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Abstract 
Real-time hand pose estimation in an image plays an important 

role in systems that require human-computer interaction (HCI). 

In some cases, a task requires hand pose estimation, not in any, 

but images with specific content. For example, such a task may 

require hand pose estimation in images showing one person 

speaking sign language near the camera. The goal of the study 

presented in this paper is to experimentally test the assumption 

that, for the aforementioned specific tasks it will be better than 

the standard approach to perform hand pose estimation directly in 

the original image, without hand detection. This approach can 

result in higher speed and nearly the same accuracy of hand pose 

estimation as in the case of the standard approach. To determine 

the advantage of the direct approach for specific tasks, it is 

necessary to compare the methods in terms of accuracy and 

speed. For this, a comparative analysis of the standard and direct 

approaches is carried out. The efficiency coefficients of the 

methods are quantitatively evaluated to find the optimum 

between accuracy and speed. It is also examined how the 

accuracy of hand pose estimation depends on the content of the 

dataset used to build such a system. As a result, the direct 

approach proves to be more efficient when using a dataset 

consisting of images with specific content. 

Key words: 
Hand Pose Estimation, Keypoint, Keypoint Detection, Hand 

Detection. 

 

1. Introduction 

Hand pose estimation refers to the process of 

modelling a human hand as a set of some objects. It is a 

common practice to model a hand as a system of 

keypoints. A keypoint is a specific place on the human 

body. Using coordinates of keypoints, a position of a 

human body can be restored in space. Examples of hand 

keypoints include the joint of a wrist, finger joints, etc. 

The process of determining the coordinates of keypoints is 

called keypoint detection. Keypoint detection is one of the 

most popular tasks of computer vision. It is used in tasks, 

such as virtual and augmented reality (VR/AR) 

systems[1], interactive games [2], gesture recognition[3], 

action recognition[4], computer-aided design (CAD)[5], 

sign language recognition[6], etc. 

The publications [7], [8] present state-of-the-art 

techniques for 2D and 3D hand pose estimation in images. 

As follows from these articles, the vast majority of  

 

 

 

researchers do not perform hand pose estimation directly 

in full images. Instead, at first, they determine the location  

of the hand in an image, crop it and then detect keypoints 

in the cropped image. As a result, hand pose estimation 

problem is divided into two tasks: 

(i) Hand detection. It implies determining whether 

the hand is shown in a photograph, and if so, how 

many. If at least one hand is presented in an 

image, its location must be found. 

(ii) Hand keypoint detection. After hand detection, 

each found hand is cropped from the image. Pre-

processing of the cropped image is performed, 

such as resizing, normalizing, etc. The resulting 

image is fed to a keypoint detector. 

In this case, the problem relatively simplifies since it is 

divided into two tasks of less complexity. As a result, this 

approach makes it possible to achieve a high degree of 

generalization - estimating hand pose with high accuracy 

in images with any content. Because of this, the use of this 

technique for hand pose estimation has become the 

standard. On the other hand, this approach is more time 

consuming as it is necessary to solve two different tasks. It 

is important that in both cases the detection algorithm is 

optimised so that the detection time is as short as possible. 

Detection time, along with accuracy, is a key characteristic 

of real-time systems. Choosing the optimal algorithms for 

both tasks, resulting in the high accuracy and speed of 

detection, can sometimes be problematic. 

Sometimes a task requires hand pose estimation not in 

any, but specific conditions. For example, interactive 

computer games may require hand pose estimation in 

photographs that depict a person sitting in front of the 

computer and holding his/her hand in a specific position. 

A similar situation occurred in the case of the task that 

required real-time hand pose estimation in photographs 

showing one person speaking sign language near the 

camera. Since the signer stands close to the camera, he/she 

will be displayed in most of the photograph. The 

hand/hands will also occupy a large area in the image. 

According to the purpose of the task, the hand pose 

estimation should be done only in the photographs of this 

content category. 

The assumption was made that the hand pose 

estimation would be performed faster if keypoints were 

searched not in cropped, but directly in the original image. 

