
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021 
 

 

301

Manuscript received November 5, 2021 
Manuscript revised November 20, 2021 
https://doi.org/10.22937/IJCSNS.2021.21.11.41 

 

A Survey of Application Layer Protocols of Internet of Things 

Nawab bibi1, Faiza Iqbal2†, Salwa Muhammad Akhtar1, Rabia Anwar1, Shamshad bibi3

 
1Department of Computer Science & Information Technology, 

2Department of Software Engineering, The University of Lahore, Lahore, Pakistan. 
3Minhaj University, Lahore

Abstract 
The technological advancements of the last two decades directed 
the era of the Internet of Things (IoT). IoT enables billions of 
devices to connect through the internet and share their information 
and resources on a global level. These devices can be anything, 
from smartphones to embedded sensors. The main purpose of IoT 
is to make devices capable of achieving the desired goal with 
minimal to no human intervention. Although it hascome as a social 
and economic blessing, it still brought forward many security risks. 
This paper focuses on providing a survey of the most commonly 
used application layer protocols in the IoT domain, namely, 
Constrained Application Protocol (CoAP), Message Queuing 
Telemetry Transport (MQTT), Advanced Message Queuing 
Protocol (AMQP), and Extensible Messaging and Presence 
Protocol (XMPP). MQTT, AMQP, and XMPP use TCP for 
device-to-device communication, while CoAP utilizes UDP to 
achieve this purpose. MQTT and AMQP are based on a 
publish/subscribe model, CoAP uses the request/reply model for 
its structuring. In addition to this, the quality of service provision 
of MQTT, AMQP, and CoAP is not very high, especially when the 
deliverance of messages is concerned. The selection of protocols 
for each application is very a tedious task.This survey discusses 
the architectures, advantages, disadvantages, and applications of 
each of these protocols. The main contribution of this work is to 
describe each of the aforementioned application protocols in detail 
as well as providing their thorough comparative analysis. This 
survey will be helpful to the developers in selecting the protocol 
ideal for their system and/or application. 
Key words: 
Internet of Things (IoT), Application layer protocols, MQTT, 
CoAP, XMPP, AMQP. 

1. Introduction 

Technological growth helps bring ease into our life. One of 
the major technologies used nowadays is the Internet of 
things (IoT). IoT is built upon the notion that any device 
recognized on the internet can access the data available on 
the internet at anytime from anywhere. IoT allows the 
connection of billions of devices with each other and the 
internet. These IoT devices are connected to the internet and 
extend the intelligent computing and communication 
capabilities to numerous everyday devices such as 
navigation systems in cars, washing machines, refrigerators, 
coffee makers, alarm clocks, etc. It connects these devices 
with the internet, using microcontrollers, sensors, and 
actuators, thus forming a digital world. The main purpose 

of IoT is to make devices capable of achieving the desired 
goal with minimal to no human intervention. In 2011, the 
number of IoT devices became more than the total number 
of people on the planet [1]. By 2025, it is expected that IoT 
will be able to connect all the devices we use in our 
everyday life with the digital world [2].    

IoT has been deployed for different applications which 
make our life easier, such as traffic management, home 
control, and automation, industrial automation, healthcare, 
battlefield, etc. However, the connection of numerous 
heterogeneous devices with each other and the internet 
bring forth several challenges and issues that hinder the 
implementation of IoT concepts in our everyday routine. 
Some of these challenges are privacy, security, data 
integrity and interoperability [3][4]. Communication of IoT 
devices with each other is essential for the stability of the 
Internet of Things (IoT) paradigm. These IoT devices 
require different communication protocols to tackle the 
interoperability issue. Various models have been proposed 
that allow devices to connect and share data. The most 
commonly used architecture of IoT has four layers. At the 
top is the application layer, then there is the service layer, 
the network layer and the sensor layer is the last. The 
applications layer is where the information collected by IoT 
devices is processed and displayed. The service layer is 
responsible for ensuring that the applications, tools, security, 
and infrastructure integrate effectively with existing 
systems. The network layer is responsible to support 
connections between devices. The sensor layer deals with 
end components of IoT and is used to sense and obtain the 
data of devices [5][6]. Figure 1 gives an overview of the IoT 
architecture. 

For IoT devices to communicate with each other various 
protocols are required at each layer. Protocols are the rules 
which are responsible for governing the communication of 
devices in a network. These protocols are responsible for 
governing the movement of information from one device 
(source) to another(destination) using internet as the 
medium. OSI and TCP/IP protocol model exist as a standard 
protocol which are adapted when data is sent from one 
communicating device to another. The main difference 
between OSI/TCPIP model and the IoT architecture is that 
the former is responsible for characterizing and 



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021 
 

 

302

 

standardizing the communication functions of a system 
regardless of the technology it uses, while the latter is a 
general architecture that can be used as a reference for any 
type of IoT application [7]. 

 

 

Fig. 1  Internet of Things (IoT) Architecture. 

The application layer of IOT relates with the end user and 
consists of software applications with their own application 
layer protocols. The existing protocols of the application 
layer were not able to perform efficiently with the IoT 
devices. These protocols include ZigBee, which is used for 
bi-directional communication between devices within the 
range of 10-100 m using short-range communication 
standards such as Bluetooth and Wi-Fi [8].With the advent 
of IoT era, some additional protocols were also needed to 
manage various challenges of IoT devices. Some of these 
challenges are as follows: 

 Limited resources 
IoT devices have limited resources at their disposal. Most 
of them have limited power life, limited processing power, 
and limited storage capacity which hinders their ability to 
fully accomplish their tasks. 

