
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021

354

Manuscript received November 5, 2021
Manuscript revised November 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.11.48

Secure Device to Device Communications using Lightweight
Cryptographic Protocol

Ajith Kumar V 1† and Dr. K Satyanarayan Reddy2††

1Research Scholar, Department of Computer Applications, RRC, VTU Belguam, Karnataka, India,

2Professor and Head, Department of Information Science & Engineering, Cambridge Institute of Technology, Bangalore, Karnataka
State, India

Abstract
The device to device (D2D) communication is an important and
emerging area for future cellular networks. It is concerned about
all aspect of secure data transmission between end devices along
with originality of the data. In this paradigm, the major concerns
are about how keys are delivered between the devices when the
devices require the cryptographic keys. Another major concern is
how effectively the receiver device verifies the data sent by the
sender device which means that the receiver checks the
originality of the data. In order to fulfill these requirements, the
proposed system able to derive a cryptographic key using a
single secret key and these derived keys are securely transmitted
to the intended receiver with procedure called mutual
authentication. Initially, derived keys are computed by applying
robust procedure so that any adversary feel difficulties for
cracking the keys. The experimental results shows that both
sender and receiver can identify themselves and receiver device
will decrypt the data only after verifying the originality of the
data. Only the devices which are mutually authenticated each
other can interchange the data so that entry of the intruder node
at any stage is not possible.
Key words:
Confidentiality, Device to Device communication, Data integrity,
Key derivation, Key robustness, Mutual authentication.

1. Introduction

The current trends of device-to-device communication
to be incapable of meeting the exponential user demands.
These rising demands based on the popularity of large-
scale applications such as mobile computing, video
streaming and large bandwidth cloud computing. Today, a
trillion of wireless devices shall be proving various
services for billions of people across the world. As a result,
the fifth generation (5 G) device to device wireless
communication play an important role in a growing
technology and expected to meet the technical
requirements of the next generation networks.

D2D communication directly refers the transmission of
data between the intended devices without involving base
station (BS). This type of data transmission improves

efficiency and also system capacity. In order to
transmit the data between the devices, we need to consider
basic security requirements such as confidentiality,
authenticity, data integrity along with privacy preservation.
Confidentiality says that before sending the data to the
intended user we must protect that data so that only
authenticated user can capture the original data. Second
important parameter of the security is a device
authentication in which each device must identify
themselves before sharing the data over the internet.

Data integrity is also playing a major concern in D2D
communication in which receiver device can verifies the
originality of the data sent by the sender device. In this
context, various cryptographic protocols were
implemented in a real time system, but these protocols
have their own limitations with respect to the security
concerns.

2. Related Work

Initially different research issues related to D2D
communication such as user mobility, D2D
synchronization, device discovery, interference
management, resource allocation and security [1] have
been discussed in detail. It is known that D2D
communication is highly susceptible and vulnerable to
many cryptographic, network attacks and surpasses the
core network [2].

Mohammad Wazid et al. [3] [4] proposed an
authentication and secure key management for fog
computing. The fog computing is an extended version of
cloud computing where in which inherits the security and
privacy issues of cloud computing, and this scheme
involves one-way cryptographic hash function and XOR
operations in order to authenticate the smart devices
distributed in a different geographical area. Authors have
been simulated the results using widely-used NS2
simulator.

Gurjot Singh Gaba et al. [5] proposed a secure Device
to- Device communications for IoT applications. In order
to achieve the robustness and lightweightness the scheme

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021

355

designed as a commit/open pair. The scheme involves
symmetric key cryptography, message authentication code
(MAC), Diffie Hellman key exchange protocol for key
generation and mutual authentication between the end
devices. Security analysis involves mutual authentication,
message freshness, confidentiality of the secret key in
order to protect from DoS, replay attack and identical key
establishment between the devices for avoiding erroneous
use of secret keys.

Pimmy Gandotra et al. [6] [7] [8] [9] [10] [11] [12]
conducted a survey on device-to-device communication
considering security and architectural issues. Due to
increase in number of devices connected radically, it is
highly essential to improve the data rates with reduced
latency along with system capacity. In order to acquire
these, cellular networks need to undergo suitable changes
regarding architectural design. In this context, the authors
made a detailed survey on device-to-device
communication by considering resource allocation,
security and interference management to become a
successful wireless network. Various attacks have been
identified with solution strategies and future directions
based on internet protocol security.