In terms of accuracy, since the estimation of hand pose is 
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only required only in the category of photographs 

described above, the accuracy of detection in original 

images could be close to the accuracy of detection in 

cropped images. Experimental examination of these 

assumptions is the goal of the paper. To test the advantage 

of a direct hand pose estimation over a standard approach 

for specific tasks, it is necessary to compare systems to 

each other that implement both approaches. For these hand 

pose estimation systems to be comparable, they must be 

built based on the same principles. The systems should be 

compared in terms of accuracy and speed. Techniques 

used for building hand pose estimation systems, a method 

for comparing approaches and the experiment results are 

discussed in the paper. 
 

2. Methodology 

Comparison of the two approaches described above 

requires hand pose estimation systems that implement both 

of them. From Fig. 1 and 2 it is clear what parts both 

systems consist of. Building a standard hand pose 

estimation system requires a hand detector and a keypoint 

detector able to find keypoints in cropped images. For 

direct hand pose estimation a keypoint detector is needed 

which will perform detection in original images. For the 

keypoint detectors to be comparable, their operation must 

be based on a same working principle. 

 

 

Fig. 1. The standard, two-stage hand pose estimation workflow 

 

Fig. 2. The direct, one-stage hand pose estimation workflow 

The two approaches of hand pose estimation should be 

compared according to accuracy and speed. Since the 

standard approach performs hand pose estimation in two 

main steps, let's assign it as HPE2 (Hand Pose Estimation 

2 step) and the direct approach as HPE1 (Hand Pose 

Estimation 1 step). The following abbreviations are also 

used in the paper: KDO (Keypoint Detection in Original 

images), KDC (Keypoint Detection in Cropped images), 

HD (Hand Detection). An accuracy is denoted as A , time 

as T . For example, hand detection accuracy is denoted 

as HDA , and detection time as HDT . 

The accuracies KDOA  and 1HPEA  are the same since 

hand pose estimation in original images is done in only 

one step. 2HPEA  depends on HDA  and KDCA . KDOT  and 

1HPET  are also the same. 2HPET is the sum: 

2HPE HD KDCT T T= +   (1) 

2.1 Keypoint detection 

Keypoint detectors can be built using a deep learning 

approach which is quite successful in such tasks. To 

minimize detection time, it is better to choose a deep 

learning model with relatively small size such as 

Mobilenet[9], [10]. 

To train the model for detecting keypoints in original 

and cropped images, a dataset is required containing 

images and corresponding targets – x  and y  coordinates 

of each keypoint in each image. The dataset must contain 

photographs that correspond to the given task. Let's denote 

the dataset as  ,P K . P  is the set of images and K  is the 

set of corresponding targets. The resolution of images of 

set P  is equal to ( , )w h . 

  1 1 2 2

1

, {( , ) ( , ) ...( , )} ( , )
n

n n i i

i

P K p k p k p k p k
=

=   =  (2) 

 ,P K  is a set of pairs ( , )i ip k , where ip  is the 

corresponding matrix of an image with index i , and ik  is 

an array containing the coordinates of the keypoints.  

 ,P K  dataset can be used for training the model to 

detect keypoint in original images. In case of detection in 

cropped images, a dataset is required containing images of 

hands and the corresponding targets. Let's denote this 

dataset as  ' ',P K . 
'P is the set of submatrices derived 

from ip  matrices. Each submatrix corresponds to a part of 

a photograph that shows a human hand. 
'K is a set of '

ik  

arrays of coordinates of keypoints.  

To get the '

ip  submatrix, part of the ip  image must be 

found and cropped where a hand palm is shown. ik  array 

can be used to find the location of the hand palm. 

Boundaries of the hand palm in the ip  image can be 

determined by the minimum and maximum values of 

coordinates of keypoints along the x  and y  axes. These 

points form a bounding box of the hand palm. The 

bounding box will intersect the outer keypoints. So, part of 

the hand palm may be left outside the bounding box. 

Therefore, the size of the bounding box is increased along 

the x and y axes in proportion to its width and height, 

respectively. The part of the image ip , enclosed by the 

bounding box, is cropped. Cropped images vary in size. 

Hand Pose 
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However, the neural network used for detection has a fixed 

input size. Therefore, all images must have the same 
' '( , )w h  resolution. 'w  and 'h  can be equal to each other 

' '( )w h= , similar to w  and h . All images that have at 

least one size (width or height) greater than 'w , are resized 

so that their largest size is 'w . The second size of the 

resulting images is less than 'w . Then the images are 

placed in the centre of a matrix of size ' '( , )w h  filled with 

values equal to 255, which corresponds to white colour. 