 The heterogeneity of resources and devices 
IoT connects heterogeneous devices. These devices 
perform different functions such as sensing the environment, 
performing control and actuation mechanisms, monitoring 
activities of agents within an environment. In order to 
process the heterogeneous data, collected and processedby 
these different devices, system requires some new 
application layer protocols. 

 Security and Privacy 
When IoT devices are sharing data with each other, they 
present the malicious users with numerous opportunities to 
hack the systems. This is extremely harmful for various life-
critical systems such as an attack which disables the brakes 
of an automated car, or an attack on an automated insulin 
pump system, can severely risk human life. Similarly, an 

attack on an oil well, energy grid or water supply can be 
disastrous [9]. 

Constrained Application Protocol (CoAP) allows the 
functioning of low-power devices with minimal 
computational capability in the IoT environment. Message 
Queuing Telemetry Transport (MQTT) protocol is a 
message protocol based on publish/subscribe architecture, 
developed for the operation with low computational and 
space constrained devices. Advanced Message Queuing 
Protocol (AMQP)is a publish/subscribe model which 
allows interoperability and communication between 
different devices regardless of the language each device is 
using. Extensible Messaging and Presence Protocol 
(XMPP) is an instant messaging (IM) communication 
protocol, based on XML which used for multi-party 
communication. MQTT, AMQP and XMPP use TCP for 
device-to-device communication, while CoAP utilizes UDP 
to establish this communication. MQTT and AMQP are 
based on a publish/subscribe model whereas CoAP is based 
on request/reply model. In addition, the quality of service 
provision of MQTT, AMQP and CoAP is not very high, 
especially when the deliverance of messages is concerned 
[1]. 

The main contribution of this work is to describe each of 
aforementioned application protocols in detail as well as 
providing their thorough comparative analysis. Section II of 
this survey discusses research motivation of this research. 
Section III explains MQTT protocol, its architecture, 
applications, advantages and disadvantages. Section IV 
describes CoAP Protocol, its architecture, applications, 
advantages and disadvantages. Section V elaborates the 
XMPP protocol, its architecture, application, advantages 
and disadvantages. Section VI explains AMQP Protocol, its 
architecture, application, advantages and disadvantages. 
Section VII discusses the comparison of all these protocols. 
Finally, section VIII concludes this paper and summarizes 
contributions of this work. 

2. Research motivation 

The IoT concepts have helped in achieving a high level of 
technological advancements in many domains such as 
industries, smart environments, health care and everyday 
individual life. The devices in IoT have several constraints 
such slow processing capability, small storage capacity, 
short power life, etc. These devices are connected to each 
other using wired and wireless technology. However, most 
of the focus has been shifted to wireless communication. 
There are a number of communication protocols which are 
used to connect these resource bounded IoT devices with 
each other and to the internet using wireless technology.    



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021 

 

303

 

During the literature review phase of this study, it has been 
discovered that thorough comparative analysis between 
existing application layer protocols is required.  The main 
motivation of this work is to fill this research gap. The paper 
discusses, in detail, the architecture and working 
mechanism of the application protocols of IoT along with 
their advantages and disadvantages. 

3. Message Queuing Telemetry Transport 
(MQTT) Protocol 

3.1 Introduction 

MQTT protocol allows the message to be sent and received, 
without the sender or the receiver knowing who is sending 
or receiving the information. This level of simplicity 
reduces the size of the message, resulting in reducing the 
demands on the network and the devices from which MQTT 
messages come from the client [10]. It is lightweight in 
nature andis based on the publish-subscribe modelfor 
allowing communication between numerous devices in a 
network.The Message Queuing (MQ) in MQTT is an open 
standard protocol [10] for delivering messages between 
devices. The Telemetry Transport (TT) in MQTT is used 
for transportation of different things [10]. The MQTT 
protocol is responsible for the transmission of data between 
devices in an IoT environment. 

MQTT has three main components, a publisher, a 
subscriber and a broker. In MQTT, there is no need for the 
publisher (server) and subscriber (clients) to know the 
identity of each other. MQTT allows processing to be done 
by the server, therefore, it works efficiently with resource 
bounded IoT devices, with less processing and storage 
capacity. MQTT is easy to use and is flexible in nature, as 
it is able to manage both small and large devices [11].  

Any MQTT connection has two agents the clients and the 
broker who acts as a server. The clients are the devices 
participating in the communication. Using publish-
subscribe model, the publisher (server) sends the messages 
and the subscriber (client) requests a message to obtain the 
information in that message. The broker allows the 
connection of a client with the requested server. Here the 
client can be anything, a sensor, RFID tag or a mobile 
device, etc [12]. 

3.2 Architectural Detail 

Figure 2 illustrates the MQTT protocol architecture. It 
mainly consists of three components, namely, subscriber, 
publisher, and broker. Subscriber is the client, publisher is 
the server, while broker is the message broker, also known 
as, integration broker or interface engine. A message broker 
acts as an intermediary computer program module, and is 

responsible for sending the message or specific topics 
which are requested by the subscriber to the publisher. In 
other words, it allows the translation of the formal 
messaging protocol of used by the subscriber to the formal 
messaging protocol of used by the publisher [13]. An 
interested device registers itself as a subscriber with the 
broker. When the subscriber sends a request for a certain 
type of information/data, the broker connects that 
subscriber with the relevant publisher, as a result of which 
communication between them begins. Authorization 
protocols are used by the broker to ensure that both the 
involved parties are legitimate [14]. To summarize the 
MQTT protocol architecture, a loose coupling between the 
information provider (publisher) and the information 
receiver (subscriber) is obtained using MQTT by 
introducing a broker between the two [10]. 

