
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

175

Manuscript received December 5, 2021
Manuscript revised December 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.12.25

A Parallel Genetic Algorithm for Solving Deadlock Problem
within Multi-Unit Resources Systems

Rabie Ahmed1, 2, *, Taoufik Saidani1, and Malek Rababa1

1 Department of Computer Science, Faculty of Computing and Information Technology, Northern Border University, Rafha,
Saudi Arabia

2 Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
* Correspondence Author:

Summary
Deadlock is a situation in which two or more processes

competing for resources are waiting for the others to finish, and
neither ever does. There are two different forms of systems, multi-
unit and single-unit resource systems. The difference is the number
of instances (or units) of each type of resource. Deadlock problem
can be modeled as a constrained combinatorial problem that seeks
to find a possible scheduling for the processes through which the
system can avoid entering a deadlock state.

To solve deadlock problem, several algorithms and techniques
have been introduced, but the use of metaheuristics is one of the
powerful methods to solve it. Genetic algorithms have been
effective in solving many optimization issues, including deadlock
Problem. In this paper, an improved parallel framework of the
genetic algorithm is introduced and adapted effectively and
efficiently to deadlock problem. The proposed modified method is
implemented in java and tested on a specific dataset. The
experiment shows that proposed approach can produce optimal
solutions in terms of burst time and the number of feasible
solutions in each advanced generation. Further, the proposed
approach enables all types of crossovers to work with high
performance.

Key words:

Deadlock Multi-instances, Genetic Algorithm, Banker
Algorithm, Parallel Algorithms.

1. Introduction

A deadlock in an operating system happens when a
process or thread enters a waiting state because a resource
sought by it is held by another waiting process, which is
waiting for yet another resource. A system is said to be in a
deadlock if a process is unable to modify its state
indefinitely because the resources sought by it are being
utilized by another waiting process [1]. Deadlock occurs
when software and hardware locks are employed to manage
shared resources and accomplish process synchronization in
multiprocessing systems, parallel computing, and
distributed systems [2].

If all of the following circumstances exist in a system
at the same time, it can result in a deadlock:

1. Mutual Exclusion: There must be at least one non-
shareable resource [1]. At any given moment, only one
process can use the resource.

2. Hold and Wait or Resource Holding: A process
presently has at least one resource and is requesting
more resources from other processes.

3. No Preemption: The operating system must not de-
allocate resources that have already been assigned;
instead, the holding process must release them willingly.

4. Circular Wait: A process must be waiting for a resource
that is being held by another process, which is in turn
waiting for the resource to be released by the first
process. P1, P2, ..., PN are a collection of waiting
processes in which P1 is waiting for a resource owned
by P2, P2 is waiting for a resource held by P3, and so on
until PN is waiting for a resource held by P1 [1],[3].

From Edward Coffman's original explanation in a 1971
article, these four conditions are known as the Coffman
conditions. A deadlock can't happen if any of these
requirements aren't met [3].

Multi-unit and single-unit resource systems are the two
types of systems available. Each sort of resource has a
different number of instances (or units). In a single-unit
resource system, each resource has just one instance to
distribute to many processes. If a cycle forms in the related
Resource Allocation Graph (RAG) in a single-unit resource
system, the system is deadlocked. Multi-unit resource
systems, in which any number of instances of a particular
resource type can exist, are more difficult. A cycle in the
related RAG for a multi-unit system, unlike single-unit
RAGs, provides no information about system deadlock. As
a result, a multi-unit resource system is the most generic
form of a single-unit resource system. Consequence, a
multi-unit deadlock detection technique may be utilized for
single-unit resource systems, but not the other way around.

Most modern operating systems are incapable of
preventing a deadlock [1]. When a deadlock occurs, various
operating systems react in a variety of non-standard ways.
The majority of techniques operate by inhibiting one of the
four Coffman requirements, often the fourth [4]. The
following are the major approaches:

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

176

1. Deadlock Prevention: By making sure that at least one

of the deadlock requirements is broken.
2. Deadlock Avoidance: By giving a priori data, the

system will be able to forecast and avoid deadlock
situations.

