
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021

205

Manuscript received October 5, 2021
Manuscript revised October 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.10.28

CREATING A VIRTUAL GALLERY FOR THE PRESENTATION OF
ARTWORKS

 Volodymyr Snihur†,Ivan Bratus †, Anna Gunka †, Denis Sharikov††, Myroslava Perysta††, Halyna

Kuzmenko††

† Borys Grinchenko Kyiv University, Ukraine

†† Kyiv Municipal Academy of Circus and Performing Arts, Ukraine

Summary
The article analyzes the concept of virtual gallery as a viable
alternative to traditional physical galleries and/or museums.
Additionally in this article we give a relatively brief description
and our insights from an artist point of view of the technologies
and image formats that can be used for such a project. Most of the
components are judged on several criteria: ease of use and editing
for gallery creator, “gallery hall” versatility, interactive
presentation of content, file size and lastly — usage. Questions of
hosting and server setup are omitted as they are not essential for
this article and lie mostly outside the scope of this text or are more
universal variables which are better discussed on a case by case
basis.

Key words:
Input here the part of 4-5 keywords.

1. Introduction

Let us begin with the statement that galleries and art as
it is are needed for humans, be it species as a whole or as
individual entities. Throughout our history we not only have
made artistic expression an integral part of our cultures
(after all it is the first thing we find in villages or towns
made by long gone civilizations of “times of yore” and it
will be the defining aspect of our time for future
archeologists, at least it should be) but we devised new ways
of making it seen: from scribbles on mammoth tusks worn
as primitive jewellery to collections housed by those who
have money and resources to support them and eventually
to the museums, whose sole responsibilities are
preservation, classification and research. Artists, engineers,
musicians, writers, poets, actors… everyone who has ever
made something they wanted to be seen by anyone else has
always wanted a place to show their works, yet museums
only house works of “significant value”, be it cultural,
monetary, scientific or historical. Private galleries however
have less limitations on what they accept, who can use their
“platform” and influence (of course the more prestigious
gallery is — the pickier it will be) to make their name heard
and achievements seen. Traditional approach is that such
endeavors (for-profit, non-profit, sole proprietorships or
non-commercial personal collections) have to rent, buy or
use existing property on which they’ll operate, wepropose

to change it. Our approach does not rely on physical space,
nor is it necessary to have artworks in gallery’s possession
as they will stay with their authors, therefore easing the
responsibility, liability, transportation and operational costs
for both parties involved.

2. Theoretical Considerations

When making such a gallery we need to consider two
primary factors influencing our choice of style and
technology used: devices currently in use by target
demographic and rendering technologies available.
While most people now tend to use mobile phones, aka —
smartphones, powered by either Android, iOS, Linux or
their various derivatives (while market for purely Linux-
powered phones is almost non-existent, in future years it
may increase by substantial amount purely because Linux
itself offers greater flexibility and is not as locked-in as
even “stock” Android), there are various other PCs, laptops,
and even gaming consoles capable of installing and
launching “native” or “web” apps, which again fall into
different categories even if we were to divide them only by
types of installed operating systems, with Linux
derivatives making an impressive list on their own.
While the former category is what may be most common
technology in everyday use, the latter has greater 3D
rendering capability and does not suffer from user input
limitations, so common on touch-screen devices. Thus we
may disregard mobiles in this discussion, although one of
the later paragraphs of this article will give a more in-depth
explanation as to what problems will inevitably arise if we
were to make a gallery or any such project with the focus
solely on mobile and various hand-held devices.

Available image formats. In the next paragraphs we will
briefly go through the technologies that could enable such
a project to function as it should. It is also worth pointing
out that most of them are not suitable for a fully immersive
presentation of arts. There are many alternative formats like
GIF[1], BMP[3][4], PNG[5], WEBP[6] or JPG[7] but not
all of them would be suitable for a Wordpress website,

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021

206

much less so for a gallery like this one. Evaluation will be
done by several criteria such as ease of editing and
displaying, file size, compression artefacts. For file size test
a picture of uniform color (white) with dimensions of 400
by 400 pixels will be used to give compression algorithms
the easiest to complete task and as a result — most reliable,
albeit heavily detached from reality results.

