
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021

231

Manuscript received October 5, 2021

Manuscript revised October 20, 2021

https://doi.org/10.22937/IJCSNS.2021.21.10.32

Comparison of Two Approaches to Task-specific Real-Time

Hand Pose Estimation

Guram Chaganava† and David Kakulia†,

Guram.chaganava037@ens.tsu.edu.ge
†Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia

Abstract
Real-time hand pose estimation in an image plays an important

role in systems that require human-computer interaction (HCI).

In some cases, a task requires hand pose estimation, not in any,

but images with specific content. For example, such a task may

require hand pose estimation in images showing one person

speaking sign language near the camera. The goal of the study

presented in this paper is to experimentally test the assumption

that, for the aforementioned specific tasks it will be better than

the standard approach to perform hand pose estimation directly in

the original image, without hand detection. This approach can

result in higher speed and nearly the same accuracy of hand pose

estimation as in the case of the standard approach. To determine

the advantage of the direct approach for specific tasks, it is

necessary to compare the methods in terms of accuracy and

speed. For this, a comparative analysis of the standard and direct

approaches is carried out. The efficiency coefficients of the

methods are quantitatively evaluated to find the optimum

between accuracy and speed. It is also examined how the

accuracy of hand pose estimation depends on the content of the

dataset used to build such a system. As a result, the direct

approach proves to be more efficient when using a dataset

consisting of images with specific content.

Key words:
Hand Pose Estimation, Keypoint, Keypoint Detection, Hand

Detection.

1. Introduction

Hand pose estimation refers to the process of

modelling a human hand as a set of some objects. It is a

common practice to model a hand as a system of

keypoints. A keypoint is a specific place on the human

body. Using coordinates of keypoints, a position of a

human body can be restored in space. Examples of hand

keypoints include the joint of a wrist, finger joints, etc.

The process of determining the coordinates of keypoints is

called keypoint detection. Keypoint detection is one of the

most popular tasks of computer vision. It is used in tasks,

such as virtual and augmented reality (VR/AR)

systems[1], interactive games [2], gesture recognition[3],

action recognition[4], computer-aided design (CAD)[5],

sign language recognition[6], etc.

The publications [7], [8] present state-of-the-art

techniques for 2D and 3D hand pose estimation in images.

As follows from these articles, the vast majority of

researchers do not perform hand pose estimation directly

in full images. Instead, at first, they determine the location

of the hand in an image, crop it and then detect keypoints

in the cropped image. As a result, hand pose estimation

problem is divided into two tasks:

(i) Hand detection. It implies determining whether

the hand is shown in a photograph, and if so, how

many. If at least one hand is presented in an

image, its location must be found.

(ii) Hand keypoint detection. After hand detection,

each found hand is cropped from the image. Pre-

processing of the cropped image is performed,

such as resizing, normalizing, etc. The resulting

image is fed to a keypoint detector.

In this case, the problem relatively simplifies since it is

divided into two tasks of less complexity. As a result, this

approach makes it possible to achieve a high degree of

generalization - estimating hand pose with high accuracy

in images with any content. Because of this, the use of this

technique for hand pose estimation has become the

standard. On the other hand, this approach is more time

consuming as it is necessary to solve two different tasks. It

is important that in both cases the detection algorithm is

optimised so that the detection time is as short as possible.

Detection time, along with accuracy, is a key characteristic

of real-time systems. Choosing the optimal algorithms for

both tasks, resulting in the high accuracy and speed of

detection, can sometimes be problematic.

Sometimes a task requires hand pose estimation not in

any, but specific conditions. For example, interactive

computer games may require hand pose estimation in

photographs that depict a person sitting in front of the

computer and holding his/her hand in a specific position.

A similar situation occurred in the case of the task that

required real-time hand pose estimation in photographs

showing one person speaking sign language near the

camera. Since the signer stands close to the camera, he/she

will be displayed in most of the photograph. The

hand/hands will also occupy a large area in the image.

According to the purpose of the task, the hand pose

estimation should be done only in the photographs of this

content category.

The assumption was made that the hand pose

estimation would be performed faster if keypoints were

searched not in cropped, but directly in the original image.