3. Deadlock Detection: Detecting and resolving deadlock
situations.

Deadlock prevention limits concurrency, but deadlock
recovery can be time-consuming and costly. Because of its
considerable cost, deadlock avoidance provides complete
concurrency but is rarely employed. The bankers' algorithm
was created by Dijkstra [5], and Haberman [6] improved it
to include numerous resource types. It supports maximum
concurrency in a system with n processes and m various
resource kinds, and its run time is O(m x n). There are two
definitions are needed to discuss the algorithms:
DEFINITION 1: A safe sequence of processes (P1, P2,...,
Pn) is considered a safe state if each Pi's remaining resource
requirements can be met with the available resources plus
the resources kept by all the Pj with j < i.
DEFINITION 2: The system is in a safe state if the
processes in the system follow a safe sequence. The
system's state is unsafe if no such sequence happens.

If the resources required by process Pi are not
immediately accessible, Pi will wait until all of Pj has
completed, where j< i. Pi will then get all of the resources it
needs, do the work it was given, return all of the resources
it was given, and exit. Pi+1 can acquire its needed resources
once Pi has completed, and so on. According to Haberman
[6] where each process's maximum resource need (claim) is
known ahead of time, this study assumes that each process
may make resource requests in any order within this
constraint. Depending on the notion of a safe state, the
banker's algorithm ensures that the system will never
deadlock; in other words, the concept effectively ensures
that the system will remain in a safe state. Initially, the
system is in a stable and secure condition. When a process
requires a resource that is already available, the system must
determine whether the resource may be allocated
immediately or if the process must wait. Only if the request
leaves the system in a safe condition, that is, if a safe
sequence of operations occurs within the system, should it
be granted.

The suggested parallel approach in this research is a
two-phase algorithm in which a hybrid of genetic
algorithms and banker's algorithm was devised and
developed in two stages, the first of which involves
extracting features and the second of which involves using
a modified parallel Genetic Algorithm.

The rest of the paper is structured as follows. Section 2
examines the linked work. The evolutionary algorithm
devised for the deadlock situation is presented in Section 3.

The experimental findings are presented in Section 4. In
Section 5, certain conclusions are formed.

2. Related Work

This section gives an overview of the strategies
presented to solve the deadlock problem, as well as certain
techniques that are relevant to our study. In general, the
study community focuses on three types of deadlock
problems: prevention, avoidance, and detection and
recovery, which arise from various problem-solving tactics.
Deadlock prevention [7] makes use of system architecture
and techniques to prevent the system from being stuck.
Deadlock avoidance [8] is event-driven and avoids
behaviors that can lead to a deadlock. These two approaches
frequently result in resource underutilization. Deadlock
detection is a technique for detecting and resolving
deadlocks.

The Resource Allocation Graph (RAG) [9] is used to
address single-unit resource systems, in which each
resource has only one instance of that kind to distribute to
different processes. There is a deadlock in this sort of
system if a cycle is generated in the corresponding Resource
Allocation Graph (RAG). It is more challenging in multi-
unit resource systems, because any number of instances of
a particular resource type might exist. Unlike single-unit
RAGs, the cycle in the corresponding RAG for the multi-
unit system provides no information on the system's
deadlock. There has been a lot of study on deadlock
detection in a variety of fields, but little has been done in
the area of optimization strategies. The method of
preventing deadlocks in any system design by arranging
resources in such a way that at least one of the requisite
deadlock conditions is never met. In this field, a large
number of research have been presented. The authors
presented the reinforcement learning scheduling technique
in [10]. This approach is utilized in job-shop discrete
production systems and corresponds with high-level
deadlock detection. The system was without buffering and
the first detection approach proposed to the second level and
third level deadlocks. By continuing, the high level
deadlock detection algorithm developed in the context of
less buffer of the job-shop system using the reinforcement
learning scheduling algorithm. In [11], the authors
introduced an efficient policy for deadlock avoidance. The
heuristic-based parameterized Banker's algorithm is one of
the most efficient algorithms available (H-pBA). Due to the
first buffer integration; first serve policy in the system, the
new algorithm achieves higher outcomes. In [12], [13] a
new scheduling algorithm proposed by the authors. The
algorithm merges a powerful supervised control with
heretical search. The goal of this research is minimizing the
make span of part list. Depending on the system reachability,

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

177

the latest algorithm produces a new heuristic function
associated with two rules for dispatching.

