
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021

165

Manuscript received November 5, 2021
Manuscript revised November 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.11.22

Fault Diagnosis with Adaptive Control for Discrete Event Systems

Yamen El Touati † and Mohamed Ayari ††

†Department of Computer Sciences,
††Department of Information Technology

Faculty of Computing and Information Technology,
Northern Border University, Kingdom of Saudi Arabia.

Summary
Discrete event systems interact with the external environment to
decide which action plan is adequate. Some of these interactions
are not predictable in the modelling phase and require
consequently an adaptation of the system to the metamorphosed
behavior of the environment. One of the challenging issues is to
guarantee safety behavior when failures tend to derive the system
from normal status. In this paper we propose a framework to
combine diagnose technique with adaptive control to avoid unsafe
sate an maintain the normal behavior as long as possible.

Key words:
Diagnose, Discrete event systems, Control, Finite State Machines

1. Introduction

When modeling systems, it is important to reason about
faulty behavior issues, particularly knowing that fault
occurrence may lead to serious damage. Indeed, in order to
design resilient systems, we have to think not only about
how to detect faults [1, 2, 17], but also about how to react
to them. The adaptive control can be seen as an alternative
to answer the question "what to do when a fault occurs?".
Actually, adaptive systems are reconfigurable systems
which are able to respond to environmental changes or
interacting changes by behavior reconfiguration [19].
However, before thinking about how to react to fault
occurrence, we have to answer a more important question,
that is: how to detect faults efficiently? In this context, fault
diagnosis, consists of detecting faulty system behavior,
localizing its origin and identifying its causes [3, 4, 5, 6],
can widely help with this issue. Failure detection and
identification can be state-based [11, 12, 14], language
based [3, 4, 5, 6, 15], or Petri nets based [13].

Control theory [7, 10, 19] answer to the question "how to
force the system respect the safety requirement?". Indeed
the controller is able to force some controllable events to
avoid any unsafe state [20, 21]. The plant system generates
some events that correpond mostly to sensor feedback and
are uncontrollable by nature [23, 24]. Besides, the

controller action have to be optimal [22] in a way that it
performs the least restrictions to the system activities.

The main issue is to recover from errors when they are not
tractable [14, 17, 18]. In this case, the controller has no
information to detect reaching any unsafe state. Thus, it is
interesting to combine the controller with diagnoser action
in order to detect any system failure and allow the controller
to switch the system to desired safety specification.

In this paper, we propose a frmework that benefits from
diagnoser detection and identification of failure that are
unobservable sothat the controller guide the system via
controllable action events to exit any unsafe state and
respect as long as posible the safety specification of the
system behavior.

This paper is organized as follows. In the next section, we
characterize basic concepts and notations to be used. In
section 3, tecniques for diagnose are presented and studied.
Section 5 presents the control theory using finite state
machines. In section 5 we illustrate the proposed technique
for adaptive control combined with diagnosis. We conclude
in section 6.

2. Basic Concepts and Notations

The following notations are adopted. Σ represents a finite
set of actions or events. Σ∗ represents an infinite set of all
possible strings (sequence or concatenation of actions)
built with symbols from Σ.

Modelling discrete event systems (DES) frequently uses
formal languages or finite state machines. In this work, we
use finite state machines (FSM) according to the following
definition.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021

166

A finite state machine is the tuple 𝑃 ൌ ሺ𝑄, Σ, Δ, 𝑞଴ሻ where

 𝑄 is a finite set of states
 Σ is a finite set of events (or actions)
 Δ ⊂ Q ൈ Σ∗ ൈ Q is a finite set of transitions
 𝑞଴ ∈ 𝑄 is the initial state

An FSM is nondeterministic where more than one action
may be possible in the same state. This allow the FSM to
model a lager class of DES.
In Figure 1, an example of FSM is presented.

Fig. 1: Example of DES modelled by FSA

In this example, the FSM is described by the following
information.

 𝑄 ൌ ሼ1, 2, 3ሽ
 Σ ൌ ሼa, b, dሽ
 Δ ൌ ሼሺ1, a, 2ሻ, ሺ2, b, 3ሻ, ሺ3, d, 1ሻሽ
 𝑞଴ ൌ 1

3. Techniques of Failure Diagnose

In general, diagnose technique is used to determine when it
is possible if the system is in a faulty state. When there is a
certainty that the system is in a faulty state, the controller
attempt to guide the system to exit failure status and reach
a safe state. The diagnoser observes events that are
generated by the system to identify the current state.
However, there are some issues that make this task more
complicated when some of the events are not observable by
the diagnoser.