Yanbin Zhang et al. [13] [14] [15] proposed a mutual
authentication scheme for D2D communication in smart
cities. In this paper, a hybrid of medium access control
(MAC) address used for establishing secure device-to-
device communication sessions in IoT networks is
presented to make edge-enabled smart cities safe and
secure. Initiation of a right communication session
between the device and base station is subjected to the
authentication process so that at any stage entry of the
intruder node is not possible. They are presented a security
analysis by considering the parameters such as client
impersonates attack, eavesdropping attack, perfect forward
and backward secrecy and replay attack.

Ruhul Amin et al. [16] verification of mutual
authentication and session key over an insecure
communication. Mutual authentication is a one platform
where user accesses several resources from the remote
server at any time over internet channel. The protocol
what the authors proposed can resist all kinds of security
attacks. The performance of the scheme is relatively high
in comparison with existing solutions and this protocol can
be executable by anyone in multimedia big data
environment for making a secure connection between the
client and server.

Subramani Jegadeesan et al. [17] [18] proposed an
efficient anonymous mutual authentication technique to
ensure secure communication between mobile users and
the service providers using cryptographic SSL protocol.
The scheme may reduce the computation cost in great
extent and the session keys are exchanged successfully
with an anonymous authentication. They conducted a

security analysis of forging attack, replay attack and
collision attack with a mathematical proof. Maninder
Singh Raniyal et al. [19] [20] [21] proposed a mutual
authentication, secure key agreement for smart home and
mobile device user. The proxy-based schemes (PPIDA-IC
and PPIDA-PKI) for smart homes which are used to
protect the private and secret keys using a passphrase or
passphrase. The OTP generated using hash function is
used to achieve a mutual authentication of devices. The
key agreement protocol is designed to overcome the key
exposure attack if any one user’s device is hacked by some
attackers. A secure channel is established between two end
users for D2D communications in order to secure and
robust to defend various attacks.

3. Design Consideration

The secure data transmission with data integrity check
is a major concern of the proposed system. Both the
sender and receiver device can mutually be authenticated
with each other by interchanging their credentials. The
notations and their meanings of the scheme as illustrated
in Table 1.

Table 1: Notations and Meanings

Notations Meanings

SecKey1 secret key1

SecKey2 secret key2

RandPart1 random character set1 from
SecKey1

RandPart2 random character set2 from
SecKey1

DerKey1 derived key1

DerKey2 derived key2

X data file

Xe Encrypted file block

H(Xe) hash tags of Xe

Hcat(Xe) concatenated H(Xe)

Sigsen(DerKey2(Hcat(Xe))) signature of Hcat(Xe)

Sigrec(DerKey2(Hrcat(Xe))) signature of Hrcat(Xe)

Hrec(Xe) hash tags of Xe of receiver

Hrcat(Xe) concatenated Hrec(Xe)

KUrec receiver public key

KRrec receiver private key

IDS identity of the sender

IDR identity of the receiver

E encryption

N1,N2 nonce

HMAC hash based message
authentication code

SHA1 secure hash algorithm

strvar1 to strvar6 string variables

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021

356

3.1 Design goals

The proposed system is implemented with the
following design goals:

3.1.1 The proposed technique is designed in such a way
that obtaining the secret key from the standard Blowfish
algorithm to generate the two different derived keys so
that these derived keys are applied for confidentiality and
data integrity.

3.1.2 The system design includes mutual authentication
between sender and receiver with a different message
exchange.

3.1.3 In order to reduce the multiple secret keys, the
system design includes random extraction of characters
from the secret key and these characters are concatenated
with a system generated random number that produces 160
bits hash code using SHA1 hash technique.

3.1.4 To increase the robustness of the key, 128 bits are
extracted from 160 bits of hash code randomly so that it is
difficult for intruder to crack the keys.

4. Design Methodology

4.1 From the sender device point of view, the following

points are considered:

4.1.1 The SecKey1 is computed using standard Blowfish
algorithm in order to derive the future keys for
confidentiality and data integrity.

4.1.2 The SecKey1 consisting of string of characters are
extracted randomly with a specific size.

4.1.3 Randomly extracted characters from the SecKey1 is
concatenated with the Random number1 (RandNum1) and
concatenated results sent to the SHA1 hashing technique
which produces 160 bits hash code.