Fig. 2  MQTT Protocol Architecture 

Figure 2 illustrates that device 1 published a topic. Device 
2 is subscribed to the topic which device 1 has published.  
So, device 2 receives the message [16]. Now-a-days many 
brokers use MQTT protocol for message delivering 
purposes. Among these Mosquitto is quite popular and uses 
the poll system call to deal with a large number of client-
server devices. Mosquitto broker does three tasks. It, first, 
receives all the published and subscribed messages, then 
filters the received messages and finally publishes the 
messages to the registered clients. 

Mosquito broker uses MQTT protocol. Due to its 
lightweight nature it is able to carry messages from one 
device to another, regardless of whether the devices 
involved are low power single board computers or full 
servers. Mosquito broker is a project by Eclipse. It has a free 
downloadable version for windows and Linux operating 
systems, thus making it compatible with most of the 
computer systems [15].  

Mosquitto can be implanted using Apache ActiveMQ, 
which makes a thread pool and allots a single thread to 
manage numerous corresponding connections. Apache 
ActiveMQ is an open source message broker. It is just like 
mosquito broker which is able to send message from sender 



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021 
 

 

304

 

to receiver. However, because of the message queue (MQ) 
capability of Apache Active MQ, it is able to connect more 
than one client to the server, by queuing the messages. Just 
like mosquito message broker it also implements MQTT. 
This allows the sending of message between two devices 
without them to be simultaneously available [17]. The 
major drawback of this technique is that it requires heavy 
context switching while handling numerous connections in 
parallel [13]. A comparison of Apache ActiveMQ [17] 
broker and Mosquitto [15] broker has been summarized in 
Table 1. 

Table 1: Margin specifications 

Feature Apache 
ActiveMQ 

Mosquitto 

Open source  Apache 2.0 EPL/EDL 
Windows Support  Yes Yes  

MQTT 
Implementation  

Yes  Yes  

MQTT Version 3.1 3.1.1, 5.0  
Latest version  5.15 1.6.2 

Clustering  Yes  No  
 

Figure 3 describes MQTT topic architecture. It describes the 
working of incoming messages and the response it 
generates. First a device specifies what topic it would like 
to publish. Topics are represented using strings separated by 
slashes”/”. Each forward slash indicates a topic level e.g. 
Home/Office/Lamp [16]. Device 1 publishes the message 
“on/off”, with the topic “home/office/lamp”. Once the 
client subscribes, it will be able to turn the lamp on or off 
automatically. 

 

Fig. 3 MQTT Topic Architecture [16] 

3.3 Applications of MQTT 

Health-care domain is the most prominent research field 
nowadays. With the numerous technological and medical 
achievements, a large number of medical issues have been 
resolved. However, even after all this, it is imperative to 
focus on improving this field as this field is directly related 
to the quality of human life. Due to this reason, many 

researchers and scientists from various fields are focusing 
their work to improve the quality of life and increase the 
average life expectancy of human life, by implementing 
their work on the health-care domain. 

With the increasing population, providing health-care 
facilities to each and every individual around the world is 
becomes a tedious task. However, provision of health-care 
facility is a basic right of every human, and therefore, 
efforts must be made to provide this facility to the masses. 
Technology, particularly IoT, plays a vital role in 
connecting various medical devices, such as heart rate 
monitoring devices, body temperature monitoring devices, 
etc. embedded in geographically distributed smart 
environments, with each other to ensure the provision of 
medical facilities in a timely manner. These medical devices 
need reliable and efficient communication protocol to 
communicate with each other and other systems. MQTT is 
such a protocol. It helps in transferring messages from one 
device to another. 

IoT-based healthcare applications [18] focus on physical 
sensors embedded in the environment around the patient, to 
provide them with continuous medical care. The mobile 
device is aggregation platform, such that the mobile device 
receives all the data collected by the sensors. The proposed 
framework [18] uses Raspberry Pi with Arduino for 
implementing and managing the concerned sensors. Other 
elements of the proposed work  include Bio-impedance 
meter, Wi-Fi dongles, Battery and energy management 
system. 

Other than health-care domain MQTT is also used in 
various other domains such as the industrial sector and in 
numerous web services. In a study [10], the authors have 
used MQTT in the industrial sector. Here, in point-of-sale 
situations, where sales information is sent and price updates 
are received. Major problem occurs when point-of-sale 
request is sent over a slow network. This issue can be dealt 
with using MQTT.  

3.4 Advantages and Disadvantages of MQTT 

This section describes advantages and disadvantages of 
MQTT. author has focused on the following of the MQTT. 
One of the major advantage of MQTT is that its lightweight 
Due to its lightweight nature, it is ideal for remote 
monitoring. The MQTT protocol is used in Industrial 
Internet of Things (IIoT) to help the proper functioning of 
Supervisory Control and Data Acquisition (SCADA) 
system. MQTT brings many powerful benefits to your 
process like reduction of network bandwidth consumption 
and development time. It provides improved scalability as 
the available bandwidth is maximized. MQTT allows the 
reduction of update rates to seconds thus remote sensing and 
control can be done in an efficient manner. It provides 



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021 

 

305

 

secure permission-based security. MQTT brings many 
benefits to IIoT, in which sensors and devices are used 
particularly to enhance industrial processes. It makes 
distribution of information more efficient and provides 
three QoS levels [31]. 

There are some disadvantages of MQTT. As MQTT 
operates over TCP, therefore it requires more handshaking 
to increase the communication links exchanging messages, 
resulting in increasing wake-up and communication times. 
Moreover, since the broker is centralized thus it entails 
scalability issues [19]. 