The main goal of a diagnoser is to detect any abnormal
behavior and identify the origin of the failure. A failure is
considered as misfunction of the system that derives from
normal behavior and generates consequently errors. This
means that an error is a direct consequence of a failure.

The occurrence of a fault is usually associated with the
emission of a set of signals from the system sensors. These
signals represent the symptoms that allow the detection and
the identification of the error.

The framework architecture of diagnoser is represented in
Figure 2. Lower layer corresponds to the physical process

or system operational component while the upper layer is
the supervision component of the system. Communication
between both layers is possible via an interface which
transfer command actions form the upper layer to the
physical system, and forward visible sensor signals from the
physical process to the supervisor. These visible signals are
called observable events. The role of the supervisor is to use
its computational power with the feedback of the lower
layer to detect and identify any possible failure.

Fig. 2. failure diagnosis architecture

Usually, events that are the direct cause of failure are
unobservable. This makes the task of the diagnoser more
complicated and require an estimation of all possible states
of the system in order to deduce the faulty behavior when it
happens.

We use the following notations

 Σ is the set of all events

 Σ௨௢ ⊆ Σ is the set of unobservable events

 Σ௢ ⊆ Σ is the set of unobservable events.

 Σ௙ ⊆ Σ௨௢ is the set of failure events

Remarks:
 Σ is portioned into Σ௨௢ and Σ௢. This means that

Σ௨௢ ∪ Σ௢ ൌ Σ and Σ௨௢ ∩ Σ௢ ൌ ϕ.

 Failure events are unobservable since observable
failure events are easy to detect immediately
when they occur.

The failure detection and identification are based on the
comparison between observable behavior from physical
process and expected behavior from system model [1, 2, 3,
6] in order to analyze the discrepancies between these two
behaviors and deduce possible errors as shown in Figure 3.

Physical Process

Supervisor

Failure Diagnoser

Interface

Observable
Events

Actions

1 3

2

a

d

b

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021

167

Fig. 3 : Model-based Diagnose

The main idea is to design a framework model of the
process behavior with finite state machine or any equivalent
model. This model describes the normal behavior as well as
the failure behavior of the system. Therefore, the diagnoser
builds a state estimator according to the received observable
events in a form of finite state machine. This process is
depicted in Figure 4.

Fig. 4: Diagnoser tasks

The Figure 5 illustrates an example of discrete event system
modelled by finite state machine. This DES is represented
by the following action sets.

 Σ ൌ ሼa, b, c, d, f1, f2ሽ

 Σ௨௢ ൌ Σ௙ ൌ ሼ f1, f2ሽ is the set of unobservable

events

 Σ௢ ൌ ሼa, b, c, dሽ is the set of unobservable events.

According to Σ௙, transitions labeled with f1 and f2 lead to

failure states. This means that the states 4, 5 and 6

corresponds to failure behavior.

Fig. 5: Example of DES modelled by FSA

The diagnoser is represented by the FSM in Figure 5. The
initial state of the diagnoser FSM and is labeled by N
indicating a normal behavior. The sate labeled 2N 4F 5F
indicates that the system may be in state 2 (with normal
behavior) or in states 5 or 6 (with failure behavior). If a
diagnoser state is labeled exclusively F, the state is qualified
Fi-certain. By opposition, if the diagnoser state is labeled
exclusively N, the state is qualified Normal. Otherwise, the
state is qualified Fi-uncertain.

Fig. 6 : Diagnoser FSM

The Table 1 illustrate the diagnoser state qualifications
according to failure certainty.

Observe the system

Estimate the current state

Infer possible faults

Identify errors

Alert the supervisor

1 3

2

4 5

6

a

d

b

f1 f2

b b

c

1N

2N 4F 5F

3N 6F 6F

a

b

c

d

c q1

q0

q2 q3

System Model

Expected
Behavior System Model

Observable
Behavior

Comparison

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021

168

Table1: Failue certainty of the diagnoser
Failue certainty Diagnoser state
Normal 0q
Fi-uncertain. 1q
Fi-uncertain. 2q
Fi-certain. 3q

Note that no failure is detected if a diagnoser cycle does not
contain any Fi-certain state.