4.1.4 The DerKey1 is generated by extracting 128 bits
randomly from the 160 bits of hash code.

4.1.5 Extract the random characters one more time from
the SecKey1 and concatenated with the Random number2
(RandNum2) and concatenated results sent to the SHA1
hashing technique which produces 160 bits hash code.

4.1.6 The DerKey2 is generated by extracting 128 bits
randomly from the 160 bits of hash code.

4.1.7 Sender encrypts the DerKey1 and DerKey2 using
receiver public key (KUrec) and send it to the receiver.
4.1.8 The entire data file is divided into number of blocks
with fixed size and each block is encrypted using DerKey1
and all the encrypted blocks are sent to the receiver device.

4.1.9 All encrypted blocks are concatenated together and
generates the signature using DerKey2 and signature of
encrypted blocks sent to the receiver device.

4.2 From the receiver device point of view, the

following points are considered:

4.2.1 The receiver device requests the sender to access the
data with the request message which includes receiver
identity (IDR) and receiver public key (KUrec).

4.2.2 Receiver accepts the encrypted key and decrypt it
uses receiver private key (KRrec) and extract the DerKey1
and DerKey2.

4.2.3 Receiver receives the encrypted blocks, generates the
signature using DerKey2 and verifies the signature with
the signature sent from the sender. If the signature is
verified successful, then decrypt the encrypted blocks
using DerKey1. The high-level view of the proposed work
is shown in Figure 1.

Fig. 1 System Architecture.

Algorithm 1 Generating SecKey1 at the sender device

Input: Key generator algorithm (Blowfish)
Output: SecKey1
1: generate key using Blowfish algorithm
2: initialize key with 128 bits
3: initialize SecKey1 key
4: convert SecKey1 into a string
5: record SecKey1 for further processing
Algorithm 1 is designed in such way that SecKey1 is

generated at the sender device. During the key generation,
standard Blowfish algorithm of 128 bits is incurred and
the secret key can be converted into any form such as

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021

357

string, byte, binary and numerical value. In this paper, we
are converting the secret key into a string for further
processing.
Algorithm 2 Converting SecKey1 into RandPart1,
RandPart2 at the sender device
Input: SecKey1
Output: RandPart1, RandPart2

1: receives SecKey1 from Algorithm 1
2: if SecKey1 is string
 then
 compute character length (l) of the SecKey1
 such that n=l(SecKey1)
3: extract randomly m=n/2 characters such that
 random(m (SecKey1)) and store characters
 such that RandPart1 random(m(SecKey1))
4: extract randomly m=n/2 characters such that
 random(m (SecKey1)) and store characters
 such that RandPart2 random(m(SecKey1))
5: initialize Derkey2 strvar6
6: record Derkey2 of 128 bits at the sender device

Algorithm 2 is designed in such a way that the secret
key is converted into two random parts such as RandPart1
and RandPart2 at the sender device. The algorithm takes
input as a secret key and produces output as a random part.
Initially, we are checking that the secret key is a string if
so number of the characters in the string is computed. In
the next step, we can extract the few numbers of
characters from the secret key randomly and these random
characters are considered as a RandPart1. The same step is
repeated for extracting another few characters randomly
from the secret key and these characters are called as a
RandPart2.

Algorithm 3 Generate DerKey1at the sender site
Input: RandPart1, RandomNum1
Output: Derkey1

1: receives RandPart1 from Algorithm 2
2: compute strvar1 (RandPart1 || RandNum1)
3: compute 160 bits strvar2 such that strvar2
 SHA1(strvar1)
4: randomly extract 128 bits from strvar2 such that
 strvar3 random(strvar2)
5: initialize Derkey1 strvar3
6: record Derkey1 of 128 bits at the sender device

Algorithm 3 takes input as a RandPart1 and
RandNum1 and produces Derkey1 as output. The first step
of the algorithm is to compute the concatenation of
RandPart1 and RandNum1. The second step is to compute
the 160 bits hash tag from the concatenated result using

secure hash algorithm SHA1. The third step is very
important that we are extracting 128 bits from 160 bits of
hash tag using random procedure and these random
characters are considered as a DerKey1 which is recorded
for further processing.