4. Constrained Application (COAP) Protocol 

4.1 Introduction 

Constrained Application Protocol (CoAP), a session layer 
protocol, was first introduced by the IETF CoRE Working 
Group, which started the standardization of CoAP in March 
2010. CoAP is a transfer protocol for web particularly 
optimized for constrained nodes, i.e., nodes or devices 
having limited memory and processing power, as well as 
resource-constrained networks, e.g., low power networks, 
in both IoT and M2M applications. CoAP is based on REST 
architecture. CoAP uses a subset of HTTP functionalities. 
These HTTP functionalities are redesigned as per the 
resource constraints of numerous IoT devices. Protocols can 
be made specifically for IoT applications, by modifying 
HTTP mechanisms. 

HTTP is mainly concerned with the Transmission Control 
Protocol (TCP). TCP has many issues such as the 
inappropriate flow control mechanism and high overhead. 
In addition to this, TCP does not have multicast support for 
mobility. In contrast to HTTP, CoAP uses the User 
Datagram Protocol (UDP), due to which it has significantly 
lower overhead and improved multicast support. This is 
very helpful as many light weight applications in IoT have 
high overhead and power consumption. CoAP was designed 
to allow devices to use REST services to meet the device’s 
power constraints. REST is the interface between the clients 
and the servers, and uses UDP protocol [20].  

4.2 Architectural details 

Figure 4 describes the architecture and functionality of 
CoAP in detail. Numerous devices such as the CCTV 
camera, RFID sensor, smartphone, etc., all act as CoAP 
client. The information generated by these clients on each 
particular day is sent to COAP server. After receiving this 
information, the CoAP server sends it to the Rest CoAP 
Proxy. The firewall connection is established for 
communication between CoAP environment and rest 
Internet.  

Fig. 4 COAP Architecture. 

The CoAP model is somewhat like the client/server model. 
Figure 5 explains that CoAP uses a two layers’ structure 
[21]. The bottom of the two layers is the Message layer that 
has been designed to deal with UDP and asynchronous 
switching. While the top layer, which is the 
request/response layer, is concerned with the 
communication method and deals with the request/response 
message. 

The abstract layering of CoAP includes Application layer, 
UDP layer, Requests/ Response and Messages layers [22]. 
CoAP can be merged with the application layer if the 
session layer lies between the transport layer and the 
application layer. At the transport layer, the UDP protocol 
is being used while different applications are being run in 
the application layer. COAP is organized in two sub-layers: 
(1) Messaging sub-layer which is the lower sub-layer and 
supports the four message types; Confirmable (CON), Non-
Confirmable (NCON), Acknowledgement (ACK) and 
Rest(RST) message. (2) Request/response sub-layer is the 
upper layer and supports piggy-back, separate responses, 
Get request with a separate response and non-Confirmable 
request and response [6]. 

Fig. 5 Abstract Layer CoAP and HTTP Structural Model 

The messages shared between clients and server are mainly 
concerned about reliability in three dimensions [21] i) 
reliability in sharing, ii) reliability of the network, iii) 
reliability in communication. The request/response sub-
layer of CoAP is concerned with the following REST 



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021 
 

 

306

 

messages; a) Confirmable: Retransmit until either 
acknowledgment arrives with the same message ID or 
timeout occurs in which the recipient fails to process the 
message and sends RST with the response. b) Non-
confirmable modes represent the reliable and unreliable 
transmissions, respectively.  

There exist other modes for request/response handling [6]. 
These include: Piggy-backed: When the client sends a 
request with a CON/NON, the server will send its response 
directly after receiving the message, i.e., within the 
acknowledgment message (ACK). ACK shall be received 
immediately with corresponding token number and 
message. Separate Response: The client sends the CON 
type message to the server and incase, the server is unable 
to respond immediately, an empty ACK is sent back to the 
client. After a certain time, the server sends the response in 
the form of a CON message with data. The ACK is then sent 
to the server from the client. A NON-type message is sent 
from the client to the server which has not given an ACK 
response. The server can in response send a NON-type in 
turn [6].  

4.3 Applications of COAP 

The main application of CoAP is in smart homes. The 
elements used in smart homes are mostly cheap and 
lightweight. Thus, CoAP is considered as the best option for 
smart home environments. The smart home environment 
provides handling and over-looking the energy 
consumption of home devices. This could result in warning 
against accidents before they occur, allowing devices to be 
remotely controlled, and reducing energy consumption 
dynamically. Using CoAP efficient exchange of 
information among nodes can be achieved. In system 
networking, data collection nodes consist of one proxy, 
smart socket and wireless data collection module. At the 
same time, this system will monitor the environment 
situation. If an abnormality occurs, the system will analyze 
it and switch off the relevant equipment [23]. 

4.4 Advantages and Disadvantages of COAP 

This section describes advantages and disadvantages of 
CoAP. The main advantage of COAP is that it has reduced 
power requirements. It allows longer batteries life for IoT 
devices as it uses UDP. UDP requires minimum overhead 
for communications allowing faster wake up times and 
extended hypnotic states. It has smaller packet size which 
leads to faster communication cycles, thus resulting in 
longer battery life. Another key aspect of COAP is in 
security. When DTLS is used with UDP, the 
communication is encrypted and secure. However, some 
additional overhead is required to implement this. COAP 
presents asynchronous communication option. Clients can 
request to observe a device by setting a flag. The server (IoT 

device) can then stream state changes to the client as they 
happen. Either side can cancel the observe request. COAP 
supports IPv6. It was designed from the beginning to 
support IPv6, to allow multicasting. It allows resource 
discovery. Servers can provide a list of resources and media 
types. The client can then review and discover what is 
available [24]. 

