 2.4.

2. 1If one takes A =1 in (??), one has the BF — Ostrowski
inequality for ¢ —convex function:

D (¢(0), == O (BFR) [} p(t)dt) <

ff% (Jy €@ +t(1 - P — 0)de) I (x).

3. If one takes A = 1,l(t) = t, the identity function, then by
taking h = ¢, in (??), one has the BF — Ostrowski inequality
for h —convex function

(w(x) G) (BFR) f (p(t)dt)

1
<M U (th(t)+th(1—t))dt> 1(x).
2 _E
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4. If one takes A = 1, (t) = t~*D in (??), then one has BF —
Ostrowski inequality for Godunova-Levin s —convex functions:

<¢(X)

5. If one takes A = 1, (t) = t5* where s € [0,1] in (??), then
one has BF — Ostrowski inequality for s —convex functions in
2™ kind:

- O (BFR) J gv(t)dt)g i” 1(%3)5 1(x).

1 oo M1 \a
D<<p<x). ——- OB <p(t)dt>s (=) 100,

Pa

6. Ifone takes A = 1,¢(t) = t™1, in (??), then one has the BF —
Ostrowski inequality for P —convex function:

1 Pb M
D <<p(x), O (BFR) go(t)dt) <—=IX).
Pp — Pa 21_5
7. 1If one takes A = d)(t) =1, in (?7), then one has the BF —

Ostrowski inequality for convex function:

p(pe0 0 @R f ¢<t)dt) <1,
8. If one takes A = 1,q,')(t:) =3 t(l_t) in (?7), then one has the
BF — Ostrowski inequality for MT —convex function:
1
1 Pb Mma
Do), O (BFR) p®)dt | < —=I1(x).
Ppr — Pa 21+a

Theorem 2.8 Suppose all the assumptions of Lemma 2.3 hold.
Additionally, assume that A € (0,1],¢:(0,1) = (0,0) be a

measurable function with ¢(t) ;ttiz, [D(¢',0)]7 be a ¢ —

A — convex function on [pg, ppl,q > 1 and D(¢'(x),0) < M.
Then for each x € (pg, pp), the following inequality holds:

(<p(x) — O (BFR) [ p(t)dt)

( . “(fy (tA¢>(t)+(1—t)’1¢>(1—t))dt) 1), (211
+1
where p™t + ¢~ = 1.

Proof. From the inequality (?7) and Holder’s inequality [32]
<<p<x) — 0 (BFR) f w(t)dt>

1 1
< Gop Ul ”’dt>p (f [D(¢'(tx + (1~ t)pa)rﬁ)]th>q
0 0

Pb — Pa .
+ (pp—x)* (fol tpdt); (fol [D((p’(tx +(1-
1

Pb—Pa

Dpp),0)] ). (212)
Since [D(¢’,0)]7 be ¢ —convex function and D(¢'(x),0) < M,
we have

[D(¢'(tx + (1 = £)pg), 0)]” )
< t*p®)[D(¢'(x),0)]" + (1 - )*p(1
- )[D(¢'(pa). 0)]’
<MI[t*p) + (1 - )*p(1—1)], (2.13)

[D(¢'(tx + (1 = )py), 0)]°
< t*p®)[D(¢'(x),0)]" + (1 — )21
- 0)[D(¢'(pp), 0)]"
<MItrp(0) + (1 - D1 —1t)], (2.14)
Now using (2.13) and (2.14) in (2.12) we get (2.11).

Corollary 2.9 In Theorem 2.8, one can see the following.
1. If one takes A =1 in (2.11), one has the BF — Ostrowski
inequality for ¢ —convex function:

<<p(x) O (BFR) f (/)(t)dt)

Pa

M 1
S—l( | ao

(p+ 1P

1
+ (—t)¢(—t))dt>q 1(x).