Images smaller than 'w  in both sizes are placed in the 

matrix without resizing. As a result, set 
'P  is obtained 

containing images of size ' '( , )w h . 

To get the '

ik  target, few transformations must be 

performed on each ik  array. At first, the x  and y  

coordinate of the ik  array must be translated with the 

coordinates of the start point of the bounding box. Then 

the coordinates should be scaled so that their x  and y  

values must fall into the intervals: '[0, ]w  and '[0, ]h , 

respectively. Performing such transformations for each 

element of the set K  will result in a new set of targets 
'K . 

It is expected that the accuracy of keypoint detection in 

full and cropped images will be depended on the content 

of a dataset used for training. Consider the case where a 

dataset includes images of several people, in which a hand 

is shown in different positions. Using such a dataset, 

keypoint detection in cropped images can be performed 

with high accuracy. The cropped images practically do not 

show the person, the background and the surrounding 

objects. So, the coordinates of keypoints are mainly 

determined by the image of a hand palm. Because of this, 

there is a chance that the training will be successful. 

Regarding detection in original images, the detected 

keypoint coordinates depend on the value of each pixel of 

the full image. The images of the aforementioned dataset 

differ significantly from each other in content. Because of 

this, each new sample of the dataset will lead to significant 

changes in weight during the training process. Probably, 

high-accuracy detection will not be possible to achieve in 

this case. 

Let's say the dataset contains not one but many images 

of different people. In the images of a particular person, 

the speaker is shown against the same background in 

almost the same lighting conditions, albeit with different 

hand positions. In this case, the main difference in the 

content of the images is the position of a hand. The rest of 

the details of the images are almost the same. When using 

such a dataset for training, the weight change will be 

mainly due to the hand position. Consequently, relatively 

high detection accuracy can likely be obtained using such 

a dataset. 

To test the aforementioned assumptions 

experimentally, datasets can be built with different 

content: 

− Dataset 1 - containing images of one person 

showing a hand in different positions. 

− Dataset 2 - containing images of several people 

showing a hand in one specific position. 

− Dataset 3 - containing images of several people 

showing a hand in different positions. 

The purpose of creating these three datasets is not to 

train a real-world keypoint detector, but to study how the 

accuracy of keypoint detection in original and cropped 

images depends on the content of a dataset. Therefore, 

there is no need to have numerous samples in a dataset.  

OpenPose[11] system was used to get the target of 

every image of each dataset. OpenPose returns x and y 

coordinates of 21 hand palm keypoints from each image. 

Detection results were corrected after a visual inspection. 

Position and brightness augmentation were used to 

increase the number of samples in the dataset. 

 

2.2 Hand detection 

Hand detection involves finding a hand palm location in 

an image. This location is returned as a bounding box.  

A deep learning model can be trained to create a hand 

detector. This requires a dataset, containing images and the 

corresponding targets containing coordinates of hand 

bounding boxes. Such a dataset can be easily obtained 

from the set  ,P K . Let's denote the dataset required for 

hand detection as  ,P B . B  is a set of bounding box 

coordinates. The coordinates of the bounding box 

boundaries are easily determined from the set K , as 

described above. The set  ,P B  can be used to train 

Mobilenet for hand detection. The resulting detector can 

be compared to existing detectors in terms of accuracy and 

speed. 

 

2.3 Metric 

For measuring the keypoint detection accuracy, the 

Percentage of detected Joints (PDJ)[12] can be used. This 

is the ratio of the number of correctly detected keypoints 

to the total number of keypoints in the image. The 

detection is considered correct if the Euclidean distance 

between the target and the predicted keypoints is less than 

or equal to the maximum acceptable error. The length of 

the diagonal of the bounding box covering the human 

body in the image is used to determine the value of the 

maximum acceptable error. Since the detector must find 

the keypoints of not the entire body, but only the hand 

palm, the diagonal of the hand bounding box is used to 
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determine the maximum acceptable error as it is described 

in [13].  

In addition to the keypoint detection accuracy, hand 

detection accuracy also must be measured. There are many 

methods to measure object detection accuracy[14]. One of 

the specific cases of object detection is hand detection. 