Firstly we will look at the image format used since the
early 90th — GIF.[1] This format is currently the only one
with full support for animations which would be quite
helpful for lightweight 3D overview photoshoots like if we
were walking around a statue for example. Is widely
supported by devices, OSs and various programs,
additionally it is considered one of the formats capable of
retaining high detail in static (non-animated) images.
Primary use is still mostly limited to animations or video
clips that absolutely should be seen and/or looped endlessly.
On the other hand we are losing sound data while
converting things from .mp4 or .avi to .gif file (provided it
is one of the situations where such conversion is deemed a
good alternative to usual video file). One more issue with
this format is that it can display no more than 256 colors,
so everything in the usual range of “16 million colors” gets
reduced to just 256 different variants and this is why most
multi-color image animations have pretty bad overall
quality. Despite this oddly enough, .gif is still sometimes
recommended as a way to store high resolution photos, or
at least for use in various blogs and social media. The test
picture is between 0.6 and 1.5 kilobytes in size (tested with
Gimp 2.10.24[2] and Microsoft Paint). Admittedly Gimp is
more successful in this regard, whereas Paint managed to
triple file size.

Bitmap[3][4] files are often used for even greater
detalisation, partly because of its “lossless” image
compression (actually it has different compression variants,
but default option is “no compression”). The file itself in its
simplest form can be described as an array of raw data
about pixel color values, which in turn make up an image.
Great for creating digital artworks and not so good for
displaying them, in no small part because of the huge size
of image files. For example, saving the same file from the
previous test, results in a file with 462 kilobyte file size (file
saved as 24-bit bitmap file, which is a default setting
unlikely to be changed in normal everyday use). This was
just a plain white 400x400 pixel area which is… tiny in
comparison to standard not-so-good photos taken on a 1.5
megapixel camera from several years back, all the while
file size is almost half of the really bad color photo taken
two years ago.

Another possible alternative is .png (Portable Network
Graphics)[5] — in a way a replacement and an evolution
of GIF format. For one it does not support traditional
printing color space (CMYK), which is not an issue as most
printers by now at least somewhat can translate RGB values
to CMYK for printing. Secondly it is a lossless file format
which would be perfect for an art showcase and is designed
to be used for network applications like websites, which
means it should be easier to work with from this standpoint.
Saving the same test image however results in 1.44 to 1.49
kilobyte size. Which is honestly impressive and much,
much better result compared to all the rest file formats
we’ve discussed earlier if we were judging them on the file
size alone.

Webp[6] format developed by Google in 2010 with the
aim to “create files that are smaller for the same quality, or
of higher quality for the same size, than JPEG, PNG, and
GIF image formats”. This format is surely developed for
web applications first and foremost and is indeed better for
tightly filled with images portfolio websites, news pages or
gaming forums. On the other hand usefulness of this format
is limited by its own area of use: it can hardly be opened
with anything but browsers, Android/iOS gallery or some
image editing tools, which means that once saved image
can hardly be changed (artists should always, always have
their master-files untouched for this very reason) or
displayed in a more traditional way like automatic photo
frame or a gallery (not even talking about the fact that
image format itself is pretty much irrelevant here, beyond
file size and quality). Webp can’t be used in game engines
or 3D software, it shouldn’t be anyway as there are way
better variants for that (.dds (Direct Draw
Surface) .png .bmp .jpg as either stand-alone textures or as
texture/normal images for materials). Saving the same test
square in Gimp in lossless mode results in 746 kilobyte file,
lossy compression brought size down to just 1.01 kilobyte.
Non-3D Paint does not have an option to save as .webp.