In terms of accuracy, since the estimation of hand pose is

https://doi.org/10.22937/IJCSNS.2020.20.10.01
mailto:Guram.chaganava037@ens.tsu.edu.ge

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021

232

only required only in the category of photographs

described above, the accuracy of detection in original

images could be close to the accuracy of detection in

cropped images. Experimental examination of these

assumptions is the goal of the paper. To test the advantage

of a direct hand pose estimation over a standard approach

for specific tasks, it is necessary to compare systems to

each other that implement both approaches. For these hand

pose estimation systems to be comparable, they must be

built based on the same principles. The systems should be

compared in terms of accuracy and speed. Techniques

used for building hand pose estimation systems, a method

for comparing approaches and the experiment results are

discussed in the paper.

2. Methodology

Comparison of the two approaches described above

requires hand pose estimation systems that implement both

of them. From Fig. 1 and 2 it is clear what parts both

systems consist of. Building a standard hand pose

estimation system requires a hand detector and a keypoint

detector able to find keypoints in cropped images. For

direct hand pose estimation a keypoint detector is needed

which will perform detection in original images. For the

keypoint detectors to be comparable, their operation must

be based on a same working principle.

Fig. 1. The standard, two-stage hand pose estimation workflow

Fig. 2. The direct, one-stage hand pose estimation workflow

The two approaches of hand pose estimation should be

compared according to accuracy and speed. Since the

standard approach performs hand pose estimation in two

main steps, let's assign it as HPE2 (Hand Pose Estimation

2 step) and the direct approach as HPE1 (Hand Pose

Estimation 1 step). The following abbreviations are also

used in the paper: KDO (Keypoint Detection in Original

images), KDC (Keypoint Detection in Cropped images),

HD (Hand Detection). An accuracy is denoted as A , time

as T . For example, hand detection accuracy is denoted

as HDA , and detection time as HDT .

The accuracies KDOA and 1HPEA are the same since

hand pose estimation in original images is done in only

one step. 2HPEA depends on HDA and KDCA . KDOT and

1HPET are also the same. 2HPET is the sum:

2HPE HD KDCT T T= + (1)

2.1 Keypoint detection

Keypoint detectors can be built using a deep learning

approach which is quite successful in such tasks. To

minimize detection time, it is better to choose a deep

learning model with relatively small size such as

Mobilenet[9], [10].

To train the model for detecting keypoints in original

and cropped images, a dataset is required containing

images and corresponding targets – x and y coordinates

of each keypoint in each image. The dataset must contain

photographs that correspond to the given task. Let's denote

the dataset as  ,P K . P is the set of images and K is the

set of corresponding targets. The resolution of images of

set P is equal to (,)w h .

  1 1 2 2

1

, {(,) (,) ...(,)} (,)
n

n n i i

i

P K p k p k p k p k
=

=   = (2)

 ,P K is a set of pairs (,)i ip k , where ip is the

corresponding matrix of an image with index i , and ik is

an array containing the coordinates of the keypoints.

 ,P K dataset can be used for training the model to

detect keypoint in original images. In case of detection in

cropped images, a dataset is required containing images of

hands and the corresponding targets. Let's denote this

dataset as  ' ',P K .
'P is the set of submatrices derived

from ip matrices. Each submatrix corresponds to a part of

a photograph that shows a human hand.
'K is a set of '

ik

arrays of coordinates of keypoints.

To get the '

ip submatrix, part of the ip image must be

found and cropped where a hand palm is shown. ik array

can be used to find the location of the hand palm.

Boundaries of the hand palm in the ip image can be

determined by the minimum and maximum values of

coordinates of keypoints along the x and y axes. These

points form a bounding box of the hand palm. The

bounding box will intersect the outer keypoints. So, part of

the hand palm may be left outside the bounding box.

Therefore, the size of the bounding box is increased along

the x and y axes in proportion to its width and height,

respectively. The part of the image ip , enclosed by the

bounding box, is cropped. Cropped images vary in size.

Hand Pose

Estimation

Hand

Detection

Hand

Keypoint

Detection

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021

233

However, the neural network used for detection has a fixed

input size. Therefore, all images must have the same
' '(,)w h resolution. 'w and 'h can be equal to each other

' '()w h= , similar to w and h . All images that have at

least one size (width or height) greater than 'w , are resized

so that their largest size is 'w . The second size of the

resulting images is less than 'w . Then the images are

placed in the centre of a matrix of size ' '(,)w h filled with

values equal to 255, which corresponds to white colour.