There are also some disadvantages to CoAP. Due to the use 
of UDP with COAP, it results in message unreliability. UDP 
does not guarantee the delivery of datagrams. Even though, 
CoAP provides a way to request a confirmation 
acknowledgment to confirm the message was received. This 
does not verify that it was received in its entirety and 
decoded properly. CoAP is still in the developing phase. 
Standards are still maturing, however, it is likely to mature 
quickly as it is more popular. COAP presents some NAT 
issues. Network Address Translation (NAT) devices are 
commonly used in cloud environments. CoAP can have 
problems communicating with devices behind a NAT since 
the IP can be dynamic overtime. CoAP is unencrypted by 
default. This makes it natively unsecure and additional steps 
must be taken to make sure communication is not open to 
hackers [24]. 

5. Extensible Messaging and Presence 
Protocol (XMPP) 

5.1 Introduction 

Extensible Messaging and Presence Protocol (XMPP) is an 
instant messaging (IM) standard or a communication 
protocol, based on XML, used for multi-party 
communication [14]. XMPP allows the communication 
between two devices using the internet as the medium, 
regardless of the operating system of the devices. In other 
words, XMPP provides a real-time exchange of structured 
data. It provides IM applications with many advantages. It 
uses authentication mechanisms to ensure the reliability of 
the involved parties. It provides access control using the 
authentication mechanism and maintain data privacy. 
Encryption is done on hop-to-hop basis i.e. during 
transmission as well as end-to-end base i.e. at sender side. 
It allows other protocols to be compatible with it [25]. 

It is designed for close real-time applications and, thus, 
efficiently supports low-latency compact messages. It does 
not guarantee QoS. Moreover, XML messages have high 
overhead resulting in more power consumption of devices, 
which is major drawback for many IoT devices and 
applications. To overcome this, XMPP can be used. Even 
though it is rarely used in IoT domain but it has attracted 
the attention of the researchers in this domain due to its 
ability to improve the architecture to support IoT 
applications [20].  



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021 

 

307

 

5.2 Architectural Detail 

XMPP uses client-server architecture in which the client 
requests the connection to a server for exchanging messages. 
As the client-server model is decentralized by design, 
therefore, there is no central server in XMPP and there may 
be several servers running within one system or network. 
The XMPP client-server architecture is shown in Figure 6.  

Fig. 6 A simple XMPP architecture with two clients [7] 

XMPP allows the users or the devices the ability to discover 
the available services along with the relevant information of 
these services, which may be residing within or across a 
network. Even though, with its decentralized client-server 
architecture, XMPP can ensure high scalability by allowing 
the specification of extension protocols (XEPs). One of 
these protocols, XEP-0174, can be used as an extension 
protocol, which enables server-less messaging without any 
infrastructure. Other XMPP extension protocols include, 
XEP -0045, which is used for efficient m:n communication 
for multi-user chats, XEP- 0030 for discovering a service 
and XEP-0060 for providing the user with the 
publish/subscribe functionality [5]. In XMPP, the exchange 
of data between devices is obtained via XML structured 
data, called “XML stanzas”. An XML stanza is somewhat a 
piece of code having three major components; message, 
presence and iq (info/query). The structure of the XMPP 
Stanza is shown in Figure 7 [14].  

XMPP uses TCP protocol for communication purposes. 
TLS is used for channel encryption and SASL is used for 
providing authentication to the overall system. The layering 
of XMPP includes Transport Control Protocol (TCP), 
Transport Layer Security (TLS), Simple Authentication and 
Security Layer (SASL) and Extensible Messaging and 
Presence Protocol (XMPP). An XMPP Client establishes an 
XML Stream with a server, after authenticating itself 
through SASL negotiation. An XMPP server verifies client 
authentication and then allows the client access to the 
XMPP network. XMPP allows two possible data 
communication paths; client-to-server and server-to-server. 
If both devices are clients, then a third device is required 
that acts as a server and allows them to communicate with 
each other after passing them through the TLS and SASL 
authentication channels [22].  

 

5.3 Applications of XMPP 

Fig. 7 Structure of XMPP Stanza 

VIRTUS uses publish/subscribe model and XMPP to allow 
devices to determine whether a message has successfully 
reached the destination or has failed to do so. It also helps 
the devices find out whether a subscriber is online or offline 
during message transmission. VIRTUS uses XMPP to allow 
the involved devices to share data with each other 
dynamically at runtime, without having to restart the entire 
IoT environment. In VIRTUS all the involved elements 
including sensors, algorithms and interfaces have been 
developed as modules allowing the building of many 
different versions of VIRTUS by reusing same modules in 
different compositions. In VIRTUS, each Module has an 
XMPP account. This account allows the system to know 
which modules are available at what time and also helps in 
the communication of modules with each other, achieved 
via the presence mechanism of the XMPP. XMPP 
Extension Protocols (XEPs) forms the basis of the VIRTUS 
architecture, these include; XEP-0050: this protocol is 
responsible for supporting communication between two 
XMPP devices. XEP-0004: this protocol is used for 
receiving responses from the destination. XEP-0030: this 
protocol is used to discover which devices are on the 
network. XEP-0060: this protocol is used to decouple the 
senders and receivers [26]. 

The sender publishes the events on an information node, 
and the receiver can subscribe itself to that node. This can 
also be done when the receiver is offline when the data is 
published. This comes very handy when developing e-
health applications, where critical data must be retained 
even during poor connectivity. VIRTUS has the following 
three modules: XMPP server: for allowing access to XMPP 
services. Manager: for connecting different modules. 
Gateway: to provide an interface between an external 
software and a local instance. VIRTUS modules can be used 
to drive a sensor, implement ad-hoc application and connect 
to database [26]. 