Last but not least and definitely favorite among general
populace format is .jpg or .jpeg[7] (three-letter file
extension is a relic of old days when Microsoft OS had a
hard limit of no more than three characters for file
extensions, nowadays both variants are used
interchangeably) which is mostly lossy format, although it
does support lossless compression. It is easier to notice
compression in the form of squares of different color
appearing upon zoom-in, such artifacts and many others are
introduced more heavily the more aggressive the algorithm
used or if image is compressed multiple times, which leads
to overall color degradation and quality reduction. For
thumbnails it is acceptable to have very bad but mostly fine
image quality (we do not expect to be able to see great
detail in a square roughly up to two centimeters in size)
which means heavy cropping and something like 100:1
compression ratios are allowed. However photos, scans and

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021

207

digital artwork should be saved as close to original
resolution as possible as we can always compress, crop and
edit images as we see fit, while up-scaling the same image
is extremely hard even if new (mostly experimental) AI
image editors are used. Test image on save comes up in
3.03 and 3.14 kilobyte variants saved in Gimp and Paint
respectively. Curiously enough, increasing quality from
“acceptable” 90 to “perfect” 100 in Gimp has no effects on
file size. For comparison, a properly compressed 4 color
750x1125 pixel image saved in .jpg format is barely 284
kilobytes in size with negligible quality reductions mostly
visible as slightly blurred edges if we zoom in very closely.

Interactive part of the project. Having decided on what
image format we would like to use we have to think about
what technology, or rather the way of presenting art, can be
used in our project. To name a few already available, albeit
slightly outdated and/or inconvenient ones we have:
Flash[8] animation, Three.js[9] and WebGL.[10] Not
accounting for usual animations and portfolio websites,
which however now are less common in non-professional
circles as platforms like ArtStation, Facebook and
Instagram have replaced most of traditional personal web
pages, much in the same way as Reddit came in to replace
Digg, which in turn was a replacement for many specialized
forums.

While we could even use video presentation and it
would largely be fine as is, the aim of this project is to
create an immersive life-like exhibition hall while using as
little computing power as possible and being relatively
user-friendly while doing so. Additional criteria include
ease of change or setting up and flexibility in creation of
different exhibits. Thus any less “technology demanding”
ways like above mentioned video presentation sadly do not
fit as the main solution, merely a part of it to be used only
when and if necessary.

Flash animations despite being an old way of
presenting animations, created by Macromedia, which was
bought by Adobe in 2005.[8] Flash along with
Dreamweaver and HomeSite were merged into Adobe
software suite with Flash itself being used in one of their
2D animation products — Adobe Animate, as an export
format up until Adobe Flash was to be deprecated in favor
of HTML5 or WebGL with Adobe Animate kept as a part
of Adobe suite even after this switch. This technology was
what started an era of modern web animation and allowed
the creation of simple 2D and sometimes even 3D games,
which could be played directly in the browser window.
Most of said games have been preserved by Kongregate or
Internet Archive where and if it was possible. For our use
however Flash would hardly be suitable as it is not only

deprecated format with much support removed in Windows
10, Google Chrome, Firefox or any other browser and/or
Linux distributions (at least it was recommended to fully
remove any and all Flash components by end of 2020, this
however likely does not account for older systems as, for
example devices using Android 5 still have built-in Flash
support, unless app responsible for it was removed,
deactivated or browsers have since stopped recognising it,
which is partially unlikely as it was made system
component and thus undeletable without root access into
system memory partition) the technology itself was fairly
limited, required special app to create and sometimes to be
displayed to intended audience or have enabled Flash
support in browser or separate browser extension present
on device. Additionally Flash did not allow for large and
overly interactive content, although there were a lot of
games created during this period.

