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Summary 
Deadlock is a situation in which two or more processes 

competing for resources are waiting for the others to finish, and 
neither ever does. There are two different forms of systems, multi-
unit and single-unit resource systems. The difference is the number 
of instances (or units) of each type of resource. Deadlock problem 
can be modeled as a constrained combinatorial problem that seeks 
to find a possible scheduling for the processes through which the 
system can avoid entering a deadlock state.  

To solve deadlock problem, several algorithms and techniques 
have been introduced, but the use of metaheuristics is one of the 
powerful methods to solve it. Genetic algorithms have been 
effective in solving many optimization issues, including deadlock 
Problem. In this paper, an improved parallel framework of the 
genetic algorithm is introduced and adapted effectively and 
efficiently to deadlock problem. The proposed modified method is 
implemented in java and tested on a specific dataset. The 
experiment shows that proposed approach can produce optimal 
solutions in terms of burst time and the number of feasible 
solutions in each advanced generation. Further, the proposed 
approach enables all types of crossovers to work with high 
performance.  
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1. Introduction 

A deadlock in an operating system happens when a 
process or thread enters a waiting state because a resource 
sought by it is held by another waiting process, which is 
waiting for yet another resource. A system is said to be in a 
deadlock if a process is unable to modify its state 
indefinitely because the resources sought by it are being 
utilized by another waiting process [1]. Deadlock occurs 
when software and hardware locks are employed to manage 
shared resources and accomplish process synchronization in 
multiprocessing systems, parallel computing, and 
distributed systems [2]. 

If all of the following circumstances exist in a system 
at the same time, it can result in a deadlock: 

1. Mutual Exclusion: There must be at least one non-
shareable resource [1]. At any given moment, only one 
process can use the resource. 

2. Hold and Wait or Resource Holding: A process 
presently has at least one resource and is requesting 
more resources from other processes. 

3. No Preemption: The operating system must not de-
allocate resources that have already been assigned; 
instead, the holding process must release them willingly. 

4. Circular Wait: A process must be waiting for a resource 
that is being held by another process, which is in turn 
waiting for the resource to be released by the first 
process.  P1, P2, ..., PN are a collection of waiting 
processes in which P1 is waiting for a resource owned 
by P2, P2 is waiting for a resource held by P3, and so on 
until PN is waiting for a resource held by P1 [1],[3]. 

From Edward Coffman's original explanation in a 1971 
article, these four conditions are known as the Coffman 
conditions. A deadlock can't happen if any of these 
requirements aren't met [3]. 

Multi-unit and single-unit resource systems are the two 
types of systems available. Each sort of resource has a 
different number of instances (or units). In a single-unit 
resource system, each resource has just one instance to 
distribute to many processes. If a cycle forms in the related 
Resource Allocation Graph (RAG) in a single-unit resource 
system, the system is deadlocked. Multi-unit resource 
systems, in which any number of instances of a particular 
resource type can exist, are more difficult. A cycle in the 
related RAG for a multi-unit system, unlike single-unit 
RAGs, provides no information about system deadlock. As 
a result, a multi-unit resource system is the most generic 
form of a single-unit resource system. Consequence, a 
multi-unit deadlock detection technique may be utilized for 
single-unit resource systems, but not the other way around. 

Most modern operating systems are incapable of 
preventing a deadlock [1]. When a deadlock occurs, various 
operating systems react in a variety of non-standard ways. 
The majority of techniques operate by inhibiting one of the 
four Coffman requirements, often the fourth [4]. The 
following are the major approaches: 
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1. Deadlock Prevention: By making sure that at least one 

of the deadlock requirements is broken. 
2. Deadlock Avoidance: By giving a priori data, the 

system will be able to forecast and avoid deadlock 
situations. 

3. Deadlock Detection: Detecting and resolving deadlock 
situations. 

Deadlock prevention limits concurrency, but deadlock 
recovery can be time-consuming and costly. Because of its 
considerable cost, deadlock avoidance provides complete 
concurrency but is rarely employed. The bankers' algorithm 
was created by Dijkstra [5], and Haberman [6] improved it 
to include numerous resource types. It supports maximum 
concurrency in a system with n processes and m various 
resource kinds, and its run time is O(m x n). There are two 
definitions are needed to discuss the algorithms: 
DEFINITION 1: A safe sequence of processes (P1, P2,..., 
Pn) is considered a safe state if each Pi's remaining resource 
requirements can be met with the available resources plus 
the resources kept by all the Pj with j < i. 
DEFINITION 2: The system is in a safe state if the 
processes in the system follow a safe sequence. The 
system's state is unsafe if no such sequence happens. 