Algorithm 4 Generate DerKey2 at sender site
Input: RandPart2, RandomNum2
Output: Derkey2

1: receives RandPart2 of SecKey1 from Algorithm 2
2: compute strvar2 (RandPart2 || RandNum2)
3: compute 160 bits strvar5 such that strvar5
 SHA1(strvar4)
4: randomly extract 128 bits from strvar5 such that
 strvar6 random(strvar5)
5: initialize Derkey2 strvar6
6: record Derkey2 of 128 bits at the sender device

Algorithm 4 is designed in such a way that
computation of Derkey2 at the sender device site. The first
step of the algorithm is to concatenate the RandPart2 and
RandNum2 and retrieve 160 bits from the concatenated
result. The Derkey2 is defined as 128 bits of random
characters extracted from the 160 bits of hash tag. The
DerKey2 of 128 bits is recorded for further processing.

Algorithm 5 Mutual authentication between sender
and receiver

Input: IDR, KUrec
Output: Derkey1, Derkey2, N1, N2

1: receiver send a request message to the sender that
includes IDR, KUrec

2: sender responds to the receiver such that E(KUrec
 [IDS || Derkey1 || Derkey2 || IDR || N1])
3: receiver decrypt the message using KRrec record
 Derkey1 and Derkey2
4: receiver sends a message E(Derkey1(N2)) to the
 sender random(strvar5)
5: sender decrypt the message using Derkey1 responds
 with E(Derkey2(f(N2)))

Algorithm 5 facilitates mutual authentication between
sender and the receiver. The algorithm makes use of the
request message from the sender that includes the identity
of the receiver (IDR) and receiver public key (KUrec). The
sender device responds this message that consists of
encrypted message. The sender device encrypts the
message consisting of identity of the sender (IDS),
DerKey1, DerKey2, IDR and nonce (N1) and all these
parameters are encrypted using KUrec. The receiver
device decrypts the message using private key (KRrec)
and extract the DerKey1 and DerKey2 along with nonce.
The receiver uses the DerKey1, encrypt the nonce (N2) and

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021

358

send this encrypted nonce to the sender device. The
sender decrypts the nonce using DerKey1 and computes
E(DerKey1(f(N2))) and send it to the receiver. After these
steps of computations we ensure that both sender and
receiver are mutual authenticated with each other before
sharing the data.

Algorithm 6 confidentiality at the sender device
Input: Data file (X), Derkey1
Output: Xe
1: divide data file X into blocks with fixed size such
 that X=b1,b2,b3……bn
2: receives Derkey1 from Algorithm 3
3: compute file blocks into encrypted file blocks
 such that Xe=e1,e2,e3---en, where
 e1=Derkey1(b1), e2= Derkey1(b2) and so on
4: send encrypted file blocks (Xe) to the receiver.

Algorithm 6 facilitates data confidentiality at the
sender device. The algorithm takes the entire data file (X)
as input along with the DerKey1 and produces the
encrypted file blocks (Xe) before transmitted to the
receiver device. The algorithm converts the data file into
number of blocks with fixed size such that X=b1, b2,
b3....bn. Each and all fixed size blocks are converted into
encrypted file blocks such that Xe=e1, e2, e3....en where
e1=DerKey1(b1), e2= Derkey1(b2)and so on. These
encrypted file blocks (Xe) are sent to the receiver.

Algorithm 7 data integrity at the sender device
Input: Derkey2
Output: H(Xe), Sigsen(DerKey2(Hcat(Xe)))

 1: compute H(Xe)=H(e1), H(e2), ...H(en)

 2: compute compute Hcat(Xe) H(e1) || H(e2)
 || H(e3)...|| H(en)

3: receives Derkey2 from Algorithm 4
4: compute Sigsen(DerKey2(Hcat(Xe))) such that
 Sigsen(DerKey2(Hcat(Xe)))
 HMAC(DerKey2(Hcat(Xe)))
5: send H(Xe), Sigsen(DerKey2(Hcat(Xe))) to the
 receiver

Algorithm 7 facilitates data integrity for every data

block at the sender device. To ensure data integrity we are
using DerKey2 for generating signature. The algorithm
also takes input as encrypted data blocks (Xe) and
produces the hash tags for all data blocks (H(Xe)) such
that H(Xe)=H(e1), H(e2), H(e3) ...H(en). In the next step,
we concatenate all the encrypted data blocks such that
Hcat(Xe) H(e1) || H(e2) || H(e3) ...|| H(en). Further the
signature tag is computed using HMAC hashing technique

such that Sigsen(DerKey2(Hcat(Xe)))
HMAC(DerKey2(Hcat(Xe))). After the successful
computations of H(Xe) and Sigsen(DerKey2(Hcat(Xe))),
both the hash tags of encrypted blocks along with a
signature send to the receiver device.

