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Abstract 
The device to device (D2D) communication is an important and 
emerging area for future cellular networks. It is concerned about 
all aspect of secure data transmission between end devices along 
with originality of the data. In this paradigm, the major concerns 
are about how keys are delivered between the devices when the 
devices require the cryptographic keys. Another major concern is 
how effectively the receiver device verifies the data sent by the 
sender device which means that the receiver checks the 
originality of the data. In order to fulfill these requirements, the 
proposed system able to derive a cryptographic key using a 
single secret key and these derived keys are securely transmitted 
to the intended receiver with procedure called mutual 
authentication. Initially, derived keys are computed by applying 
robust procedure so that any adversary feel difficulties for 
cracking the keys. The experimental results shows that both 
sender and receiver can identify themselves and receiver device 
will decrypt the data only after verifying the originality of the 
data. Only the devices which are mutually authenticated each 
other can interchange the data so that entry of the intruder node 
at any stage is not possible. 
Key words: 
Confidentiality, Device to Device communication, Data integrity, 
Key derivation, Key robustness, Mutual authentication. 
 

1.  Introduction 
 

The current trends of device-to-device communication 
to be incapable of meeting the exponential user demands. 
These rising demands based on the popularity of large-
scale applications such as mobile computing, video 
streaming and large bandwidth cloud computing. Today, a 
trillion of wireless devices shall be proving various 
services for billions of people across the world. As a result, 
the fifth generation (5 G) device to device wireless 
communication play an important role in a growing 
technology and expected to meet the technical 
requirements of the next generation networks. 

D2D communication directly refers the transmission of 
data between the intended devices without involving base 
station (BS). This type of data transmission improves  

 

efficiency and also system capacity. In order to 
transmit the data between the devices, we need to consider 
basic security requirements such as confidentiality, 
authenticity, data integrity along with privacy preservation. 
Confidentiality says that before sending the data to the 
intended user we must protect that data so that only 
authenticated user can capture the original data. Second 
important parameter of the security is a device 
authentication in which each device must identify 
themselves before sharing the data over the internet. 

Data integrity is also playing a major concern in D2D 
communication in which receiver device can verifies the 
originality of the data sent by the sender device. In this 
context, various cryptographic protocols were 
implemented in a real time system, but these protocols 
have their own limitations with respect to the security 
concerns. 

 
2.  Related Work 
 

Initially different research issues related to D2D 
communication such as user mobility, D2D 
synchronization, device discovery, interference 
management, resource allocation and security [1] have 
been discussed in detail. It is known that D2D 
communication is highly susceptible and vulnerable to 
many cryptographic, network attacks and surpasses the 
core network [2]. 

Mohammad Wazid et al. [3] [4] proposed an 
authentication and secure key management for fog 
computing. The fog computing is an extended version of 
cloud computing where in which inherits the security and 
privacy issues of cloud computing, and this scheme 
involves one-way cryptographic hash function and XOR 
operations in order to authenticate the smart devices 
distributed in a different geographical area. Authors have 
been simulated the results using widely-used NS2 
simulator. 

Gurjot Singh Gaba et al. [5] proposed a secure Device 
to- Device communications for IoT applications. In order 
to achieve the robustness and lightweightness the scheme 
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designed as a commit/open pair. The scheme involves 
symmetric key cryptography, message authentication code 
(MAC), Diffie Hellman key exchange protocol for key 
generation and mutual authentication between the end 
devices. Security analysis involves mutual authentication, 
message freshness, confidentiality of the secret key in 
order to protect from DoS, replay attack and identical key 
establishment between the devices for avoiding erroneous 
use of secret keys. 

Pimmy Gandotra et al. [6] [7] [8] [9] [10] [11] [12] 
conducted a survey on device-to-device communication 
considering security and architectural issues. Due to 
increase in number of devices connected radically, it is 
highly essential to improve the data rates with reduced 
latency along with system capacity. In order to acquire 
these, cellular networks need to undergo suitable changes 
regarding architectural design. In this context, the authors 
made a detailed survey on device-to-device 
communication by considering resource allocation, 
security and interference management to become a 
successful wireless network. Various attacks have been 
identified with solution strategies and future directions 
based on internet protocol security. 