Images smaller than 'w in both sizes are placed in the

matrix without resizing. As a result, set
'P is obtained

containing images of size ' '(,)w h .

To get the '

ik target, few transformations must be

performed on each ik array. At first, the x and y

coordinate of the ik array must be translated with the

coordinates of the start point of the bounding box. Then

the coordinates should be scaled so that their x and y

values must fall into the intervals: '[0,]w and '[0,]h ,

respectively. Performing such transformations for each

element of the set K will result in a new set of targets
'K .

It is expected that the accuracy of keypoint detection in

full and cropped images will be depended on the content

of a dataset used for training. Consider the case where a

dataset includes images of several people, in which a hand

is shown in different positions. Using such a dataset,

keypoint detection in cropped images can be performed

with high accuracy. The cropped images practically do not

show the person, the background and the surrounding

objects. So, the coordinates of keypoints are mainly

determined by the image of a hand palm. Because of this,

there is a chance that the training will be successful.

Regarding detection in original images, the detected

keypoint coordinates depend on the value of each pixel of

the full image. The images of the aforementioned dataset

differ significantly from each other in content. Because of

this, each new sample of the dataset will lead to significant

changes in weight during the training process. Probably,

high-accuracy detection will not be possible to achieve in

this case.

Let's say the dataset contains not one but many images

of different people. In the images of a particular person,

the speaker is shown against the same background in

almost the same lighting conditions, albeit with different

hand positions. In this case, the main difference in the

content of the images is the position of a hand. The rest of

the details of the images are almost the same. When using

such a dataset for training, the weight change will be

mainly due to the hand position. Consequently, relatively

high detection accuracy can likely be obtained using such

a dataset.

To test the aforementioned assumptions

experimentally, datasets can be built with different

content:

− Dataset 1 - containing images of one person

showing a hand in different positions.

− Dataset 2 - containing images of several people

showing a hand in one specific position.

− Dataset 3 - containing images of several people

showing a hand in different positions.

The purpose of creating these three datasets is not to

train a real-world keypoint detector, but to study how the

accuracy of keypoint detection in original and cropped

images depends on the content of a dataset. Therefore,

there is no need to have numerous samples in a dataset.

OpenPose[11] system was used to get the target of

every image of each dataset. OpenPose returns x and y

coordinates of 21 hand palm keypoints from each image.

Detection results were corrected after a visual inspection.

Position and brightness augmentation were used to

increase the number of samples in the dataset.

2.2 Hand detection

Hand detection involves finding a hand palm location in

an image. This location is returned as a bounding box.

A deep learning model can be trained to create a hand

detector. This requires a dataset, containing images and the

corresponding targets containing coordinates of hand

bounding boxes. Such a dataset can be easily obtained

from the set  ,P K . Let's denote the dataset required for

hand detection as  ,P B . B is a set of bounding box

coordinates. The coordinates of the bounding box

boundaries are easily determined from the set K , as

described above. The set  ,P B can be used to train

Mobilenet for hand detection. The resulting detector can

be compared to existing detectors in terms of accuracy and

speed.

2.3 Metric

For measuring the keypoint detection accuracy, the

Percentage of detected Joints (PDJ)[12] can be used. This

is the ratio of the number of correctly detected keypoints

to the total number of keypoints in the image. The

detection is considered correct if the Euclidean distance

between the target and the predicted keypoints is less than

or equal to the maximum acceptable error. The length of

the diagonal of the bounding box covering the human

body in the image is used to determine the value of the

maximum acceptable error. Since the detector must find

the keypoints of not the entire body, but only the hand

palm, the diagonal of the hand bounding box is used to

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021

234

determine the maximum acceptable error as it is described

in [13].

In addition to the keypoint detection accuracy, hand

detection accuracy also must be measured. There are many

methods to measure object detection accuracy[14]. One of

the specific cases of object detection is hand detection.

When a task requires detection in images showing one

object of one category, as in this case (only hand

category), a relatively simple method such as Intersection

Over Union (IOU) can be used. It is the ratio of the areas

of the intersection and union of ground-truth and predicted

bounding boxes. IOU must be calculated for each image

and then averaged over the entire dataset.