Algorithm 8 Data integrity verification at receiver site

Input: H(Xe), DerKey2,sigsen(DerKey2(Hcat(Xe)))
Output: True or False

 1: receives Xe from the sender device compute
 Hrec(Xe) = Hrec(e1), Hrec(e2), ……. Hrec(en)
 2: for Hrec(Xe) from 1 to n do
 if Hrec(ej) == Hsen(ej) then
 data integrity success
 end if
 else
 data integrity fails
 end for
 3: Hrcat(Xe)=Hrcat(e1) || Hrcat(e2) …. || Hrcat(en)
 4: compute Sigrec(DerKey2(Hrcat(Xe))) such that
 Sigrec (DerKey2 (Hca t(Xe)))
 HMAC (DerKey2 (Hrcat (Xe)))

 if Sigrec(DerKey2(Hrcat(Xe))) ==
 sigsen(DerKey2(Hcat(Xe)))
 then integrity signature verified
 end if
 else
 something went wrong

 5: report Rrec to sender device

Algorithm 8 is designed at the receiver site in order to

provide the data integrity verification. Before the receiver
has to decrypt the entire data file, he/she allowed to check
the integrity of each encrypted blocks and their signature.
Once the receiver has received a hash tags of encrypted
blocks H(Xe) along with the signature
Sigsen(DerKey2(Hcat(Xe))), data integrity verification is
carried out. The receiver receives the encrypted data
blocks (Xe) from the sender device and hash tags of these
encrypted blocks such that Hrec(Xe)= Hrec(e1), Hrec(e2),
Hrec(e3)...Hrec(en) then the receiver checks the
originality of all the encrypted blocks.

The receiver also verifies the signature of the sender
by generating his/her signature such that
Sigrec(DerKey2(Hrcat(Xe))) HMAC(DerKey2(Hrcat(Xe)))
and compares this signature with the signature of the
sender such that
sigrec(DerKey2(Hrcat(Xe)))==Sigsen(DerKey2(Hcat(Xe))).
If both the signatures are verified successfully then data
decryption will be carried out otherwise something went
wrong, and the report is sent to the sender.

Algorithm 9 Decryption of data blocks at the receiver
device

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021

359

Input: Xe, Derkey1
Output: Data file(X)

 1: if step 2 and 5 of the Algorithm 8 is
 successful
 then
 decrypt the data blocks such that Derkey1(Xe) =
 b1, b2, b3, …… bn and so on
 end if

2: perform operations on X

Algorithm 9 is designed at the receiver device for
decrypting the data blocks which are shared by the sender
device. The algorithm takes input as encrypted data file
(Xe), DerKey1 and produces the output as a corresponding
data file (X). When the step 2 and step 5 of the Algorithm
8 is successful, the receiver receives the encrypted data
blocks such as e1, e2.... en and decrypts them such that
b1=DerKey1(e1), b2=DerKey1(e2) and so on.

4.3. Implementation

The proposed scheme is implemented using a Java-based
JSP web application. The scheme is being tested in a
physical cloud environment such as Amazon Web
Services. Device setup includes Tomcat 8.5 with Corretto
11 running on 64bit Amazon Linux 2/4.1.2.

5. Experimental Results
In this section, the experimental results are described

in detailed manner considering computational cost as a
major factor. The number of results samples are collected
from the internet as amazon web services and these results
are depicted in a tabular format. The Table 2 shows the
computational cost estimated from the proposed scheme
and same as compared with an existing Blowfish
algorithm. From the tabulated experimental results, the
proposed method may consume very low computation cost
while deriving the keys.

In order to analyze the experimental results, we
specifically considered the computational values of
DerKey1 (Proposed method) and these values are
compared with the SecKey1 (Blowfish algorithm) is shown
in Figure 2. From this graphical representation, we
practically conclude that time taken for generating
DerKey1 consumes low computation cost in comparison
with the SecKey1.

Fig. 2 Time taken (ms) SecKey1 vs DerKey1 (Proposed method).