Yanbin Zhang et al. [13] [14] [15] proposed a mutual 
authentication scheme for D2D communication in smart 
cities. In this paper, a hybrid of medium access control 
(MAC) address used for establishing secure device-to-
device communication sessions in IoT networks is 
presented to make edge-enabled smart cities safe and 
secure. Initiation of a right communication session 
between the device and base station is subjected to the 
authentication process so that at any stage entry of the 
intruder node is not possible. They are presented a security 
analysis by considering the parameters such as client 
impersonates attack, eavesdropping attack, perfect forward 
and backward secrecy and replay attack. 

Ruhul Amin et al. [16] verification of mutual 
authentication and session key over an insecure 
communication. Mutual authentication is a one platform 
where user accesses several resources from the remote 
server at any time over internet channel. The protocol 
what the authors proposed can resist all kinds of security 
attacks. The performance of the scheme is relatively high 
in comparison with existing solutions and this protocol can 
be executable by anyone in multimedia big data 
environment for making a secure connection between the 
client and server. 

Subramani Jegadeesan et al. [17] [18] proposed an 
efficient anonymous mutual authentication technique to 
ensure secure communication between mobile users and 
the service providers using cryptographic SSL protocol. 
The scheme may reduce the computation cost in great 
extent and the session keys are exchanged successfully 
with an anonymous authentication. They conducted a 

security analysis of forging attack, replay attack and 
collision attack with a mathematical proof. Maninder 
Singh Raniyal et al. [19] [20] [21] proposed a mutual 
authentication, secure key agreement for smart home and 
mobile device user. The proxy-based schemes (PPIDA-IC 
and PPIDA-PKI) for smart homes which are used to 
protect the private and secret keys using a passphrase or 
passphrase. The OTP generated using hash function is 
used to achieve a mutual authentication of devices. The 
key agreement protocol is designed to overcome the key 
exposure attack if any one user’s device is hacked by some 
attackers. A secure channel is established between two end 
users for D2D communications in order to secure and 
robust to defend various attacks. 
 
3. Design Consideration 

The secure data transmission with data integrity check 
is a major concern of the proposed system. Both the 
sender and receiver device can mutually be authenticated 
with each other by interchanging their credentials. The 
notations and their meanings of the scheme as illustrated 
in Table 1. 

Table 1: Notations and Meanings 

Notations Meanings 

SecKey1 secret key1 

SecKey2 secret key2 

RandPart1 random character set1 from 
SecKey1

RandPart2 random character set2 from 
SecKey1

DerKey1 derived key1 

DerKey2 derived key2 

X data file 

Xe Encrypted file block 

H(Xe) hash tags of Xe 

Hcat(Xe) concatenated H(Xe) 

Sigsen(DerKey2(Hcat(Xe))) signature of Hcat(Xe) 

Sigrec(DerKey2(Hrcat(Xe))) signature of Hrcat(Xe) 

Hrec(Xe) hash tags of Xe of receiver 

Hrcat(Xe) concatenated Hrec(Xe) 

KUrec receiver public key 

KRrec receiver private key 

IDS identity of the sender 

IDR identity of the receiver 

E encryption 

N1,N2 nonce 

HMAC hash based message 
authentication code

SHA1 secure hash algorithm 

strvar1 to strvar6 string variables 
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3.1 Design goals 

The proposed system is implemented with the 
following design goals: 
 
3.1.1 The proposed technique is designed in such a way 
that obtaining the secret key from the standard Blowfish 
algorithm to generate the two different derived keys so 
that these derived keys are applied for confidentiality and 
data integrity. 
 
3.1.2 The system design includes mutual authentication 
between sender and receiver with a different message 
exchange. 
 
3.1.3 In order to reduce the multiple secret keys, the 
system design includes random extraction of characters 
from the secret key and these characters are concatenated 
with a system generated random number that produces 160 
bits hash code using SHA1 hash technique. 
 
3.1.4 To increase the robustness of the key, 128 bits are 
extracted from 160 bits of hash code randomly so that it is 
difficult for intruder to crack the keys. 
 
4. Design Methodology 
 
4.1 From the sender device point of view, the following 

points are considered: 
 

4.1.1 The SecKey1 is computed using standard Blowfish 
algorithm in order to derive the future keys for 
confidentiality and data integrity. 
 