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021 
 

 

308

 

5.4 Advantages and Disadvantages of XMPP 

This section describes advantages and disadvantages of 
XMPP. One of the main advantage of the XMPP is that its 
free, open-source, easy to understand and implement 
protocol. It supports Google-Talk which can be accessed by 
any instant message (IM) supplier by using XMPP protocol. 
XMPP server can be used and run by anyone to manage the 
real-time messaging requirements of individuals as well as 
organizations. XMPP can also be used in network 
management, file sharing, gaming conventions, and remote 
monitoring [29]. 

There exist some disadvantages of XMPP. Practically there 
is no official support for XMPP clients or servers. Due to 
the distributed and decentralized nature of XMPP, data 
being transferred using XMPP protocol is repeated. 
Moreover, the overhead is extremely large in XMPP [30]. 

6. Advance Message Queuing Protocol 
(AMQP) 

6.1 Introduction 

Advanced Message Queuing Protocol (AMQP) is the 
international standard (ISO/IEC 19464), standardized by 
OASIS, developed for providing services like message 
orientation, queuing, point-to-point routing, 
publish/subscribe, reliability, and security. AMQP is a 
publish/subscribe model based on a reliable and efficient 
messaging queue and is used not only in business industry 
but also in commercial industry. The publish/subscribe 
approach of AMQP makes it highly extensibility. AMQP 
allows interoperability and communication between 
different devices regardless of the language each device is 
using. AMQP allows applications to share data among each 
other. AMQP thrives to provide applications/devices with 
reliability, security, and performance. It ensures reliability 
by using the message delivery guarantees which includes 1) 
At most once, 2) At least once, 3) Exactly once delivery. 

6.2 Architectural Detail 

Figure 8 shows the AMQP architecture along with its 
three major parts; Publisher(s), Consumer(s) and 
Intermediary/Server(s). Each of these three parts can be 
more than one in a single AMQP system and arranged on 
autonomous hosts. Distributors and purchasers talk to one 
another through message lines bound to trades inside the 
dealers. AMQP provides the message conveyance. Other 
parts of an AMQP framework are include 1) 
Distributor/Maker which is an application that develops 
messages with AMQP, 2) Directing Key Buyer is an 
application that gets the messages from at-least one 
distributers, 3) Message Line is an information structure 

that stores messages in memory or on plate messages and 
are put away in conveyance succession request. A Message 
Line is made by a buyer and is utilized solely by that 
customer, 4) Customer Trade is a coordinating and directing 
motor which acknowledges messages from distributors and 
duplicates the messages. 

 

Fig. 8 The AMQP Architecture [27] 

A shopper makes a message line and uses the authoritative 
to connect the line with a trade. A Coupling ordinarily is 
related to a content string known as a Coupling Key. Trade 
course message by coordinating the messages ‘directing 
keys against the lines’ coupling keys. Trades are arranged 
into sorts dependent on the sort of key coordinating they 
perform of the Trade types that AMQP bolsters, we assess 
the accompanying: direct, fan-out, and Theme. Virtual 
Host: A client characterized namespace that gatherings and 
recognizes a lot of trades, message lines, and canister dings. 
Representative/Server: A server or daemon program that 
contains at least one virtual hosts, trades, message lines, and 
ties [27]. By characterizing a wire-level convention, AMQP 
usage can interoperate with one another. Correspondences 
are taken care of by two principle parts. Trades are utilized 
to course the messages to fitting lines. Steering among 
trades and message lines depends on some pre-
characterized standards and conditions. Messages can be 
put away in message lines and after that be sent to collectors. 
Past this sort of point-to-point correspondence, AMQP 
likewise bolsters the distribute/buy in the interchanges 
model. AMQP characterizes a layer of informing over its 
vehicle layer. In this layer, AMQP characterizes two kinds 
of messages: uncovered back rubs that are provided by the 
sender and commented on messages that are seen at the 
beneficiary. 

6.3 Applications of AMQP 

AMQP has been used by authors in the stock market domain. 
Figure 9 represents the proposed application which has the 
defined components that make up its architecture. Gateway 
manages the buying and selling requests and delivers them 
the order queue of the matching engine via Qpid broke. 
Matching engine reads the orders from the order queue and 
compares the prices in the buy orders list with the prices in 



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021 

 

309

 

the sell orders list. Once a match in both the lists, the 
matching engine moves forward to start the trading process. 
There are some messages which are sent by the matching 
engine to gateway, these are Trade confirmations, Order 
confirmations, Price quotes and Order authentication. 

During this entire process, both the gateway and the 
matching engine send the performance measurement 
messages to the statistics reporter’s queue via Qpid. A 
sampling interval from every 10,000 orders is used for 
taking the measurements. Statistics reporter receives the 
measurement messages from gateway and matching engine 
and compiles them to a file [27]. 

Fig. 9 Stock Market Simulation Application [27] 

6.4 Advantages and Disadvantages of AMQP 

This section lists advantages and disadvantages of AMQP. 
One of the key advantage of AMQP is that it is very 
lightweight therefore it is very fast, consumes less CPU 
time and is easy to configure and run. Another advantage is 
the use of event based networking which can control lots of 
incoming connections thus supporting many clients using 
various languages. Moreover, AMQP has great symbolic 
logic for a work queue with its 3 states i.e. ready, reserved 
and buried. It supports delaying a job before it appears ready 
when submitted. It also supports TTR (time-to-run) 
semantics - so if a job takes more than the defined TTR, it 
will be available to other consumers even if the original 
consumer didn’t finish yet. AMQP is very easy text-based 
protocol which inspired by the textual Mem cache protocol. 
Due to this protocol, clients are very easy and straight 
forward. Transactional are strained job reaches only 1 
consumer. If the connection is lost or the consumer returns 
it, only then it will be available to other consumers to be 
quiet. If consumers finished the job, it will delete it. AMQP 
also guides intruding message [28]. 