2. If one takes 1 =1,1(t) =t, then by taking h =l¢, in
(2.11),0ne has the BF — Ostrowski inequality for h —convex

O (BFR) [ (t)dt) <

function: D ((p(x),lpb

(2 (@) + h(1 = 0)de) 1),

(p+1)P

3. If one takes A = 1, ¢(t) = t~C*D where s € [0,1) in (2.11),
then one has the BF — Ostrowski inequality for Godunova-Levin

- O (BFR) [;* p(t)dt) <

s — convex functions: D ((p(x)

M

()i

(p+1)P

4. If one takes 1 = 1,¢(t) = t571, where s € (0,1] in (2.11),
then one has the BF — Ostrowski inequality for s — convex
functions in 2™ kind:

<<ﬂ(x)
(p+1p

5. If one takes A = 1,¢(t) = t1, in (2.11), then one has the
BF — Ostrowski inequality for P —convex function:

—0 (BrR) j qo(t)dr)
< M “( 2

1
?) 1(x).

2aM
(<p(x> — 0 (BFR) f w(t)dt> .
+1)

6. If one takes A = ¢(t) = 1, in (2.11), then one has the BF —
Ostrowski inequality for convex function:
1 Py M
D ((p(x), —O0O (BFR)f (p(t)dt> <— i)
Pp a Pa (p + 1)5

_ 1
7. If one takes A = 1, ¢(t) = Wi in (2.11), then one has the
BF — Ostrowski inequality for MT —convex function:

1

e

1 Pb M (7)‘1

D=0 @R [ o)) < —Z 1)
b Pa

1 +pp
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3. BF — Ostrowski type midpoint inequalties
via ¢p — A —convex functions

Remark 2.10 In Theorem 2.6, one can see the following.

1. If one takes x = p“Terb in (2.7), one has the BF — Ostrowski

Midpoint inequality for ¢—A1-—
PatPb Pp

D (g (fettr), 1 ——O (BFR) [} " o (t)dt)

convex  function:

1
Szﬂg (tﬂ+1¢(t)+t(1—t)Ad)(l—t))dt) (bb = Pa)-

2

2. If one takes 1 =1,x = p“—:pb in (2.7), one has the BF —
Ostrowski Midpoint inequality for ¢ —convex function:

D (<p (52) - 6 J p <p(t)dt>

1
M 1 q
< 2—( f (2 () +t(1 — p(1 — t))dt)q (b — Pa)-
2°7q VO

3. If one takes A = 1,x = "“*"” L 1(t) = t and h = l¢p in (2.7),
then one has the BF — Ostrowski Midpoint inequality for

=) S o)

h —convex function: D ((p ( >

1
M 1 q
< 1<f (th(t)+th(1—t))dt>q(pb—pa).
2*7a Vo

4. If one takes A = 1,x = % and ¢(t) = t~6+D in (2.7),
then one has BF — Ostrowski Midpoint inequality for Godunova-

PatPp 1
D((p( 2 )'pb—paO
1

Pb M (L) -
BFR) [;? p(0)dt) < == ()" 0y = po)
5. 1If one takes A =1,x = @ and ¢(t) = t51 where s €

[0,1] in (2.7), then one has BF — Ostrowski Midpoint inequality
for s —convex functions in 2™¢ kind:

Levin s— convex functions:

D (<p (=222 ﬁ O (BFR) f " w(t)dt>
< Ziwj(l i S) (v — Pa)-

6. If one takes 1 =1,x = @ and ¢(t) = t~1 in (2.7), then

one has the BF — Ostrowski Midpoint inequality for P —convex
function:

Pa + pb)
D -
((p ( 2 Pp—

M
< 1 (pb _pa)'
2%7a

O (BFR) f (t)dt)

7. If one takes A = 1,x = 222 and () = 1 in (2.7), then one
has the BF — Ostrowski Midpoint inequality for convex function:

Pa t Pp 1 Po
D <€0 (T).HQ (BFR) fpa <P(t)dt>
< ﬂ(pb = Pa)-
4

8. If one takes 1 = 1, ¢p(t) = —————in (2.7), then one has the

2t(1t

BF — Ostrowski inequality for MT —convex function:
1

1 Pb
D <<p(x), © @R | <p(t)dt> G0,
Pb — Pa Pa 2 a
Remark 2.11 In Theorem 2.8, one can see the following.
1. If one takes x = @ in (2.11), one has the BF — Ostrowski
Midpoint inequality for ¢ — A —convex function:

Pa t P 1
ole(*5%)
<(P 2 Pb ~ Pa

Pb
— O (BFR) fp a w(t)dt>

Mo @
s—1< [ @ew+a —t)%(l—c))dt) (0o~ P
2(p+1)P
2. If one takes A = 1,x = p“TJ'pb in (2.11), one has the BF —
Ostrowski Midpoint inequality for ¢p —convex function:

Pa t P 1
ole(*2™) =
<(P 2 Pb — Pa

Pb
— O (BFR) f w(t)dt>

1
< —U (tp(®) + (1 - )p(1 - t))dt) oy = pa),
2p+ 1)

3. If one takes 2 = 1,x = 2222 i(t) = tand h = I in (2.11),
one has the BF — Ostrowski Midpoint inequality for h —convex

function:

D (pa+pb) 1
2 -

Pb
© @) w(t)dt>

b
|m®

s —1<f (h(t) + h(1 - t))dt> (pp = Pa)-
2(p + 1)P

4. If one takes A1 = 1,x = p“+pb and ¢p(t) = t~*D where s €

[0,1) in (2.11), then one has the BF — Ostrowski Midpoint
inequality for Godunova-Levin s —convex functions:

Pa + P 1 Po
p(o(452) -0 Grm) | o)
1 1
20'M /1 \q
S—1 (—1 — S) (pp = Pa)-
@+ 1P

5. If one takes A = 1,x = @ and ¢(t) = t571, where s €

(0,1] in (2.11), then one has the BF — Ostrowski Midpoint
inequality for s —convex functions in 2™ kind:

D <<p (B, —— 0 @FR) f w(t)dt>

1-1
< 24 M( 1
— 1+5) (o = Pa)-

@+ 1P
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6. If one takes A = 1,x = p“;—pb and ¢(t) = t~1in (2.11), then

one has the BF — Ostrowski Midpoint inequality for P —convex
function:

o(o0(B52) om0 @ [ oo

1
20 M

<—(Pp — pPa)-
(p+1)P

7. If one takes 1 = 1,x = @ and ¢(t) = 1in (?7?), then one
has the BF — Ostrowski Midpoint inequality for convex function:

Pat+ Py 1 oo

p(o(B22)——o@m | ewa
2 Pp — Pa O
M
<—— (o~ po)
2(p+ 1)p

8. If one takes A =1, ¢(t) = 5 in (?7), then one has the

_r
2/t(1-t
BF — Ostrowski inequality for MT —convex function:

D (<p (> ;pb),ﬁe (BFR) fpj%(t)dt)

Mma
ST, 1 (pp = Pa)-
24 (1 +p)p

4. Conclusion

Ostrowski inequality is one of the most celebrated
inequalities, we can find its various generalizations and variants in
literature. In this paper, we presented the generalized notion of
¢ — convex function which is the generalization of many
important classes including class of h —convex [30], Godunova-
Levin s —convex [9], s —convex in the 2 kind [4] (and hence
contains class of convex functions [3]). It also contains class of
P —convex functions [17] and class of Godunova-Levin functions
[20]. We would like to state the BF-Ostrowski inequality via ¢ —
convex function. In addition, we establish some BF-Ostrowski
type inequalities for the class of functions whose derivatives in
absolute values at certain powers are ¢ —convex functions by
using different techniques including Holder’s inequality[32] and
power mean inequality[31].
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