HPE1 and HPE2 systems, keypoint and hand

detectors should be compared to each other according to

accuracy and speed. Some quantity can be used for this

purpose. Let's call it the efficiency coefficient. If the

efficiency coefficient is high, then both accuracy and

speed are high, not one of them. It depends on

conventional quantities: accuracy and speed coefficients,
ac and tc , respectively. These coefficients must be

constrained with some bounds, for example, it can be the

interval [0, 1]. To get the ac value for each model, the

value of accuracy of the given model should be divided by

the maximum accuracy of the models:

1,...,

, 1,2,...,
max

a i

i

j
j N

a
c i N

a
=

= = (3)

where N represents the number of models among which

we want to determine the most efficient one.

For calculating the speed coefficient tc , it must be

taken into account that that speed is inversely proportional

to time - longer detection time means lower speed.

To get the speed coefficients, every value of detection

time can be substructed from the maximum value of time.

However, the coefficient tc corresponding to the

maximum value will be equal to 0, which is undesirable,

since it is planned to calculate efficiency coefficients with
ac and tc . Because of this, each value of time is

subtracted not from the maximum, but from some

number so that ' max i
i

t a . After subtraction the resulting

values are normalized.

'

'

1,...,

, 1,2,...,
max ()

t i

i

j
j N

t t
c i N

t t
=

−
= =

−
 (4)

The coefficient of efficiency ec of the given model can

be defined as the product of the coefficients of accuracy

and speed.

 * , 1,2,...,e a t

i i ic c c i N= = (5)

3. Results and Discussion

For the experiment HPE1 and HPE2 systems has been

created. The approaches were compared in terms of

accuracy and speed.

3.1 Keypoint detection

To create a detector, a deep learning model - Mobilenet

has been used. Mobilenet, pretrained for feature vector

extraction was taken from [15]. There are different

versions of Mobilenet, with different depth multipliers and

input sizes. The input size must be equal to the resolution

of the image being fed to the network. The resolution of

the original image is 224x224 while in the case of cropped

image it is 128x128. Experimenting using models with

different depth multipliers will allow observing the

difference between the two approaches on several results.

So, keypoint detectors have been created using different

modifications of Mobilenet, which are presented on Tab.

1.
Table 1: Versions and depth multipliers of Mobilenet used in the

experiment. The parentheses contain a conventional name

for the specific Mobilenet, as they are mentioned in the

graphs below.
Mobilenet

version

Depth multiplier

1 0.25(1) 0.5(2) 0.75(3) 1(4)

2 0.35(5) 0.5(6) 0.75(7) 1(8)

A dense layer with 42 neurons (the number of targets)

was added to the last layer of each deep learning model.

Hyperbolic tangent was chosen as the activation function

of the last layer. Before training, the values of ip and '

ip

matrices were scaled in the range [0,1], ik and '

ik matrices

were scaled in the range [-1, 1]. For the training process

next device was used: CPU - Intel Core i7-3632 2.2 GHz,

RAM – 6GB.

Three datasets have been used in the experiment. The

number of samples in the first two datasets was within a

few hundred, and in the third, it exceeded 3000. All deep

learning models were trained using these datasets.

42 50
37 30

59 55
65 67

23 29

76

34
54

75
84 88

1 2 3 4 5 6 7 8

Original Cropped

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021

235

3 3
18

47

6 10 6

52

96
64

82 83 90 99 92 79

1 2 3 4 5 6 7 8

Original Cropped

19 27 22 19 12
25 19 23

69 60 69 63 65 63
34

54

1 2 3 4 5 6 7 8

Original Cropped

Fig. 3. Accuracy of models trained on Dataset 1(upper), 2 (middle)
and 3 (lower) for keypoint detection in original and cropped images.

Accuracy is measured on the test set in PDJ percentage. Horizontal
axis titles show the Mobilenet conventional names.

The assumption was partially justified stating that

HPE1 could have outperformed in the case of training

using Dataset1. In the case of only three models, detection

in the original image was found to be more accurate than

in the cropped image.

In the case of training using Dataset 2, the

aforementioned assumption was justified for all models. In

each case, preference was given to the detection in the

cropped images.

In the case of training using Dataset 3, the preference

was given to the method of detection in cropped images.

However, the maximum accuracy obtained is not as high.

This can be due to a few reasons. The first reason can be

the insufficient size of the dataset. Compared to the other

two datasets, Dataset 3 consists of images with relatively

diverse content. Presumably, the number of samples of

Dataset 3 was not enough to learn detection in various

situations. The reason for the resulting low accuracy may

also be that the number of samples representing each hand

pose in the dataset is different. To build a real-world

detector, it would be better to use a relatively large dataset,

in which the number of samples representing each hand

pose will be close to each other.