There are also some disadvantages of AMQP. It handles 
redundancy at the client side like Mem cached so if a server 
goes down and there is no access to its disks, clients may 
lose their jobs. In AMQP, persistency model is a bit 
complex so for large queues, very large files can acquire 
results. These large files are already allocated but may never 

get cleared up. AMQP does not presents any safety model 
and doesn’t run on Windows. It can, sometimes, also result 
in dealer lock in because there are no other such servers 
supporting the beans talked protocol [28]. 

7. Comparison and Evaluation 

Table 2 represents summarized comparison of application 
protocols after conducting a thorough literature review. The 
survey focuses on the most commonly used application 
layer protocols along with their architecture, advantages, 
disadvantages, and their practical applications. Even though 
all of them are application layer protocols in IoT used for 
communication between clients and servers, they still have 
vast differences. MQTT is a lightweight protocol which 
runs over TCP/IP and uses publish/subscribe approach to 
send and receive messages. AMQP supports asynchronous 
messaging and allows for encrypted and secure data 
transmission. XMPP is based on XML and helps to transmit 
data in near-real-time. CoAP is a message transfer protocol 
which runs on UDP and is specifically designed to support 
communication between constrained devices over 
constrained networks. With the help of this survey it 
became clear that each application has its own set of 
requirements that can be achieved using different protocols 
and mechanisms, based on the scenario. 

 Table 2: Comparison between COAP, MQTT, AMQP, XMPP  

 
 
The survey discovered the importance of publish subscribe 
protocol which can be considered as a great choice when 
dealing with applications that either generate, processes or 
analyzes a large amount of data, a common trait shared by 
all currently available IOT applications. 



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021 
 

 

310

 

8. Conclusion 

This survey discusses in great detail four of the most 
commonly used application layer protocols, namely, CoAP, 
XMPP, AMQP and MQTT. This survey provides a detailed 
explanation of each of these protocols and covers the 
architecture and working mechanism of these protocols, 
their physical implementations or applications and their 
advantages and disadvantages. This work also briefly 
discusses the history of these protocols. After a thorough 
literature review it was concluded that publish/subscribe 
protocols are very effective when it comes to handling large 
volumes of data, which is a very common phenomenon in 
IoT domain due to the interconnection of billions and 
trillions of devices constantly generating and sharing data 
with each other. The selection of protocols for each 
application is very a tedious task. This work will be able to 
help developers in the selection of the optimal protocol for 
their applications. 

References 
[1] Karagiannis,V., Chatzimisios,P., Vazquez-Gallego,F., & 

Alonso-Zarate,J.:A Survey on Application Layer Protocols 
for the Internet of Things. Transaction on IoT and Cloud 
Computing, 1(1), 9-18 (2015) 

[2] Guner, A., Kurtel, K., &Celikkan, U. (2017, October). A 
message broker based architecture for context aware IoT 
application development. In International Conference on 
Computer Science and Engineering (UBMK) (pp. 233-238). 
Antalya, Turkey: IEEE. 

[3] Suresh, P., Daniel, J. V., Parthasarathy, V., &Aswathy, R. H. 
(2014, November). A state of the art review on the Internet of 
Things (IoT) history, technology and fields of deployment. In 
International conference on science engineering and 
management research (ICSEMR) (pp. 1-8). Chennai, India: 
IEEE. 

[4] Alseady, S., Baz, A., Alsubait, T., Alarabi, L.,& Alhakami, 
H.:Towards Security Challenges to Internet-of-Things: Big 
Data, Networks, and Applications. IJCSNS International 
Journal of Computer Science and Network Security, 
vol.20(11), pp. 131–141.(2020) 

[5] Bendel, S., Springer, T., Schuster, D., Schill, A., 
Ackermann,R., & Ameling,M.. A Service Infrastructure for 
the Internet of Things based on XMPP. In IEEE international 
conference on pervasive computing and communications 
workshops (PERCOM Workshops) (pp. 385-388). San Diego, 
USA: IEEE. (2013) 

[6] Mitra,J. (2018). Internet of Things – A review of the 
Architecture of Networking and Communication Protocols. 
International Journal of Scientific Development and Research 
(IJSDR), 3(5), 229-245. 

[7] Bassole, D., Kabore, K. K., Traore, Y., Sie, O., & Sta, H. B. 
(2019). Design and implementation of secure communication 
protocols for Internet of Things systems. 2019 IEEE 
International Smart Cities Conference (ISC2), Casablanca, 
Morocco, 2019, pp. 112-117. 

[8] Babu, B.S., Srikanth, K., Ramanjaneyulu, T., & Narayana, 
I.L. (2016). IoT for Healthcare. International Journal of 
Science and Research (IJSR), 5(2), 2319-7064. 

[9] Colitti, W., Steenhaut, K., & De-Caro, N. (2011). Integrating 
Wireless Sensor Networks with the Web. In Proc. Extending 
the Internet to Low power and Lossy Networks (IP+SN) (pp. 
32-36). Chicago, IL: IEEE. 

[10] Lampkin, L., Leong, W.T., Olivera, L., Rawat, S., 
Subrahmanyam, N., & Xiang, R. (2012). Building Smarter 
Planet Solutions with MQTT and IBM WebSphere MQ 
Telemetry Austin, TX: IBM Redbooks 

[11] Deschambault, O., Gherbi, A., &Légaré, C. (2017). Efficient 
implementation of the MQTT protocol for embedded systems. 
JIPS (Journal of Information Processing Systems), 13(1), 26-
39. 