When a task requires detection in images showing one 

object of one category, as in this case (only hand 

category), a relatively simple method such as Intersection 

Over Union (IOU) can be used. It is the ratio of the areas 

of the intersection and union of ground-truth and predicted 

bounding boxes. IOU must be calculated for each image 

and then averaged over the entire dataset. 

HPE1 and HPE2 systems, keypoint and hand 

detectors should be compared to each other according to 

accuracy and speed. Some quantity can be used for this 

purpose. Let's call it the efficiency coefficient. If the 

efficiency coefficient is high, then both accuracy and 

speed are high, not one of them. It depends on 

conventional quantities: accuracy and speed coefficients, 
ac  and tc , respectively. These coefficients must be 

constrained with some bounds, for example, it can be the 

interval [0, 1]. To get the ac  value for each model, the 

value of accuracy of the given model should be divided by 

the maximum accuracy of the models: 

1,...,

, 1,2,...,
max

a i

i

j
j N

a
c i N

a
=

= =  (3) 

where N  represents the number of models among which 

we want to determine the most efficient one.  

For calculating the speed coefficient tc , it must be 

taken into account that that speed is inversely proportional 

to time - longer detection time means lower speed.  

To get the speed coefficients, every value of detection 

time can be substructed from the maximum value of time. 

However, the coefficient tc  corresponding to the 

maximum value will be equal to 0, which is undesirable, 

since it is planned to calculate efficiency coefficients with 
ac  and tc . Because of this, each value of time is 

subtracted not from the maximum, but from some  

number so that ' max i
i

t a . After subtraction the resulting 

values are normalized. 

'

'

1,...,

, 1,2,...,
max ( )

t i

i

j
j N

t t
c i N

t t
=

−
= =

−
  (4) 

The coefficient of efficiency ec  of the given model can 

be defined as the product of the coefficients of accuracy 

and speed. 

 * , 1,2,...,e a t

i i ic c c i N= =    (5) 

 

3. Results and Discussion 

For the experiment HPE1 and HPE2 systems has been 

created. The approaches were compared in terms of 

accuracy and speed. 

3.1 Keypoint detection 

To create a detector, a deep learning model - Mobilenet 

has been used. Mobilenet, pretrained for feature vector 

extraction was taken from [15]. There are different 

versions of Mobilenet, with different depth multipliers and 

input sizes. The input size must be equal to the resolution 

of the image being fed to the network. The resolution of 

the original image is 224x224 while in the case of cropped 

image it is 128x128. Experimenting using models with 

different depth multipliers will allow observing the 

difference between the two approaches on several results. 

So, keypoint detectors have been created using different 

modifications of Mobilenet, which are presented on Tab. 

1. 
Table 1: Versions and depth multipliers of Mobilenet used in the 

experiment. The parentheses contain a conventional name 

for the specific Mobilenet, as they are mentioned in the 

graphs below. 
Mobilenet 

version 

Depth multiplier 

1 0.25(1) 0.5(2) 0.75(3) 1(4) 

2 0.35(5) 0.5(6) 0.75(7) 1(8) 

A dense layer with 42 neurons (the number of targets) 

was added to the last layer of each deep learning model. 

Hyperbolic tangent was chosen as the activation function 

of the last layer. Before training, the values of ip  and '

ip  

matrices were scaled in the range [0,1], ik  and '

ik  matrices 

were scaled in the range [-1, 1]. For the training process 

next device was used: CPU - Intel Core i7-3632 2.2 GHz, 

RAM – 6GB.  

Three datasets have been used in the experiment. The 

number of samples in the first two datasets was within a 

few hundred, and in the third, it exceeded 3000. All deep 

learning models were trained using these datasets.  

42 50
37 30
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65 67

23 29
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19 27 22 19 12
25 19 23

69 60 69 63 65 63
34

54

1 2 3 4 5 6 7 8

Original Cropped

Fig. 3. Accuracy of models trained on Dataset 1(upper), 2 (middle) 
and 3 (lower) for keypoint detection in original and cropped images. 

Accuracy is measured on the test set in PDJ percentage. Horizontal 
axis titles show the Mobilenet conventional names. 

 

The assumption was partially justified stating that 

HPE1 could have outperformed in the case of training 

using Dataset1. In the case of only three models, detection 

in the original image was found to be more accurate than 

in the cropped image.  