66 67 74
89

61 66 73 78

53 55 58 62 56 56 61 62

1 2 3 4 5 6 7 8

Original Cropped

Fig. 4. Keypoint detection times for each model measured in

milliseconds. The input size of each model used for detection in original

images is 224x224, while the input size of models used for detection in

cropped images is 128x128.

The difference between the time it takes to detect

keypoints in an original and cropped image is due to the

difference between the input sizes of the models. The

results show that the time required for detection depends

on the depth multiplier for both versions of the Mobilenet.

The larger the depth multiplier, the more detection time.

The coefficients of efficiencies were calculated for

each model. To calculate the coefficients tc , it was

necessary to determine the value of 't which must be close

to the value of maximum detection time. Since the

maximum detection time value is 89, so let’s 't be 100.

The efficient models were determined using the efficiency

coefficients. They are listed on Tab. 2.

Table 2: The most effective KDO and KDC models in case of using each

dataset.

Dataset KDO models KDC models

Dataset 1 v2, 0.35 v2, 1

Dataset 2 v2, 1 v1, 0.25

Dataset 3 v1, 0.5 v1, 0.25

To improve accuracy, each efficient model was

retrained with the same dataset, albeit using different loss

functions: Mean Squared Error (MSE) and Mean Absolute

Error (MAE). In Fig. 5, there are shown the maximum

accuracies obtained for every efficient model.

81
36 24

v2,

0.35

v2,

1

v1,

0.5

87 97 70

v2,

1

v1,

0.25

v1,

0.25

Fig. 5. The accuracy of the most effective KDO (left) and KDC (right)

models after retraining. Accuracy is measured in PDJ percentage.

3.2 Hand Detection

Eight Mobilenet models were trained for hand

detection using Dataset 3 as it is a more diverse dataset

than the other two. The most efficient model turned out to

be Mobilenet v1 with a depth multiplier of 0,25 (denoted

as 1 in figures). This model was compared to a few

existing hand detectors which include:

ssd_mobilenet_v1_coco (denoted as 2 in figures) trained

on Egohands Dataset[16] by Victor Dibia[17], Different

versions of YOLO[18] trained by cansik[19]:

(i) YOLO v3 (denoted as 3 in figures)

(ii) The slim version of YOLO v3 called YOLOv3-

tiny (denoted as 4)

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021

236

(iii) The tiny version of YOLO improved by partial

residual networks[20] called Yolov3-Tiny-PRN

(denoted as 5)

(iv) YOLOv4 tiny (denoted as 6).

6
8

6
0

8
1

6
7

6
7

6
6

1 2 3 4 5 6
5
7 6
2

3
1
4

2
5

1
8 2
9

1 2 3 4 5 6

Fig. 6. Hand detection accuracy measured in IOU (left). Hand detection

time in ms (right).

7.41 6.43
1.08

8.10 8.27 7.88

1 2 3 4 5 6

C_A C_T C_E

Fig. 7. Efficiency of HD models. Accuracy (denoted as C_A), speed

(C_T), and efficiency (C_E/10) coefficients of hand detector models.

As seen from the diagrams, the highest accuracy was

obtained with the YOLO v3, although the average

detection time was quite long compared to other models.

In other cases, the detection accuracies were relatively

close to each other. The highest efficiency was observed in

the case of Yolov3-Tiny and Yolov3-Tiny-PRN.

3.3 Comparison of approaches

The two approaches to hand pose estimation have been

compared using the selected efficient models in terms of

accuracy and speed. Hand pose estimation accuracy and

time of approach HPE1 are the same as the accuracy and

time of keypoint detection in the original images. To

measure hand pose estimation accuracy and time of the

HPE2 approach, the following steps were performed: an

image with the resolution 224x224 has been fed to the

most efficient hand detector. HDT time was spent on hand

detection. The detector returned the coordinates of the

hand bounding box. Using these coordinates the hand

image was extracted from the original image. This image

was resized to 128x128 and passed to the keypoint

detector. It returned the final result - the coordinates of the

keypoints. The total time KDCT was spent on the next

operations: cutting and resizing the hand image, detecting

keypoints. The total time 2HPET spent on estimating the

hand pose was calculated by finding the sum of HDT and

KDCT .