[12] Kashyap, M., Sharma, V., & Gupta, N. (2018). Taking 
MQTT and NodeMCU to IOT: Communication in Internet of 
Things. In Procedia Comput. Sci. (vol.132, pp.1611–1618). 
Amsterdam,NL: Elsevier. 

[13] Pipatsakulroj, W., Visoottiviseth, V., &Takano, R. (2017). 
muMQ: A lightweight and scalable MQTT broker.In IEEE 
International Symposium on Local and Metropolitan Area 

Networks (LANMAN) (pp. 1-6). Osaka, Japan: IEEE. 
[14] Al-Fuqah, A., Guizani, M., Mohammadi, M., Aledhari, M., 

& Ayyash, M. (2015). Internet of Things: A Survey on 
Enabling Technologies, Protocols, and Applications. IEEE 
Communication Surveys Tutorials ,17(4), 2347-2376. 

[15] da Silva, A. C. F., Breitenbücher, U., Képes, K., Kopp, O., 
&Leymann, F. (2016, November). OpenTOSCA for IoT: 
automating the deployment of IoT applications based on the 
mosquitto message broker. In Proceedings of the 6th 
International Conference on the Internet of Things (pp. 181-
182). Stuttgart, Germany: ACM. 

[16] Santos, R. (2017). What is MQTT and how it works. 
Retrieved from: https://randomnerdtutorials.com/what-is-
mqtt-and-how-it-works 

[17] Snyder, B., Bosanac, D., & Davies, R. (2011). Active MQ in 
Action. New York, USA: Manning Publications. 

[18] Jamin, A., Fasquel, J.B., Lhommeau, M., Cornet, E., Abadie-
Lacourtoisie, S., Henni, S., & Leftheriotis, G. (2016). An 
Aggregation Plateform for IoT-Based Healthcare: Illustration 
for Bioimpedancemetry, Temperature and Fatigue Level 
Monitoring. Internet of Things Technologies for HealthCare, 
1(2), 125–130. 

[19] Minteer, A. (2017). Analytics for the Internet of Things (IoT). 
Retrieved from: https://www.oreilly.com/library/view/ 
analytics-for the/ 9781787120730 /e86ff73d-7e8c-4eda- 
9890-0ceebbadcf78.xhtml 

[20] Salman, T., & Jain, R. (2016). Networking Protocols and 
Standards for Internet of Things. Retrieved from: 
https://www.cse.wustl.edu/jain/cse570- 
15/ftp/iotprot/index.html 

[21] Rahman, R.A., & Shah, B. (2016). Security analysis of IoT 
protocols: A focus in CoAP. In 3rd MEC International 
Conference on Big Data and Smart City (ICBDSC) (pp. 1-7). 
Muscat, Oman: IEEE. 

[22] N˘astase, L. (2017). Security in the Internet of Things: A 
Survey on Application Layer Protocols. In 21st International 
Conference on Control Systems and Computer Science 
(CSCS) (pp. 659-666). Bucharest, RO: IEEE. 

[23] Chen, X. (2014). Constrained Application Protocol for 
Internet of Things. Retrieved from: 
https://www.cse.wustl.edu/jain/cse57414/ftp/coap/index.htm
l 



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021 

 

311

 

[24] Minteer, A. (2019). Analytics for the Internet of Things 
(IoT). Retrieved from 
https://learning.oreilly.com/library/view/analytics-for-
the/9781787120730/ee557386-c97f-48ee82c8- 
625b495fffba.xhtml. 

[25] Bellavista, P., & Zanni, A. (2016). Towards better scalability 
for IoT-cloud interactions via combined exploitation of 
MQTT and CoAP. In IEEE 2nd International Forum on 
Research and Technologies for Society and Industry 
Leveraging a better tomorrow (RTSI) (pp. 1-6). Bologna, 
Italy: IEEE. 

[26] Bazzani, M., Conzon,D., Scalera,A., & Trainito,C.I. (2012). 
Enabling the IoT paradigm in e-health solutions through the 
VIRTUS middleware. In IEEE 11th International Conference 
on Trust, Security and Privacy in Computing and 
Communications (pp. 1954-1959). Washington, DC: IEEE. 

[27] Subramoni, H., Marsh,G., Narravula,S. ,PingLai, & 
Panda,D.K. (2008). Design and evaluation of benchmarks for 
financial applications using  Advanced   Message Queuing 
Protocol (AMQP) over InfiniBand. In Workshop on High 

Performance Computational Finance (pp. 01-08). Austin, TX: 
IEEE. 

[28] Sharma, C., & Gondhi, D. N. K. (2018). Communication 
Protocol Stack for Constrained IoT Systems. In 3rd 
International Conference on Internet of Things: Smart 
Innovation and Usages (IoT-SIU) (pp. 01-06). Nainital, 
Uttarakhand: IEEE 

[29] Nie, P. (2006). An open standard for instant messaging: 
eXtensible Messaging and Presence Protocol (XMPP). In 
Seminar on Internet working, (pp. 1-6). Helsinki, Finland: 
Helsinki University of Technology. 

[30] Malik, M.I, McAteer, I.N., Hannay, P., Syed, N.F., & Zubair, 
B. (2018). XMPP architecture and security challenges in an 
IoT ecosystem. In proceedings of the 16th Australian 
Information Security Management Conference (pp. 62-73).  

[31] Veeramanikandan, M., Sanakarana, S. (2019). 
Publish/subscribe based multitier edge computational model 
in internet of things for latency reduction. Journal of Parallel 
and Distributed Computing, 12(7), 18-27.

 
 
 