4. Control of Discrete Event Systems

The supervisory control theory is based on Ramage &
Wonham theory [10, 20, 23, 24]. The main idea is to inhibit
the production of any action event that may lead to unsafe
state as mentioned if Figure 7.

Typically, the controller is able to produce only controllable
actions (referred to as Σ௖). Events that are not managed by
the controller are uncontrollable (referred to as Σ𝑢𝑐) and
corresponds usually sensor feedback. The control
Algorithm is based on FSM [25]. Each state is considered
forbidden if it does not meet the safety specification.
Besides, any state that can lead to a forbidden state by a
sequence (one or more) of uncontrollable events is
considered to be weakly forbidden. The controller is
constructed by truncating any possibility to reach forbidden
states and weakly forbidden states by acting on controllable
events to avoid (weakly) forbidden states and obtain the
most permissive controller.

Fig. 7. Supervisory control architecture

Note that Σ is partitioned into Σ𝑐 and Σ𝑢𝑐. This means
that in controller perspective, an event is either
controllable or uncontrollable. The complexity of

controller action resides in avoiding weakly forbidden
states since they may lead spontaneously to forbidden
state without any reaction from the controller. A
system is considered to be controllable when the
controller succeeds to avoid forbidden without
reducing the scope of the system. In some cases the
controller is brought to reduce some important and
critical behavior. In this case, the issue is reported to
the system designer which have to take the necessary
actions in redesigning to avoid any misbehavior.

5. Adaptive Control combined with Failure
Diagnosis

It is interesting to combine the computational power of the
diagnoser with controller actions to seek safe and normal
behavior. The system architecture is represented in Figure
8. The diagnoser reports any failure behavior to the
supervisor, then the controller consider all states reported
by diagnoser as forbidden states and apply the control
algorithm to avoid reaching those states.

Fig. 8. Supervisory control architecture

Consider that

 𝑃 ൌ ሺ𝑄, Σ, Δ, 𝑞଴ሻ is the FSM of the physical
process model

 𝐷 ൌ ሺ𝑄஽, Σ௢, Δ஽, 𝑞଴
஽ሻ is the FSM of the diagnoser

 𝐹 ⊂ 𝑄 is the set of forbidden states
 𝑊𝐹 ⊂ 𝑄 is the set of weakly forbidden states

Physical Process

Supervisor

Controller

Interface

Events Controllable
Actions

Physical Process

Supervisor

Coordination

Failure
 Diagnoser

Adaptive
 Controller

Interface

Observable
Events

Actions

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021

169

We present in what follows the adaptive control algorithm.
The first step is to explore the system FSM to construct the
diagnoser FSM. The states of the diagnoser FSM are
composed of possible system states according to observable
actions and their failure status (N or F).
Once the diagnoser is built, it is possible to identify all
failure states that will be reported to the controller. Then,
the controller marks all failures as forbidden states. The
next step is mark all states that lead to forbidden states by
uncontrollable events as weakly forbidden states. Lastly,
the controller acts on controllable events to avoid all
forbidden and weakly forbidden states.

Algorithm of Failure diagnosis with
adaptive control

Initially 𝑄஽ ൌ ሼ𝑞଴
஽ሽ ൌ ሼሺ𝑞଴, 𝑁ሻሽ

Push (𝑞଴
஽)

While (𝑞஽=pop stack) is not empty
 foreach 𝜎 ∈ Σ௢ do
 foreach 𝑞 from 𝑞஽
 if ሺ𝑞, 𝑤𝜎𝑤ᇱ, 𝑞ᇱሻ ∈ Δ such that 𝑤 ∈ Σ௨௢