4.1.2 The SecKey1 consisting of string of characters are 
extracted randomly with a specific size. 
 
4.1.3 Randomly extracted characters from the SecKey1 is 
concatenated with the Random number1 (RandNum1) and 
concatenated results sent to the SHA1 hashing technique 
which produces 160 bits hash code. 
 
4.1.4 The DerKey1 is generated by extracting 128 bits 
randomly from the 160 bits of hash code. 
 
4.1.5 Extract the random characters one more time from 
the SecKey1 and concatenated with the Random number2 
(RandNum2) and concatenated results sent to the SHA1 
hashing technique which produces 160 bits hash code. 
 
4.1.6 The DerKey2 is generated by extracting 128 bits 
randomly from the 160 bits of hash code. 
 

4.1.7  Sender encrypts the DerKey1 and DerKey2 using 
receiver public key (KUrec) and send it to the receiver. 
4.1.8 The entire data file is divided into number of blocks 
with fixed size and each block is encrypted using DerKey1 
and all the encrypted blocks are sent to the receiver device. 
 
4.1.9 All encrypted blocks are concatenated together and 
generates the signature using DerKey2 and signature of 
encrypted blocks sent to the receiver device. 

 
4.2 From the receiver device point of view, the 

following points are considered: 
 
4.2.1 The receiver device requests the sender to access the 
data with the request message which includes receiver 
identity (IDR) and receiver public key (KUrec). 
 
4.2.2  Receiver accepts the encrypted key and decrypt it 
uses receiver private key (KRrec) and extract the DerKey1 
and DerKey2. 
 
4.2.3 Receiver receives the encrypted blocks, generates the 
signature using DerKey2 and verifies the signature with 
the signature sent from the sender. If the signature is 
verified successful, then decrypt the encrypted blocks 
using DerKey1. The high-level view of the proposed work 
is shown in Figure 1. 

 
Fig. 1  System Architecture. 

 
Algorithm 1   Generating SecKey1 at the sender device 

Input: Key generator algorithm (Blowfish) 
Output: SecKey1 
1: generate key using Blowfish algorithm 
2: initialize key with 128 bits 
3: initialize SecKey1  key 
4: convert SecKey1 into a string 
5: record SecKey1 for further processing 
Algorithm 1 is designed in such way that SecKey1 is 

generated at the sender device. During the key generation, 
standard Blowfish algorithm of 128 bits is incurred and 
the secret key can be converted into any form such as 
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string, byte, binary and numerical value. In this paper, we 
are converting the secret key into a string for further 
processing. 
Algorithm 2 Converting SecKey1 into RandPart1, 
RandPart2 at the sender device 
Input: SecKey1 
Output: RandPart1, RandPart2 

1: receives SecKey1 from Algorithm 1 
2: if SecKey1 is string  
    then 
      compute character length (l) of the SecKey1  
      such that n=l(SecKey1) 
3: extract randomly m=n/2 characters such that  
     random(m (SecKey1)) and store characters  
   such that RandPart1  random(m(SecKey1)) 
4: extract randomly m=n/2 characters such that   
     random(m (SecKey1)) and store characters  
   such that RandPart2  random(m(SecKey1)) 
5: initialize Derkey2  strvar6 
6: record Derkey2 of 128 bits at the sender device 
 

Algorithm 2 is designed in such a way that the secret 
key is converted into two random parts such as RandPart1 
and RandPart2 at the sender device. The algorithm takes 
input as a secret key and produces output as a random part. 
Initially, we are checking that the secret key is a string if 
so number of the characters in the string is computed. In 
the next step, we can extract the few numbers of 
characters from the secret key randomly and these random 
characters are considered as a RandPart1. The same step is 
repeated for extracting another few characters randomly 
from the secret key and these characters are called as a 
RandPart2. 

Algorithm 3   Generate  DerKey1at the sender site 
Input: RandPart1, RandomNum1 
Output: Derkey1 

1: receives RandPart1 from Algorithm 2 
2: compute strvar1  (RandPart1 || RandNum1)  
3: compute 160 bits strvar2 such that strvar2   
    SHA1(strvar1)       
4: randomly extract 128 bits from strvar2 such that  
    strvar3  random(strvar2) 
5: initialize Derkey1  strvar3 
6: record Derkey1 of 128 bits at the sender device 

Algorithm 3 takes input as a RandPart1 and 
RandNum1 and produces Derkey1 as output. The first step 
of the algorithm is to compute the concatenation of 
RandPart1 and RandNum1. The second step is to compute 
the 160 bits hash tag from the concatenated result using 

secure hash algorithm SHA1. The third step is very 
important that we are extracting 128 bits from 160 bits of 
hash tag using random procedure and these random 
characters are considered as a DerKey1 which is recorded 
for further processing. 