In the case of training using Dataset 2, the 

aforementioned assumption was justified for all models. In 

each case, preference was given to the detection in the 

cropped images. 

In the case of training using Dataset 3, the preference 

was given to the method of detection in cropped images. 

However, the maximum accuracy obtained is not as high. 

This can be due to a few reasons. The first reason can be 

the insufficient size of the dataset. Compared to the other 

two datasets, Dataset 3 consists of images with relatively 

diverse content. Presumably, the number of samples of 

Dataset 3 was not enough to learn detection in various 

situations. The reason for the resulting low accuracy may 

also be that the number of samples representing each hand 

pose in the dataset is different. To build a real-world 

detector, it would be better to use a relatively large dataset, 

in which the number of samples representing each hand 

pose will be close to each other. 

66 67 74
89

61 66 73 78

53 55 58 62 56 56 61 62

1 2 3 4 5 6 7 8

Original Cropped

 

Fig. 4. Keypoint detection times for each model measured in 

milliseconds. The input size of each model used for detection in original 

images is 224x224, while the input size of models used for detection in 

cropped images is 128x128. 

The difference between the time it takes to detect 

keypoints in an original and cropped image is due to the 

difference between the input sizes of the models. The 

results show that the time required for detection depends 

on the depth multiplier for both versions of the Mobilenet. 

The larger the depth multiplier, the more detection time. 

The coefficients of efficiencies were calculated for 

each model. To calculate the coefficients tc , it was 

necessary to determine the value of 't  which must be close 

to the value of maximum detection time. Since the 

maximum detection time value is 89, so let’s 't  be 100. 

The efficient models were determined using the efficiency 

coefficients. They are listed on Tab. 2. 

 
Table 2: The most effective KDO and KDC models in case of using each 

dataset. 

Dataset KDO models KDC models 

Dataset 1 v2, 0.35 v2, 1 

Dataset 2 v2, 1 v1, 0.25 

Dataset 3 v1, 0.5 v1, 0.25 

To improve accuracy, each efficient model was 

retrained with the same dataset, albeit using different loss 

functions: Mean Squared Error (MSE) and Mean Absolute 

Error (MAE). In Fig. 5, there are shown the maximum 

accuracies obtained for every efficient model. 

81
36 24

v2,

0.35

v2,

1

v1,

0.5

87 97 70

v2,

1

v1,

0.25

v1,

0.25

 

Fig. 5. The accuracy of the most effective KDO (left) and KDC (right) 

models after retraining. Accuracy is measured in PDJ percentage. 

3.2 Hand Detection 

Eight Mobilenet models were trained for hand 

detection using Dataset 3 as it is a more diverse dataset 

than the other two. The most efficient model turned out to 

be Mobilenet v1 with a depth multiplier of 0,25 (denoted 

as 1 in figures). This model was compared to a few 

existing hand detectors which include: 

ssd_mobilenet_v1_coco (denoted as 2 in figures) trained 

on Egohands Dataset[16] by Victor Dibia[17], Different 

versions of YOLO[18] trained by cansik[19]: 

(i) YOLO v3 (denoted as 3 in figures) 

(ii) The slim version of YOLO v3 called YOLOv3-

tiny (denoted as 4) 
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(iii) The tiny version of YOLO improved by partial 

residual networks[20] called Yolov3-Tiny-PRN 

(denoted as 5) 

(iv) YOLOv4 tiny (denoted as 6). 

6
8

6
0

8
1

6
7

6
7

6
6

1 2 3 4 5 6
5
7 6
2

3
1
4

2
5

1
8 2
9

1 2 3 4 5 6

 

Fig. 6. Hand detection accuracy measured in IOU (left). Hand detection 

time in ms (right).  

7.41 6.43
1.08

8.10 8.27 7.88

1 2 3 4 5 6

C_A C_T C_E

 

Fig. 7. Efficiency of HD models. Accuracy (denoted as C_A), speed 

(C_T), and efficiency (C_E/10) coefficients of hand detector models. 

As seen from the diagrams, the highest accuracy was 

obtained with the YOLO v3, although the average 

detection time was quite long compared to other models. 

In other cases, the detection accuracies were relatively 

close to each other. The highest efficiency was observed in 

the case of Yolov3-Tiny and Yolov3-Tiny-PRN.  