Three.js is a JavaScript library purpose-built for
creating fairly lightweight animations, mini-games and
physics simulations [9]. Basically it is a mini-framework
for anything animated and is even used for promotional
materials (because of course it would be). Currently it can
be self-hosted on personal or rented server or on
Threejs.org own servers, most of the documentation is
readily accessible and code is open sourced under MIT
License on GitHub and latest stable version is
downloadable in zip archive from Threejs.org website as
well as GitHub repository. It has its own editor, which is
fairly limited if compared with other similar editor
components, let alone — game engines, but in turn with a
bit of coding and diving into their tutorials we can create
complex animations, small games and even physics
simulations (example: cloth simulation present as an
example on their website).

Alternative and perhaps, the last one suited for our use
is WebGL.[10] Here it is listed separately mainly because
this format is supported by many more editors, game
engines and websites like itch.io — indie game and asset
collection/store. Oddly enough the standard is born partly
as a successor and a replacement for Flash (at least in eyes
of consumers), partly as an evolution of OpenGLES, which
is itself a specialized variant of OpenGL designed to be
used in embedded systems (mainly smartphones and
browsers) and is supported by both AMD and Nvidia.
Partially supported by Apple, Mozilla, Google in the form
of their browser development departments with Khronos
Group seemingly leading development and maintenance
efforts. When Three.js is a WebGL-specialized library with
a built-in editor capability, it is but one of the many
specialized tools one can use for WebGL development,
albeit it is one of if not the most optimized of all.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021

208

Our primary interest here is the format’s ability to be used
anywhere and on any device which supports the standard
(ideally support would be on hardware level) and has a
compatible browser. In fact most modern smartphones and
GPUs meet our requirements and even browsers such as
Internet Explorer do support WebGL. Next requirement
would be ease of editing scenes or “exhibition rooms”, 3D
space creation and interactive content showcase, all of
which are possible.

Downsides however are that tools we can use are
fairly limited in number and optimization of content, the
level or scene is quite resource-demanding on PCs,
especially on low-end ones. Some computers and mobiles
can not load the respective scene at all and one of the test
machines (which is fairly old and is used solely for testing
accessibility or optimization) had to be rebooted twice and
once rebooted on its own. In the end that machine spent
around 11-17 minutes to load our first test scene and then
it crashed. Yet another downside is that graphics, mainly
textures, are the heaviest and most demanding part of the
whole package, not including underlying physics engine,
and have to be compressed till acceptably size/quality ratio
is met. Not the least factor here is image format, which was
discussed quite briefly in previous part of the article, that
said .jpg and .png may be the best pick for this project due
to their file size, ease of importing, editing and generally
widespread use. Third and final major negative aspect of
using this format is that it essentially relies on browser for
content rendering, which in combination with fairly limited
access to GPU and RAM, need to reload, compile shaders
and spatial materials and render the scene on each and
every page reload or level transition (this however can be
somewhat mitigated by the fact that some assets can be pre-
loaded and pre-rendered or shared between different scenes,
or as an extreme measure — loaded as single resource file,
similar to atlas textures) means that we are limited in what,
how much, when and how we want to show not only
because the machine our users have is not top-tier gaming
PC but the browser itself is an inferior platform for such
content.

This approach is currently the best known to us if we
were to make such a gallery that exists as a pseudo-3D
space, accessible through online means and enables full-
resolution (or acceptable quality/file size/load time)
interactive view of artworks in 2 or 3D. As an additional
benefit, this also enables us to make specialized exhibition
halls for each author or experiment with the concept of
“exhibition hall” itself. Yet another benefit is that simple
copying or downloading of pictures, 3D models, sounds or
videos used is made much harder for an average end-user,
as such the art is much safer than if it was displayed on
Wordpress blog or traditional museum website, should its
author be concerned with this specific question.