If the resources required by process Pi are not 
immediately accessible, Pi will wait until all of Pj has 
completed, where j< i. Pi will then get all of the resources it 
needs, do the work it was given, return all of the resources 
it was given, and exit. Pi+1 can acquire its needed resources 
once Pi has completed, and so on. According to Haberman 
[6] where each process's maximum resource need (claim) is 
known ahead of time, this study assumes that each process 
may make resource requests in any order within this 
constraint. Depending on the notion of a safe state, the 
banker's algorithm ensures that the system will never 
deadlock; in other words, the concept effectively ensures 
that the system will remain in a safe state. Initially, the 
system is in a stable and secure condition. When a process 
requires a resource that is already available, the system must 
determine whether the resource may be allocated 
immediately or if the process must wait. Only if the request 
leaves the system in a safe condition, that is, if a safe 
sequence of operations occurs within the system, should it 
be granted. 

The suggested parallel approach in this research is a 
two-phase algorithm in which a hybrid of genetic 
algorithms and banker's algorithm was devised and 
developed in two stages, the first of which involves 
extracting features and the second of which involves using 
a modified parallel Genetic Algorithm. 

The rest of the paper is structured as follows. Section 2 
examines the linked work. The evolutionary algorithm 
devised for the deadlock situation is presented in Section 3. 

The experimental findings are presented in Section 4. In 
Section 5, certain conclusions are formed. 

2. Related Work 

This section gives an overview of the strategies 
presented to solve the deadlock problem, as well as certain 
techniques that are relevant to our study. In general, the 
study community focuses on three types of deadlock 
problems: prevention, avoidance, and detection and 
recovery, which arise from various problem-solving tactics. 
Deadlock prevention [7] makes use of system architecture 
and techniques to prevent the system from being stuck. 
Deadlock avoidance [8] is event-driven and avoids 
behaviors that can lead to a deadlock. These two approaches 
frequently result in resource underutilization. Deadlock 
detection is a technique for detecting and resolving 
deadlocks. 

The Resource Allocation Graph (RAG) [9] is used to 
address single-unit resource systems, in which each 
resource has only one instance of that kind to distribute to 
different processes. There is a deadlock in this sort of 
system if a cycle is generated in the corresponding Resource 
Allocation Graph (RAG). It is more challenging in multi-
unit resource systems, because any number of instances of 
a particular resource type might exist. Unlike single-unit 
RAGs, the cycle in the corresponding RAG for the multi-
unit system provides no information on the system's 
deadlock. There has been a lot of study on deadlock 
detection in a variety of fields, but little has been done in 
the area of optimization strategies. The method of 
preventing deadlocks in any system design by arranging 
resources in such a way that at least one of the requisite 
deadlock conditions is never met. In this field, a large 
number of research have been presented. The authors 
presented the reinforcement learning scheduling technique 
in [10]. This approach is utilized in job-shop discrete 
production systems and corresponds with high-level 
deadlock detection. The system was without buffering and 
the first detection approach proposed to the second level and 
third level deadlocks. By continuing, the high level 
deadlock detection algorithm developed in the context of 
less buffer of the job-shop system using the reinforcement 
learning scheduling algorithm. In [11], the authors 
introduced an efficient policy for deadlock avoidance. The 
heuristic-based parameterized Banker's algorithm is one of 
the most efficient algorithms available (H-pBA). Due to the 
first buffer integration; first serve policy in the system, the 
new algorithm achieves higher outcomes. In [12], [13] a 
new scheduling algorithm proposed by the authors. The 
algorithm merges a powerful supervised control with 
heretical search. The goal of this research is minimizing the 
make span of part list. Depending on the system reachability, 
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the latest algorithm produces a new heuristic function 
associated with two rules for dispatching. 

A dynamic polynomial window search algorithm was 
developed by the authors. In [14] the authors concentrate on 
the automated manufacturing system deadlock control with 
the failure of multiple resources. The methodology 
incorporates two steps. The first one is process of siphon 
without unreliable resources. The solution was achieved 
through adding optimal deadlock. Then, the unreliable 
resources controlled by adding new control to guarantee 
that it can be marked once the resources failed.  