 

3.3 Comparison of approaches 

The two approaches to hand pose estimation have been 

compared using the selected efficient models in terms of 

accuracy and speed. Hand pose estimation accuracy and 

time of approach HPE1 are the same as the accuracy and 

time of keypoint detection in the original images. To 

measure hand pose estimation accuracy and time of the 

HPE2 approach, the following steps were performed: an 

image with the resolution 224x224 has been fed to the 

most efficient hand detector. HDT  time was spent on hand 

detection. The detector returned the coordinates of the 

hand bounding box. Using these coordinates the hand 

image was extracted from the original image. This image 

was resized to 128x128 and passed to the keypoint 

detector. It returned the final result - the coordinates of the 

keypoints. The total time KDCT  was spent on the next 

operations: cutting and resizing the hand image, detecting 

keypoints. The total time 2HPET  spent on estimating the 

hand pose was calculated by finding the sum of HDT  and 

KDCT .  

81

52
27

58

88
59

1 2 3

HPE1 HPE2

61 78 67

129
96 84

1 2 3

HPE1 HPE2

 

Fig. 8. Accuracy of HPE1 and HPE2 approaches in PDJ percentage (left). 

Time spent on hand pose estimation by HPE1 and HPE2 approaches in 
ms (right). Accuracy and time are measured on efficient models selected 

in the case of each dataset. The dataset names are shown below each 

figure. 

As seen from Fig. 9, the accuracy of the HPE2 

approach is significantly lower than the accuracy of the 

keypoint detection in the cropped images on each dataset. 

This is caused by defective hand detection in some cases. 

In terms of speed, less time was spent on hand pose 

estimation by the HPE1 approach in each case. 

To calculate the rate factor tc , let 't  be 150 since that 

is the closest number to the maximum value of inference 

time. 

9.2

1.6

HPE1 HPE2

C_A C_T C_E

4.7
6.0

HPE1 HPE2

C_A C_T C_E

2.9
4.9

HPE1 HPE2

C_A C_T C_E

 

Fig. 9. The coefficients of accuracy (denoted as C_A), speed (C_T) and 

efficiency (C_E/10) of HPE1 and HPE2 approaches, measured on 

efficient models selected in the case of each dataset (Dataset 1 – upper 

left, Dataset 2 – upper right, Dataset 3 – bottom).  

From Fig. 10, it can be concluded that the HPE1 

approach was more efficient only when using Dataset 1. In 

this case, there was a significant difference in the 

coefficients of the efficiencies of the approaches, which 

was not the case in the other two datasets. This is due to 

the relatively high accuracy (81%) and short detection 
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time (61 ms). 

 
 

 
 

Fig. 10. Results of direct (left) and standard (right) hand pose estimation 

in images of Dataset 1. True (green) and predicted (red) bounding 
boxes are drawn on the images shown on the right side. Below the 

images, there are given the accuracy values of the HPE1 approach, 
hand detection and HPE2 approach. 1 

 

 

 
1  Photo material from www.lifeprint.com. Thanks to Dr. Bill 

Vicars! 

 
Fig. 11. Results of direct (left) and standard (right) hand pose estimation 

in images of Dataset 2. True (green) and predicted (red) bounding 
boxes are drawn on the images shown on the right side. Below the 

images, there are given the accuracy values of the HPE1 approach, 

hand detection and HPE2 approach.2 

 

 

 
Fig. 12. Results of direct (left) and standard (right) hand pose estimation 

in images of Dataset 3. True (green) and predicted (red) bounding 

boxes are drawn on the images shown on the right side. Below the 

images, there are given the accuracy valuess of the HPE1 approach, 
hand detection and HPE2 approach.3 

3.4 Discussion 

The experiment clearly demonstrated the features of 

the standard and direct approaches. First of all, it should be 

noted that the keypoint detectors for the HPE1 and HPE2 

systems were trained with different accuracy using 

datasets composed in different ways. The detection of 

 
2 First photo from www.lifeprint.com. Thanks to Dr. Bill Vicars! 
3 Upper photo from YouTube channel 'Chris Gorges'. Thanks to 

Mr Chris Gorges! 

Thanks to Mr Beka Baratashvili for the bottom photo! 