Technical characteristics. Actor movement and camera
control is handled by the script provided below. This is
fairly close to implementation of movement in games, so it
is only fitting to reference documents from actual game
engine.[11]

 var direction = Vector3()
 if Input.is_action_pressed("ui_up") ||
Input.is_key_pressed(KEY_W):
 direction += -global_transform.basis.z
 if Input.is_action_pressed("ui_down") ||
Input.is_key_pressed(KEY_S):
 direction += global_transform.basis.z
 if Input.is_action_pressed("ui_left") ||
Input.is_key_pressed(KEY_A):
 direction += -global_transform.basis.x
 if Input.is_action_pressed("ui_right") ||
Input.is_key_pressed(KEY_D):
 direction += global_transform.basis.x
 direction = direction.normalized()

Input buttons are mapped to UI control variables in
case these same directional inputs will be used in
interactive menus (from usability standpoint it will be
much easier for players/visitors to use controls they are
already familiar with and have their fingers on, which is
part of the reason why many games map frequently used UI
actions to left part of keyboard as closely to WASD
movement keys as possible) as well as checked through the
literal key name to avoid different user input mapping in
case UI actions are set to different set of keys, like for
example arrow keys.

The actual inputs however are taken only when and if the
mouse pointer is captured by program:

 if Input.get_mouse_mode() ==
Input.MOUSE_MODE_VISIBLE:

 Input.set_mouse_mode(Input.MOUSE_MODE_
CAPTURED)

MOUSE_MODE_VISIBLE is a check of mouse pointer
visibility (to user) which returns true/false value depending
on the pointer state. MOUSE_MODE_CAPTURED sets
mouse state so that the cursor is captured by the app and
mouse is unable to leave the window, which is especially
useful when the app's effective area is larger than the area
visible to the user. As is the case with our gallery —
effective 3D space area is much larger than what can be
shown in one frame.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021

209

The code responsible for the 3D navigation and viewpoint
direction change can be condensed to this:

 if event is InputEventMouseMotion and
Input.get_mouse_mode() ==
Input.MOUSE_MODE_CAPTURED:
 rotate_y(-event.relative.x * mouse_sensitivity)
 $Pivot.rotate_x(-event.relative.y *
mouse_sensitivity)
 $Pivot.rotation.x = clamp($Pivot.rotation.x, -1.2,
1.2)

Clamping rotation.x sets limits on how far up and down
camera can pivot. If we were to remove limits the camera
could have unlimited 360 degrees movement, -1.2, 1.2
clamping value sets realistic life-like limits.[12]

On collision with “Exit” area, gallery releases mouse and
closes program environment.

3. Conclusion

We have just briefly discussed possible ways of creating
proposed online gallery and provided code bits that should
serve most functions of bare-bones proof of concept project.
Practical uses however were not discussed and are left for
future research articles in part due to the possible range of
applications being way bigger than it was originally
anticipated at the time of writing this article.

References

[1] W3 GIF Specification:
https://www.w3.org/Graphics/GIF/spec-gif87.txt

[2] GIMP: https://www.gimp.org/

[3] Simplified Bitmap Specification:
https://cdn.hackaday.io/files/274271173436768/Simplified%20
Windows%20BMP%20Bitmap%20File%20Format%20Specifica
tion.htm

[4] Library of Congress archival Bitmap Specification:
https://www.loc.gov/preservation/digital/formats/fdd/fdd000189.
shtml

[5] W3 PNG Specification: https://www.w3.org/TR/2003/REC-
PNG-20031110/

[6] Google Webp Container Specification:
https://developers.google.com/speed/webp/docs/riff_container

[7] W3 JPEG Specification:
https://www.w3.org/Graphics/JPEG/jfif3.pdf

[8] Adobe Flash technical archive:
https://helpx.adobe.com/air/archived-docs-download.html

[9] Three.js Documentation:
https://threejs.org/docs/index.html#manual/en/introduction/Creati
ng-a-scene

[10] Khronos Group documentation on WebGL:
https://www.khronos.org/webgl/

[11] Godot Docs guide to in-game scripting:
https://docs.godotengine.org/en/stable/getting_started/scripting/in
dex.html

[12] Godot Docs in-depth explanation of Euler angles and
camera movement:
https://docs.godotengine.org/en/stable/tutorials/3d/using_transfor
ms.html