81

52
27

58

88
59

1 2 3

HPE1 HPE2

61 78 67

129
96 84

1 2 3

HPE1 HPE2

Fig. 8. Accuracy of HPE1 and HPE2 approaches in PDJ percentage (left).

Time spent on hand pose estimation by HPE1 and HPE2 approaches in
ms (right). Accuracy and time are measured on efficient models selected

in the case of each dataset. The dataset names are shown below each

figure.

As seen from Fig. 9, the accuracy of the HPE2

approach is significantly lower than the accuracy of the

keypoint detection in the cropped images on each dataset.

This is caused by defective hand detection in some cases.

In terms of speed, less time was spent on hand pose

estimation by the HPE1 approach in each case.

To calculate the rate factor tc , let 't be 150 since that

is the closest number to the maximum value of inference

time.

9.2

1.6

HPE1 HPE2

C_A C_T C_E

4.7
6.0

HPE1 HPE2

C_A C_T C_E

2.9
4.9

HPE1 HPE2

C_A C_T C_E

Fig. 9. The coefficients of accuracy (denoted as C_A), speed (C_T) and

efficiency (C_E/10) of HPE1 and HPE2 approaches, measured on

efficient models selected in the case of each dataset (Dataset 1 – upper

left, Dataset 2 – upper right, Dataset 3 – bottom).

From Fig. 10, it can be concluded that the HPE1

approach was more efficient only when using Dataset 1. In

this case, there was a significant difference in the

coefficients of the efficiencies of the approaches, which

was not the case in the other two datasets. This is due to

the relatively high accuracy (81%) and short detection

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021

237

time (61 ms).

Fig. 10. Results of direct (left) and standard (right) hand pose estimation

in images of Dataset 1. True (green) and predicted (red) bounding
boxes are drawn on the images shown on the right side. Below the

images, there are given the accuracy values of the HPE1 approach,
hand detection and HPE2 approach. 1

1 Photo material from www.lifeprint.com. Thanks to Dr. Bill

Vicars!

Fig. 11. Results of direct (left) and standard (right) hand pose estimation

in images of Dataset 2. True (green) and predicted (red) bounding
boxes are drawn on the images shown on the right side. Below the

images, there are given the accuracy values of the HPE1 approach,

hand detection and HPE2 approach.2

Fig. 12. Results of direct (left) and standard (right) hand pose estimation

in images of Dataset 3. True (green) and predicted (red) bounding

boxes are drawn on the images shown on the right side. Below the

images, there are given the accuracy valuess of the HPE1 approach,
hand detection and HPE2 approach.3

3.4 Discussion

The experiment clearly demonstrated the features of

the standard and direct approaches. First of all, it should be

noted that the keypoint detectors for the HPE1 and HPE2

systems were trained with different accuracy using

datasets composed in different ways. The detection of

2 First photo from www.lifeprint.com. Thanks to Dr. Bill Vicars!
3 Upper photo from YouTube channel 'Chris Gorges'. Thanks to

Mr Chris Gorges!

Thanks to Mr Beka Baratashvili for the bottom photo!

1 38,1%HPEA = 63,6%HDA = 2 85,71%HPEA =

1 52,38%HPEA = 71,65%HDA = 2 57,14%HPEA =

1 4,76%HPEA = 79,67%HDA = 2 71,43%HPEA =

1 90,48%HPEA = 79,94%HDA = 2 100%HPEA =

1 95,24%HPEA = 65,38%HDA = 2 76,19%HPEA =

1 100%HPEA = 75,6%HDA = 2 42,86%HPEA =

http://www.lifeprint.com/
http://www.lifeprint.com/
https://www.youtube.com/channel/UCrcYjoyYuUQhxwlX69cCn4Q

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021

238

keypoints in the original images was studied with high

accuracy when the dataset consisted of the images similar

in content showing a hand in different positions. Detection

in cropped images was better studied when the dataset

consisted of multiple images of each hand pose, performed

by different people. When the dataset was filled with many

diverse images, the HPE2 approach gained an advantage,

although its accuracy was not high.

Detection in the cropped images was performed more

accurately than in the original images in the case of all

datasets. In one case (using Dataset 1), HPE1 was more

accurate. In terms of hand pose estimation speed, as

expected, the HPE1 approach gained an advantage.