Algorithm 4   Generate  DerKey2 at sender site 
Input: RandPart2, RandomNum2 
Output: Derkey2 

1: receives RandPart2 of SecKey1 from Algorithm 2 
2: compute strvar2  (RandPart2 || RandNum2)  
3: compute 160 bits strvar5 such that strvar5   
    SHA1(strvar4)       
4: randomly extract 128 bits from strvar5 such that  
    strvar6  random(strvar5) 
5: initialize Derkey2  strvar6 
6: record Derkey2 of 128 bits at the sender device 

Algorithm 4 is designed in such a way that 
computation of Derkey2 at the sender device site. The first 
step of the algorithm is to concatenate the RandPart2 and 
RandNum2 and retrieve 160 bits from the concatenated 
result. The Derkey2 is defined as 128 bits of random 
characters extracted from the 160 bits of hash tag. The 
DerKey2 of 128 bits is recorded for further processing. 

Algorithm 5   Mutual authentication between sender 
and receiver 

Input: IDR, KUrec 
Output:  Derkey1, Derkey2, N1, N2 

1: receiver send a request message to the sender that 
includes IDR, KUrec 

2: sender responds to the receiver such that E(KUrec  
    [IDS || Derkey1 || Derkey2 ||  IDR || N1]) 
3: receiver decrypt the message using KRrec record  
    Derkey1 and  Derkey2 
4: receiver sends a message E(Derkey1(N2)) to the  
    sender  random(strvar5) 
5: sender decrypt the message using Derkey1 responds  
    with E(Derkey2(f(N2))) 

Algorithm 5 facilitates mutual authentication between 
sender and the receiver. The algorithm makes use of the 
request message from the sender that includes the identity 
of the receiver (IDR) and receiver public key (KUrec). The 
sender device responds this message that consists of 
encrypted message. The sender device encrypts the 
message consisting of identity of the sender (IDS), 
DerKey1, DerKey2, IDR and nonce (N1) and all these 
parameters are encrypted using KUrec. The receiver 
device decrypts the message using private key (KRrec) 
and extract the DerKey1 and DerKey2 along with nonce. 
The receiver uses the DerKey1, encrypt the nonce (N2) and 
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send this encrypted nonce to the sender device. The 
sender decrypts the nonce using DerKey1 and computes 
E(DerKey1(f(N2))) and send it to the receiver. After these 
steps of computations we ensure that both sender and 
receiver are mutual authenticated with each other before 
sharing the data. 

Algorithm 6   confidentiality at the sender device 
Input: Data file (X), Derkey1 
Output:  Xe 
1: divide data file X into blocks with fixed size such  
    that X=b1,b2,b3……bn 
2: receives Derkey1 from Algorithm 3 
3: compute file blocks into encrypted file blocks  
   such that Xe=e1,e2,e3---en, where 
   e1=Derkey1(b1), e2= Derkey1(b2) and so on  
4: send encrypted file blocks (Xe) to the receiver. 

Algorithm 6 facilitates data confidentiality at the 
sender device. The algorithm takes the entire data file (X) 
as input along with the DerKey1 and produces the 
encrypted file blocks (Xe) before transmitted to the 
receiver device. The algorithm converts the data file into 
number of blocks with fixed size such that X=b1, b2, 
b3....bn. Each and all fixed size blocks are converted into 
encrypted file blocks such that Xe=e1, e2, e3....en where 
e1=DerKey1(b1), e2= Derkey1(b2)and so on. These 
encrypted file blocks (Xe) are sent to the receiver. 