A dynamic polynomial window search algorithm was
developed by the authors. In [14] the authors concentrate on
the automated manufacturing system deadlock control with
the failure of multiple resources. The methodology
incorporates two steps. The first one is process of siphon
without unreliable resources. The solution was achieved
through adding optimal deadlock. Then, the unreliable
resources controlled by adding new control to guarantee
that it can be marked once the resources failed.

A new technique of steady state genetic algorithms
combined with the banker's algorithm is introduced in that
paper. Extracting features to feed the Genetic algorithm
optimizer is the first step in the operation sequence. The
structure of the chromosome created in this approach is the
one operation processes correlated with three different GA
operators: One-point crossover (1X), two-point crossover
(2X), and uniform crossover (UX) are the three operators.
The introduced method ensures a vast number of near-
optimal solutions avoiding the Deadlock system as a safe
state.

3. A modified Parallel Genetic Algorithm

The proposed method consists of a two-phase algorithm
in which a hybrid of Genetic Algorithms with Banker's
Algorithm was designed and developed based on two stages.
In the first stage, a features extraction is performed and in
the second stage, the proposed modified Genetic Algorithm
is applied. In order to employ banker's algorithm to solve
Deadlock using Genetic Algorithm, the former requires
various inputs to be preprocessed where all these inputs are
in the form of arrays named: Max, Allocation, Resources,
Need, Free Resources and Burst Time.

The proposed method in this paper is performed on
dataset defined by Ahmed NT et al [15] that is generated by
employing different operational information representing
the general obstacles of deadlock in the real world. The first
stage that acts as data preprocessing involves firstly
preparing the Max array which is an n x m matrix
representing the maximum number of instances of each
resource that a process can request. In other words, when
Max[i][j] = x, that means the process P(i) can request at
most x instances of resource type R(j) as shown in Table (1).

Table 1. Max array

Secondly, preparing Allocation array that is n x m array
representing the number of resources of each type that are
currently assigned to each process. So, if Allocation[i][j] =
x, that means process P(i) is currently assigned x instances
of resource type R(j) as it appears in Table (2).

Table 2. Allocation array

Thirdly, preparing Resources array that consists of
number of instances of all resources in the whole system.
So when Available[j] = x, that indicates x instances are
available of resource type R(j) as demonstrated in Table (3).

Table 3. Resources array

Finally, Burst time array is prepared which provides the
total time each process requires to implement as shown in
Table (4). This array plays a main role in the proposed
algorithm, where it is the criterion used to evaluate each
solution.

Table 4. Resources array

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

178

The remaining inputs such as Need array and Free
Resources array are derived from the arrays mentioned
above. As for Need array that is an n x m array as illustrated
in Table (5), where it determines the remaining resource
needs of each process. So when Need[i][j] = x, that means
process P(i) may need x more instances of resource type R(j)
in order to implement its task completely. Calculating the
required resources for each process is achieved by applying
the Equation (1) as illustrated below:
Needij = Maxij – Allocationij (1)
Where: i indicates a process, j indicates a resource.

Table 5. Need array

Free Resources array representing free instances of all
resources in the whole system depicted in Table (6). That
can be computed using Equation (2).
Free Resources=Resources - ∑ 𝑨𝒍𝒍𝒐𝒄𝒂𝒕𝒊𝒐𝒏𝒊 ,𝒋

𝒏ି𝟏
𝒊ୀ𝟎 (2)

Where:
i: number of process.
j: number of resources starting from 0 to m.
n: total number of processes.

Table 6. Free Resources array

In the second stage, the proposed modified genetic
algorithm is performed, where its inputs are the arrays
provided in the first stage. Genetic algorithms are fit to work
with a population of possible problem solutions, where each
solution called a chromosome also (both terms are used
interchangeably in this paper) contains an arrangement of
processes in a random order, and is considered safe if that
arrangement ensures that all processes are executed.

Each solution provides three pieces of information
representing chromosome structure as depicted in the figure
(1). The first section of the solution (F1) indicates its state -
whether it is a safe solution or not. The second section is
the Fitness value (F2), represents how good a solution is.
The third section stores a random order of processes waiting

to be executed as shown in the third section (F3). The
algorithm assigns fitness value for each solution by
computing the average waiting time using Fitness Function
in the Equation (3). Therefore, solutions with low Fitness
values will have a higher probability of being selected for
survival than solutions with high fitness values.