A new technique of steady state genetic algorithms 
combined with the banker's algorithm is introduced in that 
paper. Extracting features to feed the Genetic algorithm 
optimizer is the first step in the operation sequence. The 
structure of the chromosome created in this approach is the 
one operation processes correlated with three different GA 
operators: One-point crossover (1X), two-point crossover 
(2X), and uniform crossover (UX) are the three operators. 
The introduced method ensures a vast number of near-
optimal solutions avoiding the Deadlock system as a safe 
state. 

3. A modified Parallel Genetic Algorithm  

The proposed method consists of a two-phase algorithm 
in which a hybrid of Genetic Algorithms with Banker's 
Algorithm was designed and developed based on two stages. 
In the first stage, a features extraction is performed and in 
the second stage, the proposed modified Genetic Algorithm 
is applied. In order to employ banker's algorithm to solve 
Deadlock using Genetic Algorithm, the former requires 
various inputs to be preprocessed where all these inputs are 
in the form of arrays named: Max, Allocation, Resources, 
Need, Free Resources and Burst Time.  

The proposed method in this paper is performed on 
dataset defined by Ahmed NT et al [15] that is generated by 
employing different operational information representing 
the general obstacles of deadlock in the real world. The first 
stage that acts as data preprocessing involves firstly 
preparing the Max array which is an n x m matrix 
representing the maximum number of instances of each 
resource that a process can request. In other words, when 
Max[i][j] = x, that means the process P(i) can request at 
most x instances of resource type R(j) as shown in Table (1). 

 

 

 

 

 

 

 

 

Table 1. Max array 

 
 

Secondly, preparing Allocation array that is n x m array 
representing the number of resources of each type that are 
currently assigned to each process. So, if Allocation[i][j] = 
x, that means process P(i) is currently assigned x instances 
of resource type R(j) as it appears in Table (2). 

 
Table 2. Allocation array 

 
 

Thirdly, preparing Resources array that consists of 
number of instances of all resources in the whole system. 
So when Available[j] = x, that indicates x instances are 
available of resource type R(j) as demonstrated in Table (3). 
 

Table 3. Resources array 

 
 

Finally, Burst time array is prepared which provides the 
total time each process requires to implement as shown in 
Table (4). This array plays a main role in the proposed 
algorithm, where it is the criterion used to evaluate each 
solution.    
 

Table 4. Resources array 
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The remaining inputs such as Need array and Free 
Resources array are derived from the arrays mentioned 
above. As for Need array that is an n x m array as illustrated 
in Table (5), where it determines the remaining resource 
needs of each process. So when Need[i][j] = x, that means 
process P(i) may need x more instances of resource type R(j) 
in order to implement its task completely. Calculating the 
required resources for each process is achieved by applying 
the Equation (1) as illustrated below: 
Needij = Maxij – Allocationij                                   (1) 
Where: i indicates a process, j indicates a resource. 

 

Table 5. Need array 

 
 

Free Resources array representing free instances of all 
resources in the whole system depicted in Table (6). That 
can be computed using Equation (2).  
Free Resources=Resources - ∑ 𝑨𝒍𝒍𝒐𝒄𝒂𝒕𝒊𝒐𝒏𝒊 ,𝒋

𝒏ି𝟏
𝒊ୀ𝟎  (2) 

Where: 
i: number of process. 
j: number of resources starting from 0 to m. 
n: total number of processes. 
 

Table 6. Free Resources array 

 
 

In the second stage, the proposed modified genetic 
algorithm is performed, where its inputs are the arrays 
provided in the first stage. Genetic algorithms are fit to work 
with a population of  possible problem solutions, where each 
solution called a chromosome also (both terms are used 
interchangeably in this paper) contains an arrangement of 
processes in a random order, and is considered safe if that 
arrangement ensures that all processes are executed. 

Each solution provides three pieces of information 
representing chromosome structure as depicted in the figure 
(1). The first section of the solution (F1) indicates its state - 
whether it is a safe solution or not.  The second section is 
the Fitness value (F2), represents how good a solution is. 
The third section stores a random order of processes waiting 

to be executed as shown in the third section (F3). The 
algorithm assigns fitness value for each solution by 
computing the average waiting time using Fitness Function 
in the Equation (3). Therefore, solutions with low Fitness 
values will have a higher probability of being selected for 
survival than solutions with high fitness values. 