Algorithm 7   data integrity at the sender device 
Input: Derkey2 
Output:  H(Xe), Sigsen(DerKey2(Hcat(Xe))) 

    1: compute  H(Xe)=H(e1), H(e2), ...H(en) 

     2: compute compute Hcat(Xe)   H(e1) || H(e2)  
    || H(e3)...|| H(en) 

3: receives Derkey2 from Algorithm 4 
4: compute Sigsen(DerKey2(Hcat(Xe))) such that  
    Sigsen(DerKey2(Hcat(Xe)))   
    HMAC(DerKey2(Hcat(Xe))) 
5: send H(Xe), Sigsen(DerKey2(Hcat(Xe))) to the  
   receiver 

 
Algorithm 7 facilitates data integrity for every data 

block at the sender device. To ensure data integrity we are 
using DerKey2 for generating signature. The algorithm 
also takes input as encrypted data blocks (Xe) and 
produces the hash tags for all data blocks (H(Xe)) such 
that H(Xe)=H(e1), H(e2), H(e3) ...H(en). In the next step, 
we concatenate all the encrypted data blocks such that 
Hcat(Xe)   H(e1) || H(e2) || H(e3) ...|| H(en). Further the 
signature tag is computed using HMAC hashing technique 

such that Sigsen(DerKey2(Hcat(Xe)))  
HMAC(DerKey2(Hcat(Xe))). After the successful 
computations of H(Xe) and Sigsen(DerKey2(Hcat(Xe))), 
both the hash tags of encrypted blocks along with a 
signature send to the receiver device. 

Algorithm 8  Data integrity verification at receiver site 

Input: H(Xe), DerKey2,sigsen(DerKey2(Hcat(Xe))) 
Output:  True or False 

        1: receives Xe from the sender device compute  
            Hrec(Xe) = Hrec(e1), Hrec(e2), ……. Hrec(en) 
         2: for Hrec(Xe) from 1 to n do 
              if     Hrec(ej ) == Hsen(ej ) then 
                  data integrity success 
              end if 
             else 
                   data integrity fails 
             end for 
         3: Hrcat(Xe)=Hrcat(e1) || Hrcat(e2) ….  || Hrcat(en) 
         4: compute Sigrec(DerKey2(Hrcat(Xe))) such that  
              Sigrec (DerKey2 (Hca t(Xe)))   
               HMAC (DerKey2 (Hrcat (Xe))) 

     if Sigrec(DerKey2(Hrcat(Xe))) ==  
          sigsen(DerKey2(Hcat(Xe))) 
     then integrity signature verified 
     end if 
     else 
           something went wrong  

            5: report Rrec to sender device 
 
Algorithm 8 is designed at the receiver site in order to 

provide the data integrity verification. Before the receiver 
has to decrypt the entire data file, he/she allowed to check 
the integrity of each encrypted blocks and their signature. 
Once the receiver has received a hash tags of encrypted 
blocks H(Xe) along with the signature 
Sigsen(DerKey2(Hcat(Xe))), data integrity verification is 
carried out. The receiver receives the encrypted data 
blocks (Xe) from the sender device and hash tags of these 
encrypted blocks such that Hrec(Xe)= Hrec(e1), Hrec(e2), 
Hrec(e3)...Hrec(en) then the receiver checks the 
originality of all the encrypted blocks.  

The receiver also verifies the signature of the sender 
by generating his/her signature such that 
Sigrec(DerKey2(Hrcat(Xe))) HMAC(DerKey2(Hrcat(Xe))) 
and compares this signature with the signature of the 
sender such that 
sigrec(DerKey2(Hrcat(Xe)))==Sigsen(DerKey2(Hcat(Xe))). 
If both the signatures are verified successfully then data 
decryption will be carried out otherwise something went 
wrong, and the report is sent to the sender. 

Algorithm 9   Decryption of data blocks at the receiver 
device 
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Input: Xe, Derkey1 
Output:  Data file(X) 

        1: if step 2 and 5 of the Algorithm 8 is  
                successful 
           then 
                 decrypt the data blocks such that Derkey1(Xe) =  
                    b1, b2, b3, …… bn and so on 
            end if 

2: perform operations on X 

Algorithm 9 is designed at the receiver device for 
decrypting the data blocks which are shared by the sender 
device. The algorithm takes input as encrypted data file 
(Xe), DerKey1 and produces the output as a corresponding 
data file (X). When the step 2 and step 5 of the Algorithm 
8 is successful, the receiver receives the encrypted data 
blocks such as e1, e2.... en and decrypts them such that 
b1=DerKey1(e1), b2=DerKey1(e2) and so on. 

4.3. Implementation 

The proposed scheme is implemented using a Java-based 
JSP web application. The scheme is being tested in a 
physical cloud environment such as Amazon Web 
Services. Device setup includes Tomcat 8.5 with Corretto 
11 running on 64bit Amazon Linux 2/4.1.2. 