In order to quantify the experimental analysis, the
proposed scheme may also be analyzed with another
existing key derivation. The computational cost for
DerKey2 (Proposed method) is compared with a SecKey2
(Blowfish algorithm) with a graphical representation
shown in Figure 3. From this graphical representation, we
also conclude that time taken for generating DerKey2
consumes low computation cost in comparison with the
SecKey2.

Fig. 3 Time taken (ms) SecKey2 vs DerKey2 (Proposed method).

In order analyze the storage cost introduced by the
proposed scheme and it is compared with a Blowfish
algorithm while deriving the session keys. The Table 3
shows the storage cost in terms of number of bytes
consumed during key generation. These recorded values
shows that the number of bytes consumed by the proposed
scheme while deriving DerKey1 and DerKey2 are little bit
low in comparison with the current solution shown in
Figure 4 and Figure 5.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021

360

Fig. 4 Memory in bytes SecKey1 vs DerKey1 (Proposed method).

Fig. 5 Memory in bytes SecKey2 vs DerKey2 (Proposed method).

Table 2: Time Taken (ms) For Key Derivation

(Blowfish Vs. Proposed Methodology)
Sample SecKey1 SecKey2 DerKey1 DerKey2
1 0.198 0.197 0.076 0.075
2 0.186 0.181 0.071 0.07
3 0.187 0.19 0.075 0.078
4 0.187 0.197 0.081 0.073
5 0.177 0.191 0.086 0.075
6 0.175 0.18 0.092 0.076
7 0.16 0.183 0.073 0.075
8 0.175 0.164 0.073 0.079
9 0.158 0.167 0.072 0.08
10 0.156 0.168 0.071 0.068
11 0.154 0.189 0.077 0.07
12 0.154 0.163 0.074 0.072
13 0.152 0.182 0.071 0.069
14 0.154 0.166 0.07 0.071
15 0.146 0.138 0.071 0.074
16 0.121 0.137 0.061 0.059
17 0.129 0.131 0.06 0.058
18 0.121 0.136 0.059 0.059
19 0.124 0.143 0.06 0.062
20 0.125 0.137 0.057 0.053
Average 0.156 0.167 0.071 0.069

In order analyze the storage cost introduced by the

proposed scheme and it is compared with a Blowfish
algorithm while deriving the session keys. The Table 3
shows the storage cost in terms of number of bytes
consumed during key generation. These recorded values
shows that the number of bytes consumed by the proposed
scheme while deriving DerKey1 and DerKey2 are little bit

low in comparison with the current solution shown in
Figure 4 and Figure 5.

Table 3: Memory Utilization in Bytes
(Blowfish Vs. Proposed Methodology)

Sample SecKey1 SecKey2 DerKey1 DerKey2
1 8543552 8544432 8541968 8545360
2 8547624 8538504 8548296 8534248
3 8566776 8548504 8537112 8544936
4 8540008 8547608 8559096 8573568
5 8542752 9197088 8561032 8548616
6 8554040 8562128 8559568 8562200
7 8579496 8564776 8552960 8557176
8 8752088 8734632 8571248 8574808
9 8743800 8573088 8567640 8573720
10 8740184 8744736 8582160 8590560
11 8760576 8766856 8756712 8587744
12 8757552 8943808 8602016 8765568
13 8768424 8602872 8589952 8595496
14 8768520 8574152 8588488 8595488
15 8778320 8588112 8597744 8609552
16 8773616 8777992 8504048 8507752
17 8507792 8521008 8508496 8514936
18 8683456 8686848 8675208 8505600
19 8693344 8676928 8514448 8522728
20 8497016 8501584 8518184 8526576
Average 8654946.8 8659783 8571818.8 8566831.6

6. Security analysis of the proposed scheme

Secure deceive to device (D2D) communication using
lightweight cryptographic protocol is accomplished with
four different phases i.e., key derivation at sender site,
secure key delivery through mutual authentication,
increasing key robustness and checking integrity of each
data blocks. Moreover, a detailed analysis of various
possible attacks and their prevention in the proposed
method is described in realistic environment of D2D
communication is presented below.

6.1 Scalability of key derivation

In the proposed scheme, the derived keys are extracted
from the secret key that reduces the computational cost for
another secret keys. It means that from one particular
secret key, we can be able to computes number of derived
keys.