∗
and 𝑤′ ∈ Σ௨௢

∗
 then generate/update state 𝑞ᇱ஽ with

the appropriate status N or F
 endif
 end for
 push 𝑞ᇱ஽
 𝑄஽ ൌ 𝑄஽⋃{𝑞ᇱ஽ሽ
 Δ஽ ൌ Δ஽⋃ሼሺ𝑞஽, 𝜎, 𝑞ᇱ஽ሻሽ
 end for
end while

foreach 𝑞஽ ∈ 𝑄஽ such that 𝑞஽ is Fi-certain
 mark each failure state q as forbidden
 𝐹 ൌ 𝐹⋃ሼ𝑞ሽ
end for

foreach 𝑞 ∈ 𝐹 with ሺ𝑞ᇱ, 𝑤, 𝑞ሻ ∈ ∆ and 𝑤 ∈ Σ௨௖

∗
 mark 𝑞ᇱ as weakly forbidden

𝑊𝐹 ൌ 𝑊𝐹⋃ሼ𝑞′ሽ
end for

foreach 𝑞 ∈ 𝐹 ∪ 𝑊𝐹
 for each (𝑞ᇱ, 𝜎, 𝑞ሻ ∈ Δ such that 𝜎 ∈ Σ௖
 remove (𝑞ᇱ, 𝜎, 𝑞ሻ from Δ
 end for
end for

The aforementioned algorithm guarantees the safety
specification properties. This is based on the diagnoser
construction followed by adaptive control that benefits from
diagnoser outputs. This Algorithm ensures that all
forbidden and weakly forbidden states are unreachable by
controller actions. In this case the adaptive control is
successful.

Note that this process allows the controller to be maximum
permissive since only forbidden states are removed and any
state that reach forbidden states by uncontrollable events.

5. Conclusion

In this paper, we presented a method for adaptive control
that consists of combining diagnose power with the
controller to guarantee that the system remains as much as
possible in safe state to guarantee reliability properties. The
controller collaborates with the diagnoser in order to
identify and detect failure states which are unobservable in
most cases.

Future works focuses on the same problem in the context of
real-time systems. Modelling is based on Timed Automata
with some restriction to avoid the general undecidability of
this problem when time is considered in dense context.

Acknowledgments

The authors wish to acknowledge the approval and the
support of this research study by the grant N°CIT-2018-3-
9-F-8037 from the Deanship of the Scientific Research in
Northern Border University, Arar, KSA.

References
[1] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen,

D.Teneketzis, Diagnosability of discrete event systems,
IEEE Transactions Automat. Contr.,vol. 40, no. 9,pp. 1555-
1575, 1995.

[2] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen,
D. Teneketzis, Failure diagnosis using discrete‐event models,
IEEE Transactions Automat. Contr., vol. 40, no. 2, pp. 105-
124, 1996.

[3] F. Lin , Diagnosability of discrete-event systems and its
applications, J. DEDS, vol. 4, no. 2, pp. 197‐212, 1994.

[4] D. A. Pearce, The induction of fault diagnosis systems from
qualitative reasoning, Proceedings of the AAAi National
Conference on Artificial Intelligence, pp. 353-357, St Paul,
Etats-Unis, 1988.

[5] Debouk, Rami, Stéphane Lafortune, and Demosthenis
Teneketzis. "Coordinated decentralized protocols for failure
diagnosis of discrete event systems." Discrete Event Dynamic
Systems 10.1 (2000): 33-86.

[6] Lafortune, Stéphane, Feng Lin, and Christoforos N.
Hadjicostis. "On the history of diagnosability and opacity in
discrete event systems." Annual Reviews in Control 45 (2018):
257-266.

[7] Sasi, Yazeed, and Feng Lin. "Detectability of networked
discrete event systems." Discrete Event Dynamic Systems
28.3 (2018): 449-470.

[8] Viana, Gustavo S., and João C. Basilio. "Codiagnosability of
discrete event systems revisited: A new necessary and
sufficient condition and its applications." Automatica 101
(2019): 354-364.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021

170

[9] Keroglou, Christoforos, and Christoforos N. Hadjicostis.
"Distributed fault diagnosis in discrete event systems via set
intersection refinements." IEEE Transactions on Automatic
Control 63.10 (2018): 3601-3607.

[10] Wonham, W. M., Kai Cai, and Karen Rudie. "Supervisory
control of discrete-event systems: A brief history." Annual
Reviews in Control 45 (2018): 250-256.

[11] Yin, Xiang, and Zhaojian Li. "Decentralized fault prognosis
of discrete-event systems using state-estimate-based
protocols." IEEE transactions on cybernetics 49.4 (2018):
1302-1313.