The direct hand pose estimation approach can be used

in cases where a high-speed hand pose estimation is

required in images of a certain category. HPE1 approach

can be successfully used in the tasks requiring hand pose

estimation in images of one or more people, or images of a

certain category, etc.

Tab. 3 lists the advantages and disadvantages of both

approaches.

Tab. 3. Advantages and disadvantages of HPE1 approach.

Advantages (i) The possibility to achieve high

accuracy of hand pose estimation in

photographs with specific content.

(ii) Relatively fast hand pose estimation.

(iii) The simplicity of implementation. The

approach requires solving only one

problem - estimating a position of a

hand in the original images.

Disadvantages (i) Quite difficult to achieve

generalization.

Tab. 4. Advantages and disadvantages of HPE2 approach.

Advantages (i) Ability to achieve a high degree of

generalization.

Disadvantages (i) Relatively slow hand pose estimation.

(ii) The complexity of the Implementation.

This approach requires solving two

problems - detecting a hand in an

original image and estimating a hand

pose in a cropped image of a hand.

4. Conclusion

The paper presents a comparative analysis of two

approaches to hand pose estimation in images with

specific content. The study is based on an example of a

specific task that requires hand pose estimation in images

showing a person speaking sign language near a camera.

The goal of the study was to test the assumption that the

estimation of the hand pose for a given or a similar

problem could be performed faster and with almost the

same accuracy compared to the standard approach if the

direct approach was used. The direct approach implies

estimating a hand pose directly in an original image, as

opposed to the standard approach, which first finds the

part of an image where a hand is shown, crops it, and then

estimates a hand pose in the cropped image. This

hypothesis has been tested experimentally. Both standard

and direct hand pose estimation systems were constructed

and compared in terms of accuracy and speed. The deep

learning model, Mobilenet was trained to create the

detectors. For training, three datasets of different content

were created. The purpose of creating the three datasets

was to examine how the hand pose estimation accuracy

depends on the content of the dataset.

Efficiency coefficient was used to compare the

approaches. It is calculated using accuracy and speed. A

high value of the efficiency coefficient means that both

accuracy and speed are high.

As a result, several conclusions can be drawn: As

expected, high accuracy was achieved in the case of direct

hand pose estimation using a dataset that contained

samples that were similar in content but showed different

hand positions. When estimating a hand pose using the

standard approach, the accuracy is higher when multiple

images of each hand pose are given in the dataset. In

photographs with a variety of content, the HPE2 approach

is obviously preferred. The assumption regarding the hand

pose estimation speed was also justified. For all efficient

models, the direct approach was faster. As a result, it can

be stated that the standard approach is clearly preferred to

achieve maximum accuracy of hand pose estimation in

photographs with highly diverse content. In the case of

tasks that require real-time hand pose estimation in

photographs of certain content, the direct approach may be

more efficient due to its high accuracy and short execution

time.

Acknowledgments

This work was supported by Shota Rustaveli National

Science Foundation (SRNSF) [PHDF—18-342, Optimized

communication system for sign language speakers].

References
[1] M. C. Hsieh and J. J. Lee, “Preliminary Study of VR

and AR Applications in Medical and Healthcare

Education,” J. Nurs. Heal. Stud., vol. 03, no. 01, p. 1,

Feb. 2018, doi: 10.21767/2574-2825.100030.

[2] Y. Zhang and O. Meruvia-Pastor, “Operating virtual

panels with hand gestures in immersive VR games:

Experiences with the leap motion controller,” in Lecture

Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2017, vol. 10324 LNCS, pp. 299–308,

doi: 10.1007/978-3-319-60922-5_24.

[3] M. Abavisani, H. R. V. Joze, and V. M. Patel,

“Improving the performance of unimodal dynamic

hand-gesture recognition with multimodal training,” in

Proceedings of the IEEE Computer Society Conference

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.10, October 2021

239

on Computer Vision and Pattern Recognition, 2019, vol.

2019-June, pp. 1165–1174, doi:

10.1109/CVPR.2019.00126.

[4] G. Garcia-Hernando, S. Yuan, S. Baek, and T. K. Kim,

“First-Person Hand Action Benchmark with RGB-D

Videos and 3D Hand Pose Annotations,” in Proceedings

of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2018, pp. 409–419, doi:

10.1109/CVPR.2018.00050.