Average Waiting Time=
∑ ∑ 𝒃𝒖𝒓𝒔𝒕𝑻𝒊𝒎𝒆ሺ𝑷𝒊ሻ

𝒊
𝒋స𝟎

𝒏ష𝟐
𝒊స𝟎

𝒏
 (3)

Where:
n: the number of processes.
i: a process order in the arrangement

F1 F2 F3

Safe Fitness P0 P1 P3 … Pn

Figure 1. Genetic representation of solution

The proposed modified method as shown in the figure

(2) starts by generating the first generation randomly that
consists of a number of solutions N, where N is the
population size determined in advanced. Algorithm (1)
depicts the whole procedure.

Figure 2. Schematic Diagram of Modified GA

Once the first generation internalized each solution
evaluated to compute its fitness value and to determine it
is safe or not Algorithm (2) and (3) describe how this
evaluation achieved. Then, all solutions are stored in a
pool named the Main Pool.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

179

Algorithm 1 Pseudo Code for Adapted Genetic
Algorithm
1:G  Generate first Generation
randomly with size N
2: MainPool Evaluate(G)
3: For i = 0 to T, where T is Number of Generations
4: For j = 0 to N
5:TempPoolEvaluate(Muataion(BinarySelection(Mai
nPool)))
6:TempPoolEvaluate(Crossover(MainPoolj,BinarySel
ection(MainPool)))
7: End For
8: TempPool  Add All Solutions of MainPool
9: Empty MainPool
10: ElitismList  Select Best m Solutions from
TempPool
11: MainPool  ElitismList
12: For j = 0 to N-m
13: S  BinarySelection(TempPool)
14: MainPool  S
15: Remove S from TempPool
16: End For
17: Empty TempPool
18: if termination condition is met then
19: break;
20: End if
21: End For

Algorithm 2 Pseudo Code for Evaluation
1: input: S, where S is a Solution (Chromosome)
2: Z  size of S, where Z is the number of Processes
3: Safe  True
4: For i = 0 to Z
5: For j =0 to R, where R is the number of resources
6: if Need_Sij > Freej

7: Safe  False
8: break;
9: break;
10: End if
11: End For
12: End For
13: if Safe = True then
14: For j = 0 to R
15: NewFreej=Allocation_Sij+ Freej
16: End For
17: Fitness_S  ComputingWaitingTime(S)
18: esle
19: WorstWaitingTime  ComputingWaitingTime(S~),
 where the processes is ordered decreasingly by
 their burst time in S~
20: WorstFitness  (Z-D)* WorstWaitingTime,
where D is the number of processes that were able to
execute
21: End if

Algorithm 3 Pseudo Code for computing waiting Time
1: input: S, where S is a Solution (Chromosome)
2: totalWaitingTime  0
3: For i = 0 to N, where N is the number of processes
4: waitingTime  0
5: For j = 0 to i
6: waitingTime+=Si , where Si is a process in
index number i
7: End For
8: totalWaitingTime+= waitingTime
9: End For

In order to assure adequate evolution pressure, a Binary

selection method [16] is employed in which k solutions
(parents) are selected randomly and ordered by their fitness
values and then the solution with best fitness value (the
lowest value) is selected for the crossover and mutation
operators. As for the crossover operator, All types of
crossover (One point, Two points and Uniform) [17] used
in this research work and in term of mutation operator, the
convention type [18] in which two genes (processes) are
selected randomly and exchange their positions with each
other. Next, all solutions stored in the Main Pool are moved
to the Temp pool along with the evaluated solutions yielded
after applying those operators. To construct the next
generation, the best M solutions in the Temp pool as well as
solutions selected from the Temp solution by using
Tournament Selection algorithm are moved to the Main
Pool, where the number of solutions have to be selected
from the Temp pool is equal to (N – M). The whole
procedure is repeated excepting generating and evaluating
the first generation, either until a good-enough solution is
found or a fixed count of iteration is reached.