[12] Wang, Deguang, Xi Wang, and Zhiwu Li. "State-based fault
diagnosis of discrete-event systems with partially observable
outputs." Information Sciences 529 (2020): 87-100.

[13] Alzalab, Ebrahim Ali, et al. "Fault-Recovery and Repair
Modeling of Discrete Event Systems Using Petri Nets." IEEE
Access 8 (2020): 170237-170247.

[14] Boussif, Abderraouf, Mohamed Ghazel, and Joao Carlos
Basilio. "Intermittent fault diagnosability of discrete event
systems: an overview of automaton-based approaches."
Discrete Event Dynamic Systems 31.1 (2021): 59-102.

[15] Lamperti, Gianfranco, Marina Zanella, and Xiangfu Zhao.
"Diagnosis of Deep Discrete-Event Systems." Journal of
Artificial Intelligence Research 69 (2020): 1473-1532.

[16] Takai, Shigemasa. "A Generalized Diagnosability Condition
for Diagnosis of Discrete Event Systems Subject to Sensor
Failures." IFAC-PapersOnLine 53.4 (2020): 344-349.

[17] Takai, Shigemasa. "A general framework for diagnosis of
discrete event systems subject to sensor failures." Automatica
129 (2021): 109669.

[18] Tan, Jianxin, et al. "Fault diagnosis of discrete-event systems
under a general architecture." Journal of Ambient Intelligence
and Humanized Computing (2021): 1-19.

[19] Alves, Marcos VS, et al. "Robust supervisory control of
discrete event systems against intermittent loss of
observations." International Journal of Control 94.7 (2021):
2008-2020.

[20] Ramadge, Peter JG, and W. Murray Wonham. "The control
of discrete event systems." Proceedings of the IEEE 77.1
(1989): 81-98.

[21] Seatzu, Carla, Manuel Silva, and Jan H. Van Schuppen.
Control of discrete-event systems. Vol. 433. Springer, 2013.

[22] Passino, K. M., and P. J. Antsaklis. "On the optimal control
of discrete event systems." Proceedings of the 28th IEEE
Conference on Decision and Control,. IEEE, 1989.

[23] Wonham, W. Murray, and Kai Cai. "Supervisory control of
discrete-event systems." (2019): 2005-06.

[24] [24] Thistle, John G. "Supervisory control of discrete event
systems." Mathematical and Computer Modelling 23.11-12
(1996): 25-53.

[25] Kumar, Ratnesh, and Vijay K. Garg. Modeling and control of
logical discrete event systems. Vol. 300. Springer Science &
Business Media, 2012.

Yamen El Touati received his Engineering,
M.S, and PhD degrees In Computer Science
from the National School of Computer
Science (ENSI), University of Manouba in
2003, 2005 and 2014, respectively. He is an
assistant professor at ISAMM, University of
Manouba, Tunisia and a permanent research
member of the OASIS laboratory at the
National School of Engineers of Tunis,

University of Tunis El Manar, Tunis, Tunisia. Currently, he is on
secondment as assistant professor in computer science at the
Department of Computer Science, Faculty of Computing and
Information Technology – Northern Border University (NBU) in
the Kingdom of Saudi Arabia. His research interests include
modelling, diagnosis and control supervision of dynamic hybrid
systems and timed systems with various automata based and Petri-
net based models. His research also, focuses on security and
opacity issues for composed web services.

Mohamed Ayari received the Dipl.-Ing.,
M.S, and PhD degrees in
Telecommunications respectively in 2003,
2004 and 2009 from the National
Engineering School of Tunis (ENIT)-
Tunisia in collaboration with National
Polytechnic Institute of Toulouse-France
and Virginia-Tech-USA. He is a teacher

in several universities since 2003. His is a permanent research
member in 6'COM laboratory at ENIT since 2003 till now. In 2005
he joined RCEM-Inc. at Toulouse-France. Since 2010 he has been
a tenure track Assistant-Professor at National Engineering School
of Carthage (ENICAR)-Carthage University-Tunisia. Since 2015
he is joined as assistant professor IT Department of Faculty of
Computing and Information Technology – Northern Border
University (NBU) in the Kingdom of Saudi Arabia. His current
research interests are electromagnetic (EM) fields, numerical EM
methods, computer-aided design of microwave circuits and
antennas. His research interests include also information security
and wireless applications..