 

Average Waiting Time=  
∑ ∑ 𝒃𝒖𝒓𝒔𝒕𝑻𝒊𝒎𝒆ሺ𝑷𝒊ሻ

𝒊
𝒋స𝟎

𝒏ష𝟐
𝒊స𝟎

𝒏
             (3) 

Where: 
n: the number of processes. 
i: a process order in the arrangement 
 

F1 F2 F3 

Safe Fitness P0 P1 P3 … Pn 
 

Figure 1. Genetic representation of solution 

 
The proposed modified method as shown in the figure 

(2) starts by generating the first generation randomly that 
consists of a number of solutions N, where N is the 
population size determined in advanced. Algorithm (1) 
depicts the whole procedure.  
 

 
Figure 2. Schematic Diagram of Modified GA 

 
 

Once the first generation internalized each solution 
evaluated to compute its fitness value and to determine it 
is safe or not Algorithm (2) and (3) describe how this 
evaluation achieved. Then, all solutions are stored in a 
pool named the Main Pool. 
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Algorithm 1 Pseudo Code for Adapted Genetic 
Algorithm 
1:G  Generate first Generation 
randomly with size N 
2:   MainPool Evaluate(G) 
3:   For i = 0 to T, where T is Number of Generations 
4:        For j = 0 to N     
5:TempPoolEvaluate(Muataion(BinarySelection(Mai
nPool))) 
6:TempPoolEvaluate(Crossover(MainPoolj,BinarySel
ection(MainPool))) 
7:        End For 
8:        TempPool   Add All Solutions of MainPool 
9:        Empty MainPool 
10:   ElitismList  Select Best m Solutions from 
TempPool 
11:      MainPool  ElitismList 
12:      For j = 0 to N-m  
13:            S  BinarySelection(TempPool) 
14:            MainPool  S 
15:            Remove S from TempPool 
16:       End For 
17:       Empty TempPool 
18:       if termination condition is met then 
19:           break; 
20:       End if 
21:  End For  

 
Algorithm 2 Pseudo Code for Evaluation 
1: input: S, where S is a Solution ( Chromosome) 
2: Z  size of S, where Z is the number of Processes  
3: Safe  True 
4: For i = 0 to Z 
5:      For j =0 to R, where R is the number of resources 
6:          if Need_Sij > Freej  

7:             Safe   False 
8:             break; 
9:             break; 
10:        End if 
11:      End For 
12:  End For     
13: if Safe = True then 
14:     For j = 0 to R  
15:           NewFreej=Allocation_Sij+ Freej 
16:     End For 
17:     Fitness_S  ComputingWaitingTime(S) 
18: esle 
19: WorstWaitingTime  ComputingWaitingTime(S~),   
            where the processes is ordered decreasingly by  
            their burst time in S~  
20:       WorstFitness   (Z-D)* WorstWaitingTime, 
where D is the number of processes that were able to 
execute 
21: End if         

Algorithm 3 Pseudo Code for computing waiting Time 
1: input: S, where S is a Solution ( Chromosome) 
2: totalWaitingTime  0 
3: For i = 0 to N, where N is the number of processes  
4:        waitingTime  0 
5:        For j = 0 to i 
6:              waitingTime+=Si , where Si is a process in 
index number i 
7:         End For 
8:        totalWaitingTime+= waitingTime 
9: End For 

 
In order to assure adequate evolution  pressure, a Binary 

selection method [16] is employed in which k solutions 
(parents) are selected randomly and ordered by their fitness 
values and then the solution with best fitness value (the 
lowest value) is selected for the crossover and mutation 
operators. As for the crossover operator, All types of 
crossover (One point, Two points and Uniform) [17] used 
in this research work and in term of mutation operator, the 
convention type [18] in which two genes (processes) are 
selected randomly and exchange their positions with each 
other. Next, all solutions stored in the Main Pool are moved 
to the Temp pool along with the evaluated solutions yielded 
after applying those operators. To construct the next 
generation, the best M solutions in the Temp pool as well as 
solutions selected from the Temp solution by using 
Tournament Selection algorithm are moved to the Main 
Pool, where the number of solutions have to be selected 
from the Temp pool is equal to (N – M). The whole 
procedure is repeated excepting generating and evaluating 
the first generation, either until a good-enough solution is 
found or a fixed count of iteration is reached. 