4. Implementation and Results

The proposed algorithm was programmed using Java
language and the experiments were conducted on an Intel
Core i7-7700 (CPU @ 3.60 GHz with 8 GB RAM) PC
running Windows 10 Pro OS and tested on the dataset
developed by Ahmed NT et al[16] as mentioned in Section
3, this dataset is created by the use of various operational
data representing the general barriers of the real world
deadlock. For each algorithm configuration (crossover
type), ten executions were made and the parameter settings
of the proposed improved algorithm were determined
empirically for the deadlock problem as specified in Table
(7). In order not to degrade diversity in the population and
also to avoid the algorithm from slowing down too much, a
low value was chosen for the tournament size. Therefore,
the tournament will have a lower selective pressure
compared to other tournament types. In which three
solutions (chromosomes) are selected randomly from the
population and then, out of each couple, the solution with

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

180

the least cost is selected. The number of elitism solutions
was chosen empirically to preserve elitist solutions and
avoid the loss of good solutions once they are identified.

Table 7: Parameter Setting for the proposed algorithm

Parameter Value

Generation Number 1000
Population Size 50
Selection Mechanism Tournament Selection
Tournament Size 3
Number of Elitism
Solutions

5

Crossover Type
One Point, Two Points, and
Uniform

By observing the results shown in Tables (8 and 9) and

the graphs in figures (3 and 4), it is inferred that the
proposed framework of the genetic algorithm is capable to
find feasible solutions for all crossover types (One Point,
Two Points, Uniform) and the performance is quite
promising and can reaches to the optimal solutions after few
iterations where all the solutions in the population are
feasible, in other words, it is capable of finding a large
number of optimal solutions that display the system's safe
state, which eliminates the Dead Lock case system.

Figure 3. The average burst time of all crossover types for each
generation over ten runs

Figure 4. The average number of solutions with safe state of all
crossover types for each generation over ten runs

Table 8: Comparison of all crossover types in terms of the required
number of generations to reach to the optimal solutions for each run

Run No. One Point Two Points Uniform

1 14 19 14
2 18 22 19
3 22 20 11
4 25 21 19
5 23 16 18
6 13 19 14
7 16 10 19
8 20 17 17
9 16 25 20

10 15 25 17
5.

Table 9: Comparison of all crossover types in terms of the required
number of generations to make all the solutions feasible (Safe State)

for each run

Run No. One Point Two Points Uniform
1 17 15 15
2 25 19 14
3 17 20 15
4 23 24 16
5 15 17 18
6 27 21 14
7 20 17 16
8 20 17 23
9 16 16 18

10 17 20 19

0

2000

4000

6000

8000

10000

12000

1 4 7 10 13 16 19 22 25 28 31 34 37 40

B
u
rs

t
Ti

m
e

Number of Generations

One Point Two Points Uniform

0

10

20

30

40

50

60

1 4 7 10 13 16 19 22 25 28 31 34 37 40N
um

b
er

 o
f
So

lu
tio

ns
 w

it
h

Sa
fe

St
at

e

Number of Generations

One Point Two Points Uniform

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

181

In fact, all the crossover types lead to high performance,
where one point was better than one point and the uniform
was the best in terms of the number of the required iterations
to reach the optimal solution as shown in figure 5. On the
other hand, to reach a population in which all solutions are
feasible (Safe State) two points was slightly better than one
point and also the uniform surpass the other crossover types
as illustrated in figure 6.

Figure 5. The average required number of generations to reach to the

optimal solutions for each crossover type

Figure 6. The average required number of generations to make all the

solutions feasible (Safe State) for each crossover type

5. Conclusion

In this study, the Hybrid- algorithm has been improved
for deadlock problem by proposing an improved framework
for the genetic algorithm. Based on the comparisons
between the results obtained by the hybrid algorithm and
the banker's algorithm prove that the proposed algorithm
can reach to the best solution with a reasonable number of
generations that means a shorter time and also it is able to
produce populations in which all individuals are in safe state
with high quality solutions that implies providing many
solutions that are able to avoid the deadlock and keeping the

system in a safe state. The results also show that the
proposed framework enable all crossover types to be
utilized in effective and efficient way. In addition,
Experimental findings affirm the standard uniform
crossover operator as the best crossover operator.

Acknowledgments

The authors wish to acknowledge the approval and the
support of this research study by the grant No. 7-14-1436-5
from the Deanship of Scientific Research in Northern
Border University, Arar, KSA.

References
[1] Silberschatz, Abraham, "Operating System Principles", (7

ed.). Wiley-India. p. 237, 2006.
[2] Padua, David, "Encyclopedia of Parallel Computing",

Springer. p. 524, 2011.
[3] Shibu, "Intro To Embedded System", (1st ed.). McGraw Hill

Education. p. 446, 2009.
[4] Stuart, Brian L, "Principles of operating systems", (1st ed.).