6.2. Mutual authentication

Before data has been exchanged between the sender
and receiver device, both of them mutually authenticates
themselves in order to prevent entry of adversary node.
The proposed method has securely established the
connection between sender and receiver by exchanging the
messages between them. In this paper Algorithm 5 is
designed for secure mutual authentication between the
sender and receiver device.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021

361

6.3. Secret key establishment
The secure key delivery or establishment is one of the

important concerns in D2D communication. Even though
the keys are transmitted in a secure channel, there is a
possibility to capture the contents of the session keys. In
the proposed method, the derived keys are encrypted using
public key of the receiver and the encrypted keys are sent
to the receiver. These encrypted keys are only decrypted
by private key of the receiver and this private key is only
know to the receiver device.

6.4. Message integrity

Message integrity says that there is no modification,
deletion, addition or replay of the transmitted data. The
proposed method is designed in such a way that each and
every block undergone the originality check. However,
signature has been constructed for entire data file and
receiver is allowed for verifying the signature before
decrypting each data block.

6.5. Eavesdropping attack

Eavesdropping attacks are applicable only the intruder
device has the capability to intercept each, and every
packet transmitted between the D2D communication via
channels or paths which are not secure. In the proposed
scheme, before the data transmission, derived keys are
securely transmitted through mutual authentication and
every device is bounded to transmit data in encrypted form
and, thus, eavesdropping attacks are not feasible.

6.6. Impersonates attacks

In the proposed scheme, the intruder device will not
derive the data, which is shared between the sender and
receiver device, since the derived keys are encrypted using
receiver public key. Even the intruder captures the
encrypted key while sharing that cannot be decrypted
because the decryption is only possible by using receiver
private key. G. Perfect forward and backward secrecy. If
the intruder device has a capacity to intercept a complete
communication session between the sender and receiver
device and even the intruder device somehow finds a way
to encrypt the particular data using own key and sends the
encrypted data along with a key to the receiver device,
then the receiver.

7. Conclusion

Establishing keys and providing mutual authentication
between two end users are dominate issues for a device to
device (D2D) communication, which impacts the success
of services offered in a next generation of D2D
communications. In this paper, we proposed a secure
device to device communications using lightweight
cryptographic protocol. Initially, the scheme generates the
secret key of 128 bits using standard Blowfish algorithm.

The derived keys are generated using secret key using
random numbers and SHA1 hashing technique which
produces keys of 160 bits. In order to reduce the
computational cost data confidentiality and data integrity,
we reduce the key size from 160 bits into 128 bits by
extracting characters using mathematical random
procedure. The mutual authentication is achieved in a
great extent between the sender and receiver device. The
security analysis and key robustness proved that our
lightweight cryptographic protocol is secure in order to
defend various attacks. The experimental results shows
that our scheme can be deploy-able in real time D2D
communication.

References

[1] U. N. Kar and D. K. Sanyal, “A critical review of 3gpp
standardization of device-to-device communication in
cellular networks,” SN Computer Science, vol. 1, no. 1,p.
37, 2020.

[2] U. N. Kar and D. K. Sanyal, "An overview of device-to-
device communication in cellular networks", ICT Express,
volume 4, issue 4, December 2018, pages 203-208.

[3] M. Wazid, A. K. Das, N. Kumar, and A. V. Vasilakos,
“Design of secure key management and user authentication
scheme for fog computing services,” Future Generation
Computer Systems, vol. 91, pp. 475–492,2019.

[4] A. P. G Lopes and P. R. Gondim, “Mutual authentication
protocol for d2d communications in a cloud-based e-health
system,” Sensors, vol. 20, no. 7, p. 2072, 2020.

[5] G. S. Gaba, G. Kumar, T.-H. Kim, H. Monga, and P.
Kumar, “Secure device-to-device communications for 5g
enabled internet of things applications,” Computer
Communications, vol. 169, pp. 114–128, 2021.

[6] P. Gandotra, R. K. Jha, and S. Jain, “A survey on device-to-
device (d2d) communication: Architecture and security
issues,” Journal of Network and Computer Applications,
vol. 78, pp. 9–29, 2017.

[7] M. Haus, M. Waqas, A. Y. Ding, Y. Li, S. Tarkoma, and J.
Ott, “Security and privacy in device-to-device (d2d)
communication: A review,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 2, pp. 1054–1079, 2017.

[8] F. Jameel, Z. Hamid, F. Jabeen, S. Zeadally, and M. A.
Javed, “A survey of device-to-device communications:
Research issues and challenges,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 3, pp. 2133– 2168, 2018.