1 38,1%HPEA = 63,6%HDA = 2 85,71%HPEA =
 

1 52,38%HPEA = 71,65%HDA = 2 57,14%HPEA =
 

1 4,76%HPEA = 79,67%HDA = 2 71,43%HPEA =
 

1 90,48%HPEA = 79,94%HDA = 2 100%HPEA =
 

1 95,24%HPEA = 65,38%HDA = 2 76,19%HPEA =
 

  

1 100%HPEA = 75,6%HDA = 2 42,86%HPEA =
 

  

http://www.lifeprint.com/
http://www.lifeprint.com/
https://www.youtube.com/channel/UCrcYjoyYuUQhxwlX69cCn4Q
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keypoints in the original images was studied with high 

accuracy when the dataset consisted of the images similar 

in content showing a hand in different positions. Detection 

in cropped images was better studied when the dataset 

consisted of multiple images of each hand pose, performed 

by different people. When the dataset was filled with many 

diverse images, the HPE2 approach gained an advantage, 

although its accuracy was not high. 

Detection in the cropped images was performed more 

accurately than in the original images in the case of all 

datasets. In one case (using Dataset 1), HPE1 was more 

accurate. In terms of hand pose estimation speed, as 

expected, the HPE1 approach gained an advantage. 

The direct hand pose estimation approach can be used 

in cases where a high-speed hand pose estimation is 

required in images of a certain category. HPE1 approach 

can be successfully used in the tasks requiring hand pose 

estimation in images of one or more people, or images of a 

certain category, etc. 

Tab. 3 lists the advantages and disadvantages of both 

approaches. 

Tab. 3. Advantages and disadvantages of HPE1 approach. 

Advantages (i) The possibility to achieve high 

accuracy of hand pose estimation in 

photographs with specific content. 

(ii) Relatively fast hand pose estimation. 

(iii) The simplicity of implementation. The 

approach requires solving only one 

problem - estimating a position of a 

hand in the original images. 

Disadvantages (i) Quite difficult to achieve 

generalization. 

Tab. 4. Advantages and disadvantages of HPE2 approach. 

Advantages (i) Ability to achieve a high degree of 

generalization. 

Disadvantages (i) Relatively slow hand pose estimation. 

(ii) The complexity of the Implementation. 

This approach requires solving two 

problems - detecting a hand in an 

original image and estimating a hand 

pose in a cropped image of a hand. 

 

4. Conclusion 

The paper presents a comparative analysis of two 

approaches to hand pose estimation in images with 

specific content. The study is based on an example of a 

specific task that requires hand pose estimation in images 

showing a person speaking sign language near a camera. 

The goal of the study was to test the assumption that the 

estimation of the hand pose for a given or a similar 

problem could be performed faster and with almost the 

same accuracy compared to the standard approach if the 

direct approach was used. The direct approach implies 

estimating a hand pose directly in an original image, as 

opposed to the standard approach, which first finds the 

part of an image where a hand is shown, crops it, and then 

estimates a hand pose in the cropped image. This 

hypothesis has been tested experimentally. Both standard 

and direct hand pose estimation systems were constructed 

and compared in terms of accuracy and speed. The deep 

learning model, Mobilenet was trained to create the 

detectors. For training, three datasets of different content 

were created. The purpose of creating the three datasets 

was to examine how the hand pose estimation accuracy 

depends on the content of the dataset. 

Efficiency coefficient was used to compare the 

approaches. It is calculated using accuracy and speed. A 

high value of the efficiency coefficient means that both 

accuracy and speed are high. 

As a result, several conclusions can be drawn: As 

expected, high accuracy was achieved in the case of direct 

hand pose estimation using a dataset that contained 

samples that were similar in content but showed different 

hand positions. When estimating a hand pose using the 

standard approach, the accuracy is higher when multiple 

images of each hand pose are given in the dataset. In 

photographs with a variety of content, the HPE2 approach 

is obviously preferred. The assumption regarding the hand 

pose estimation speed was also justified. For all efficient 

models, the direct approach was faster. As a result, it can 

be stated that the standard approach is clearly preferred to 

achieve maximum accuracy of hand pose estimation in 

photographs with highly diverse content. In the case of 

tasks that require real-time hand pose estimation in 

photographs of certain content, the direct approach may be 

more efficient due to its high accuracy and short execution 

time. 
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