Cengage Learning. p. 446, 2008.
[5] E. W. Dijkstra, “Cooperating sequential processes”,

Technical Report EWD-123, Technological University,
Eindhoven, The Netherlands, 1965.

[6] A. N. Haberman, “Prevention of system deadlocks”,
Communication of the ACM, Vol. 12, No. 7, July 1969, pp.
373-385.

[7] Shoshani and E. Coffman, “Prevention, detection and
recover from deadlock in multiprocess, multiple resource
systems”, Technical Report 80, Princeton University, 1969.

[8] Belik F. “An efficient deadlock avoidance technique”, IEEE
Transactions on Computers. 1990 Jul;39(7):882-8.

[9] Yao, B., Yin, J., & Wu, W. , “Deadlock Avoidance Based on
Graph Theory”, International Journal of u-and e-Service,
Science and Technology, 9(2), 353-362, 2016.

[10] Chen, M.; "Policy based reinforcement learning approach Of
Job shop scheduling with high level deadlock detection";
MSc. Thesis; Iowa State University; Ames, Iowa; 2013.

[11] Choi, J. Y.; "Design and comparative performance analysis
of a heuristic-based parameterised Banker’s algorithm using
the CRL scheduling problems"; International Journal of
Production Research; Vol. 53, No. 9, 2605–2616,
http://dx.doi.org/10.1080/00207543.2014.970710; 2015.

[12] Luo, J. C.; and Et al.; "Scheduling of deadlock and failure-
prone automated manufacturing systems via hybrid heuristic
search"; International Journal of Production Research;
http://dx.doi.org/10.1080/00207543.2017.1306132; 2017.

[13] Chen, M.; and Rabelo, L.; "Deadlock-Detection via
Reinforcement Learning"; Ind Eng Manage; Vol.6: 215.
doi:10.4172/2169-0316.1000215; 2017.

[14] Wu, Y.; and Et al.; "Robust deadlock control for automated
manufacturing systems with a single type of unreliable
resources"; Advances in Mechanical Engineering; Vol. 10(5)
1–14; DOI: 10.1177/1687814018772411; 2018.

[15] Ahmed, Nada Thanoon, and Narjis Mezaal Shati. "A New
Method for Solving Deadlock Using Genetic
Algorithms." International Journal of Advanced Research in
Engineering and Technology 10.1, 2019.

15

16

17

18

19

20

One Point Two Points Uniform

G
EN

ER
A
TI

O
N

 N
U
M

BR
E

15

16

17

18

19

20

One Point Two Points Uniform

G
EN

ER
A
TI

O
N

 N
U
M

BE
R

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

182

[16] Smith, J., & Vavak, F. , “ Replacement strategies in steady
state genetic algorithms: Static environments. Foundations of
genetic algorithms”, 5, 219-233, 1999.

[17] Poli, R., & Langdon, W. B., “On the search properties of
different crossover operators in genetic programming.
Genetic Programming”, 293-301, 1998.

[18] De Falco, I., Della Cioppa, A., & Tarantino, E., “Mutation-
based genetic algorithm: performance evaluation”, Applied
Soft Computing, 1(4), 285-299, 2002.

Author Biography

Rabie Ahmed, Department
of Computer Science, Faculty
of computing & IT, Northern
Border University, Rafha,
Saudi Arabia. He received his
PhD degree in Computer
Science from Faculty of
Science, Beni-Suef
University, Egypt in 2012
after joint scholarship
between Egypt and USA. His

major research interests include Parallel and Distributed
Computing, Artificial Intelligence and Machine Learning
Techniques.

Taoufik Saidani, Department
of Computer Science, Faculty
of computing & IT, Northern
Border University, Rafha,
Saudi Arabia. He received his
PhD degree in Computer
Science and Engineering from
Faculty of Science, of
Monasstir, Tunisia in 2014.
His major research interests
include VLSI and embedded

System in video and image compression, Digital image
processing, Artificial Intelligence and Deep Learning.

Malek Rababa, Department
of Computer Science, Faculty
of computing & IT, Northern
Border University, Rafha,
Saudi Arabia. He received his
Bachelor degree from Jerash
Private University in 2004 and
his master’s degree from Al-
Balqa Applied University in
2009. His major research

interests include Artificial Intelligence.