5. Experimental Results 
In this section, the experimental results are described 

in detailed manner considering computational cost as a 
major factor. The number of results samples are collected 
from the internet as amazon web services and these results 
are depicted in a tabular format. The Table 2 shows the 
computational cost estimated from the proposed scheme 
and same as compared with an existing Blowfish 
algorithm. From the tabulated experimental results, the 
proposed method may consume very low computation cost 
while deriving the keys.  

In order to analyze the experimental results, we 
specifically considered the computational values of 
DerKey1 (Proposed method) and these values are 
compared with the SecKey1 (Blowfish algorithm) is shown 
in Figure 2. From this graphical representation, we 
practically conclude that time taken for generating 
DerKey1 consumes low computation cost in comparison 
with the SecKey1. 

 
 
Fig. 2  Time taken (ms) SecKey1 vs DerKey1 (Proposed method). 
 

In order to quantify the experimental analysis, the 
proposed scheme may also be analyzed with another 
existing key derivation. The computational cost for 
DerKey2 (Proposed method) is compared with a SecKey2 
(Blowfish algorithm) with a graphical representation 
shown in Figure 3. From this graphical representation, we 
also conclude that time taken for generating DerKey2 
consumes low computation cost in comparison with the 
SecKey2. 
 

 
 
Fig. 3  Time taken (ms) SecKey2 vs DerKey2 (Proposed method). 
 

In order analyze the storage cost introduced by the 
proposed scheme and it is compared with a Blowfish 
algorithm while deriving the session keys. The Table 3 
shows the storage cost in terms of number of bytes 
consumed during key generation. These recorded values 
shows that the number of bytes consumed by the proposed 
scheme while deriving DerKey1 and DerKey2 are little bit 
low in comparison with the current solution shown in 
Figure 4 and Figure 5. 
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Fig. 4  Memory in bytes SecKey1 vs DerKey1 (Proposed method). 
 

 
Fig. 5  Memory in bytes SecKey2 vs DerKey2 (Proposed method). 

 
Table 2: Time Taken (ms) For Key Derivation 

(Blowfish Vs. Proposed Methodology) 
Sample SecKey1 SecKey2 DerKey1 DerKey2 
1 0.198 0.197 0.076 0.075 
2 0.186 0.181 0.071 0.07 
3 0.187 0.19 0.075 0.078 
4 0.187 0.197 0.081 0.073 
5 0.177 0.191 0.086 0.075 
6 0.175 0.18 0.092 0.076 
7 0.16 0.183 0.073 0.075 
8 0.175 0.164 0.073 0.079 
9 0.158 0.167 0.072 0.08 
10 0.156 0.168 0.071 0.068 
11 0.154 0.189 0.077 0.07 
12 0.154 0.163 0.074 0.072 
13 0.152 0.182 0.071 0.069 
14 0.154 0.166 0.07 0.071 
15 0.146 0.138 0.071 0.074 
16 0.121 0.137 0.061 0.059 
17 0.129 0.131 0.06 0.058 
18 0.121 0.136 0.059 0.059 
19 0.124 0.143 0.06 0.062 
20 0.125 0.137 0.057 0.053 
Average 0.156 0.167 0.071 0.069 

 
In order analyze the storage cost introduced by the 

proposed scheme and it is compared with a Blowfish 
algorithm while deriving the session keys. The Table 3 
shows the storage cost in terms of number of bytes 
consumed during key generation. These recorded values 
shows that the number of bytes consumed by the proposed 
scheme while deriving DerKey1 and DerKey2 are little bit 

low in comparison with the current solution shown in 
Figure 4 and Figure 5. 
 