4. Implementation and Results 

The proposed algorithm was programmed using Java 
language and the experiments were conducted on an Intel 
Core i7-7700 (CPU @ 3.60 GHz with 8 GB RAM) PC 
running Windows 10 Pro OS and tested on the dataset 
developed by Ahmed NT et al[16] as mentioned in Section 
3, this dataset is created by the use of various operational 
data representing the general barriers of the real world 
deadlock. For each algorithm configuration (crossover 
type), ten executions were made and the parameter settings 
of the proposed improved algorithm were determined 
empirically for the deadlock problem as specified in Table 
(7). In order not to degrade diversity in the population and 
also to avoid the algorithm from slowing down too much, a 
low value was chosen for the tournament size. Therefore, 
the tournament will have a lower selective pressure 
compared to other tournament types. In which three 
solutions (chromosomes) are selected randomly from the 
population and then, out of each couple, the solution with 
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the least cost is selected. The number of elitism solutions 
was chosen empirically to preserve elitist solutions and 
avoid the loss of good solutions once they are identified.   
 

Table 7: Parameter Setting for the proposed algorithm 

Parameter Value 

Generation Number 1000 
Population Size 50 
Selection Mechanism Tournament Selection 
Tournament Size 3 
Number of Elitism 
Solutions 

5 

Crossover Type 
One Point, Two Points, and 
Uniform 

 
By observing the results shown in Tables ( 8 and 9 ) and 

the graphs in figures (3 and 4), it is inferred that the 
proposed framework of the genetic algorithm is capable to 
find feasible solutions for all crossover types (One Point, 
Two Points, Uniform)  and the performance is quite 
promising and can reaches to the optimal solutions after few 
iterations where all the solutions in the population are 
feasible, in other words, it is capable of finding a large 
number of optimal solutions that display the system's safe 
state, which eliminates the Dead Lock case system.  

 

 

Figure 3. The average burst time of all crossover types for each 
generation over ten runs 

 

Figure 4. The average number of solutions with safe state of all 
crossover types for each generation over ten runs 

 

Table 8: Comparison of all crossover types in terms of the required 
number of generations to reach to the optimal solutions for each run 

Run No. One Point Two Points Uniform 

1 14 19 14 
2 18 22 19 
3 22 20 11 
4 25 21 19 
5 23 16 18 
6 13 19 14 
7 16 10 19 
8 20 17 17 
9 16 25 20 

10 15 25 17 
5.  

Table 9: Comparison of all crossover types in terms of the required 
number of generations to make all the solutions feasible (Safe State) 

for each run 

Run No. One Point Two Points Uniform 
1 17 15 15 
2 25 19 14 
3 17 20 15 
4 23 24 16 
5 15 17 18 
6 27 21 14 
7 20 17 16 
8 20 17 23 
9 16 16 18 

10 17 20 19 
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In fact, all the crossover types lead to high performance, 
where one point was better than one point and the uniform 
was the best in terms of the number of the required iterations 
to reach the optimal solution as shown in figure 5. On the 
other hand, to reach a population in which all solutions are 
feasible (Safe State) two points was slightly better than one 
point and also the uniform surpass the other crossover types 
as illustrated in figure 6. 

 

 
Figure 5. The average required number of generations to reach to the 

optimal solutions for each crossover type 

 
 

 
Figure 6. The average required number of generations to make all the 

solutions feasible (Safe State) for each crossover type 

5. Conclusion 

In this study, the Hybrid- algorithm has been improved 
for deadlock problem by proposing an improved framework 
for the genetic algorithm. Based on the comparisons 
between the results obtained by the hybrid algorithm and 
the banker's algorithm prove that the proposed algorithm 
can reach to the best solution with a reasonable number of 
generations that means a shorter time and also it is able to 
produce populations in which all individuals are in safe state 
with high quality solutions that implies providing many 
solutions that are able to avoid the deadlock and keeping the 

system in a safe state. The results also show that the 
proposed framework enable all crossover types to be 
utilized in effective and efficient way. In addition, 
Experimental findings affirm the standard uniform 
crossover operator as the best crossover operator.  
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