[5] R. Y. Wang, S. Paris, and J. Popovic, “6D hands:

Markerless hand tracking for computer aided design,” in

UIST’11 - Proceedings of the 24th Annual ACM

Symposium on User Interface Software and Technology,

2011, pp. 549–557, doi: 10.1145/2047196.2047269.

[6] I. Papastratis, K. Dimitropoulos, D. Konstantinidis, and

P. Daras, “Continuous Sign Language Recognition

through Cross-Modal Alignment of Video and Text

Embeddings in a Joint-Latent Space,” IEEE Access, vol.

8, pp. 91170–91180, 2020, doi:

10.1109/ACCESS.2020.2993650.

[7] T. Chatzis, A. Stergioulas, D. Konstantinidis, K.

Dimitropoulos, and P. Daras, “A comprehensive study

on deep learning-based 3d hand pose estimation

methods,” Appl. Sci., vol. 10, no. 19, pp. 1–27, Oct.

2020, doi: 10.3390/app10196850.

[8] W. Chen et al., “A Survey on Hand Pose Estimation

with Wearable,” Sensors, vol. 20, no. 1704, 2020.

[9] A. G. Howard et al., “MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision

Applications,” 2017, [Online]. Available:

http://arxiv.org/abs/1704.04861.

[10] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.

C. Chen, “MobileNetV2: Inverted Residuals and Linear

Bottlenecks,” Proc. IEEE Comput. Soc. Conf. Comput.

Vis. Pattern Recognit., pp. 4510–4520, 2018, doi:

10.1109/CVPR.2018.00474.

[11] Z. Cao, T. Simon, S. E. Wei, and Y. Sheikh, “Realtime

multi-person 2D pose estimation using part affinity

fields,” in Proceedings - 30th IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2017,

2017, vol. 2017-Janua, pp. 1302–1310, doi:

10.1109/CVPR.2017.143.

[12] A. Toshev and C. Szegedy, “DeepPose: Human pose

estimation via deep neural networks,” in Proceedings of

the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2014, pp. 1653–1660,

doi: 10.1109/CVPR.2014.214.

[13] G. CHAGANAVA and D. KAKULİA, “Keypoint

Detector Retraining Techniques for the Communication

System of Sign Language Speakers,” Eskişehir Tech.

Univ. J. Sci. Technol. A - Appl. Sci. Eng., vol. 21, pp.

74–86, 2020, doi: 10.18038/estubtda.822295.

[14] R. Padilla, W. L. Passos, T. L. B. Dias, S. L. Netto, and

E. A. B. Da Silva, “A comparative analysis of object

detection metrics with a companion open-source

toolkit,” Electron., vol. 10, no. 3, pp. 1–28, 2021, doi:

10.3390/electronics10030279.

[15] “Home | TensorFlow Hub.” https://tfhub.dev/ (accessed

Aug. 24, 2021).

[16] Indiana University, “EgoHands: A Dataset for Hands in

Complex Egocentric Interactions | IU Computer Vision

Lab,” 2020.

http://vision.soic.indiana.edu/projects/egohands/

(accessed Jul. 30, 2021).

[17] “GitHub - victordibia/handtracking: Building a Real-

time Hand-Detector using Neural Networks (SSD) on

Tensorflow.”

https://github.com/victordibia/handtracking (accessed

Jul. 30, 2021).

[18] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,

“You only look once: Unified, real-time object

detection,” in Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition, 2016, vol. 2016-Decem, pp. 779–788, doi:

10.1109/CVPR.2016.91.

[19] “cansik/yolo-hand-detection: A pre-trained YOLO

based hand detection network.”

https://github.com/cansik/yolo-hand-detection (accessed

Jul. 30, 2021).

[20] C. Y. Wang, H. Y. M. Liao, P. Y. Chen, and J. W.

Hsieh, “Enriching variety of layer-wise learning

information by gradient combination,” in Proceedings -

2019 International Conference on Computer Vision

Workshop, ICCVW 2019, 2019, vol. 2, pp. 2477–2484,

doi: 10.1109/ICCVW.2019.00303.

Guram Chaganava received the

B.S. and M.S. degrees, from Tbilisi

State Univ. in 2015 and 2017,

respectively. His research interest

includes embedded systems, image

processing, deep learning.