Table 3: Memory Utilization in Bytes 
(Blowfish Vs. Proposed Methodology) 

Sample SecKey1 SecKey2 DerKey1 DerKey2 
1 8543552 8544432 8541968 8545360 
2 8547624 8538504 8548296 8534248 
3 8566776 8548504 8537112 8544936 
4 8540008 8547608 8559096 8573568 
5 8542752 9197088 8561032 8548616 
6 8554040 8562128 8559568 8562200 
7 8579496 8564776 8552960 8557176 
8 8752088 8734632 8571248 8574808 
9 8743800 8573088 8567640 8573720 
10 8740184 8744736 8582160 8590560 
11 8760576 8766856 8756712 8587744 
12 8757552 8943808 8602016 8765568 
13 8768424 8602872 8589952 8595496 
14 8768520 8574152 8588488 8595488 
15 8778320 8588112 8597744 8609552 
16 8773616 8777992 8504048 8507752 
17 8507792 8521008 8508496 8514936 
18 8683456 8686848 8675208 8505600 
19 8693344 8676928 8514448 8522728 
20 8497016 8501584 8518184 8526576 
Average 8654946.8 8659783 8571818.8 8566831.6 

 
6. Security analysis of the proposed scheme 
 

Secure deceive to device (D2D) communication using 
lightweight cryptographic protocol is accomplished with 
four different phases i.e., key derivation at sender site, 
secure key delivery through mutual authentication, 
increasing key robustness and checking integrity of each 
data blocks. Moreover, a detailed analysis of various 
possible attacks and their prevention in the proposed 
method is described in realistic environment of D2D 
communication is presented below. 
 
6.1 Scalability of key derivation 

In the proposed scheme, the derived keys are extracted 
from the secret key that reduces the computational cost for 
another secret keys. It means that from one particular 
secret key, we can be able to computes number of derived 
keys. 

 
6.2. Mutual authentication 

Before data has been exchanged between the sender 
and receiver device, both of them mutually authenticates 
themselves in order to prevent entry of adversary node. 
The proposed method has securely established the 
connection between sender and receiver by exchanging the 
messages between them. In this paper Algorithm 5 is 
designed for secure mutual authentication between the 
sender and receiver device.  
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6.3. Secret key establishment 
The secure key delivery or establishment is one of the 

important concerns in D2D communication. Even though 
the keys are transmitted in a secure channel, there is a 
possibility to capture the contents of the session keys. In 
the proposed method, the derived keys are encrypted using 
public key of the receiver and the encrypted keys are sent 
to the receiver. These encrypted keys are only decrypted 
by private key of the receiver and this private key is only 
know to the receiver device. 
 
6.4. Message integrity 

Message integrity says that there is no modification, 
deletion, addition or replay of the transmitted data. The 
proposed method is designed in such a way that each and 
every block undergone the originality check. However, 
signature has been constructed for entire data file and 
receiver is allowed for verifying the signature before 
decrypting each data block. 
 
6.5. Eavesdropping attack 

Eavesdropping attacks are applicable only the intruder 
device has the capability to intercept each, and every 
packet transmitted between the D2D communication via 
channels or paths which are not secure. In the proposed 
scheme, before the data transmission, derived keys are 
securely transmitted through mutual authentication and 
every device is bounded to transmit data in encrypted form 
and, thus, eavesdropping attacks are not feasible. 
 
6.6. Impersonates attacks 

In the proposed scheme, the intruder device will not 
derive the data, which is shared between the sender and 
receiver device, since the derived keys are encrypted using 
receiver public key. Even the intruder captures the 
encrypted key while sharing that cannot be decrypted 
because the decryption is only possible by using receiver 
private key. G. Perfect forward and backward secrecy. If 
the intruder device has a capacity to intercept a complete 
communication session between the sender and receiver 
device and even the intruder device somehow finds a way 
to encrypt the particular data using own key and sends the 
encrypted data along with a key to the receiver device, 
then the receiver. 
 
7. Conclusion 

Establishing keys and providing mutual authentication 
between two end users are dominate issues for a device to 
device (D2D) communication, which impacts the success 
of services offered in a next generation of D2D 
communications. In this paper, we proposed a secure 
device to device communications using lightweight 
cryptographic protocol. Initially, the scheme generates the 
secret key of 128 bits using standard Blowfish algorithm. 

The derived keys are generated using secret key using 
random numbers and SHA1 hashing technique which 
produces keys of 160 bits. In order to reduce the 
computational cost data confidentiality and data integrity, 
we reduce the key size from 160 bits into 128 bits by 
extracting characters using mathematical random 
procedure. The mutual authentication is achieved in a 
great extent between the sender and receiver device. The 
security analysis and key robustness proved that our 
lightweight cryptographic protocol is secure in order to 
defend various attacks. The experimental results shows 
that our scheme can be deploy-able in real time D2D 
communication. 
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