[9] J. Wang, Y. Huang, S. Jin, R. Schober, X. You, and C.
Zhao, “Resource management for device-to-device
communication: A physical layer security perspective,”
IEEE Journal on Selected Areas in Communications, vol.
36, no. 4, pp. 946–960, 2018.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.11, November 2021

362

[10] A. Khan, Y. Javed, J. Abdullah, J. Nazim, and N. Khan,
“Security issues in 5g device to device communication,”
IJCSNS, vol. 17, no. 5, p. 366, 2017.

[11] S. T. Shah, S. F. Hasan, B.-C. Seet, P. H. J. Chong, and M.
Y. Chung, “Device-to-device communications: A
contemporary survey,” Wireless Personal Communications,
vol. 98, no. 1, pp. 1247–1284, 2018.

[12] O. N. Hamoud, T. Kenaza, and Y. Challal, “Security in
device-to-device communications: a survey,” IET
Networks, vol. 7, no. 1, pp. 14–22, 2017.

[13] Y. Zhang, K. Cheng, F. Khan, R. Alturki, R. Khan, and A.
U. Rehman, “A mutual authentication scheme for
establishing secure device-to-device communication
sessions in the edge-enabled smart cities,” Journal of
Information Security and Applications, vol. 58, p. 102683,
2021.

[14] J. Kim and J. Song, “A secure device-to-device link
establishment scheme for lorawan,” IEEE Sensors Journal,
vol. 18, no. 5, pp. 2153– 2160, 2018.

[15] M. Waqas, M. Ahmed, Y. Li, D. Jin, and S. Chen, “Social-
aware secret key generation for secure device-to-device
communication via trusted and non-trusted relays,” IEEE
Transactions on Wireless Communications, vol. 17, no. 6,
pp. 3918–3930, 2018.

[16] R. Amin, S. H. Islam, P. Vijayakumar, M. K. Khan, and V.
Chang, “A robust and efficient bilinear pairing based
mutual authentication and session key verification over
insecure communication,” Multimedia Tools and
Applications, vol. 77, no. 9, pp. 11 041–11 066, 2018.

[17] S. Jegadeesan, M. Azees, P. M. Kumar, G. Manogaran, N.
Chilamkurti, R. Varatharajan, and C.-H. Hsu, “An efficient
anonymous mutual authentication technique for providing
secure communication in mobile cloud computing for smart
city applications,” Sustainable Cities and Society, vol. 49, p.
101522, 2019.

[18] V. Kumar, M. Ahmad, and A. Kumari, “A secure elliptic
curve cryptography based mutual authentication protocol
for cloud-assisted tmis,” Telematics and Informatics, vol.
38, pp. 100–117, 2019.

[19] M. S. Raniyal, I. Woungang, S. K. Dhurandher, and S. S.
Ahmed, “Passphrase protected device-to-device mutual
authentication schemes for smart homes,” Security and
Privacy, vol. 1, no. 3, p. e42, 2018.

[20] L. Wu, J. Wang, K.-K. R. Choo, and D. He, “Secure key
agreement and key protection for mobile device user
authentication,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 2, pp. 319–330, 2018.

[21] M. Wang, Z. Yan, and V. Niemi, “Uaka-d2d: Universal
authentication and key agreement protocol in d2d
communications,” Mobile Networks and Applications, vol.
22, no. 3, pp. 510–525, 2017.

Ajith Kumar V currently a Ph.D.
student at Visvesvaraya Technological
University, Regional Resource Center
of Belagavi. His research focus is on
security for resource-constrained
devices and application of lightweight
cryptographic techniques for securing
D2D communication. He obtained B.Sc.
degree from University of Mysore in

1991 and his M.C.A., degree from Kuvempu University in 1999.
His interest includes Computer Forensics, Cyber Security. He is
life member of Cryptology Research Society of India (CRSI).

K. Satyanarayan Reddy currently
working as Professor and Head of
Information Sceince & Engineering,
Cambridge Institute of Technology,
Bangalore. His qualification includes
Ph.D. in Computer Science (Dravidian
University, Kuppam, AP), MTech in
Computer Applications (Dept. Of CSE,

ISM Dhanbad). He has worked as faculty in many Engineering
Colleges. He has more than 25 Research Papers (National and
International) in his credit and has chaired national and
international conferences. Delivered Keynote address in few
national level conferences.

