
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

207

Manuscript received December 5, 2021
Manuscript revised December 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.12.30

Buffer Overflow Attack and Defense Techniques

Sabah M. Alzahrani

Department of Computer Science, College of Computers and Information Technology, Taif University,
Taif P.O. Box 11099, Taif, 21944, Saudi Arabia

Summary
A buffer overflow attack is carried out to subvert privileged
program functions to gain control of the program and thus
control the host. Buffer overflow attacks should be
prevented by risk managers by eradicating and detecting
them before the software is utilized. While calculating the
size, correct variables should be chosen by risk managers in
situations where fixed-length buffers are being used to
avoid placing excess data that leads to the creation of an
overflow. Metamorphism can also be used as it is capable
of protecting data by attaining a reasonable resistance level
[1]. In addition, risk management teams should ensure they
access the latest updates for their application server
products that support the internet infrastructure and the
recent bug reports [2]. Scanners that can detect buffer
overflows’ flaws in their custom web applications and
server products should be used by risk management teams
to scan their websites.
This paper presents an experiment of buffer overflow vulnerability
and attack. The aims to study of a buffer overflow mechanism,
types, and countermeasures. In addition, to comprehend the
current detection plus prevention approaches that can be executed
to prevent future attacks or mitigate the impacts of similar attacks
.
Key words:
Buffer; Overflow; Cybersecurity; Stack; Defense; Attack;
Shellcode.

1. Introduction

Internet usage over the years globally has experienced exponential
growth due to the benefits associated with its utilization to
governments, corporations, and individuals. However, the
interconnected computer systems have led to the discovery of
various software vulnerabilities, which can be exploited by
unscrupulous individuals or organizations.
Furthermore, the most prevalent vulnerability is the buffer
overflow attack, which in most cases is activated by the input that
is explicitly designed to execute malicious code. Additionally, the
recent infamous buffer over attacks includes I love you attacks,
Blaster, and the SQL Slammer, all of which were unexpected
behaviors that exist in particular programming languages.
Likewise, the inability of a program to store large amounts of data
in a buffer is the main reason why hackers utilize buffer overflow
attacks. Thus, when a program attempts to store excess data than
what it was made to store, the extra information overflows into

other buffers in most cases which are not considered good by most
experts as the buffer’s original data may be overwritten [3].
Contemporary hackers have been disguising buffer overflow
attacks as viruses intending to illegally access information.

2. Literature Review

Buffer overflows are a common occurrence in most
organizations today, and weakness is created by the
vulnerability in cases where memory near a buffer is
overwritten which should not be unintentionally or
deliberately adjusted in a program. Some buffer overflow
attack causes are logical errors that arise while
implementation is being carried out, using unsafe library
functions, and a lack of input filters. In situations where a
buffer overflow attack occurs, the program either loses its
stability or collapses [4]. Most attackers do not carry out
buffer overflow attacks to cripple the program but rather to
overwrite the stack's essential values so that their
malevolent unsigned codes can be executed. Because they
target web servers, web applications, and desktop
applications that are used by most organizations, buffer
overflows are considered to be extremely dangerous.

The attack usually occurs to destroy the memory, where it
comprises of these memory sections such as the stack that
is responsible for storing local variables such as the inside
functions and arguments. Another area is the data area,
which comprises the data segment that consists of the static
or global variables previously started by the programmer [3].
Furthermore, another data area is the BSS segment, which
is known as the Block started by the symbol. It comprises
the uninitialized global variables, which can be initialized
to zero that occurs before the program execution. Moreover,
the heap is the data area segment where it is the space
utilized for dynamic memory allocation when there is a
program execution underway by malloc(), calloc(), realloc(),
and free(). Likewise, there is the text segment that

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

208

comprises the program executable code plus it is usually
read-only.

Fig. 1 Memory program layout description

There exist two types of buffer overflow attacks namely
stack-based and heap-based attacks, which can have
devastating effects on the functioning of computers. In
addition, these attacks lead to the memory space reserved
for the program being usually flooded by the attacker in a
heap-based attack. Furthermore, heap overflow attacks are
those where the buffer that is to be overwritten is allocated
in the memory’s heap portion, where the data writing to the
memory is done without the data undergoing the bound
checking processes. Equally, the stack, which is a memory
potion reserved to store addresses and data for the program,
is targeted and taken advantage of by the attacker in the
stack-based attack [5]. Similarly, the stack is then forced to
partially crash by the attacker which forces the execution of
the program to start from a malicious program address from
the attacker. Besides, other types of attack entail integer
overflows.

3. Methodology

In this paper, a program with a buffer-overflow
vulnerability is used; then develop a scheme to exploit the
vulnerability and finally gain the root privilege. The
environment has been applied on pre-built Ubuntu 16.04
VM, which can be downloaded from the SEED website and
these tasks are explained in the SEED website as well [6].
First, since the buffer-overflow attack is difficult in Ubuntu
and other Linux distributions, it has to turning off the
countermeasures by disable them. These systems use
address space randomization for randomizing the start
address of heap and stack as well. Thus, it is difficult to
guessing the exact addresses. This can be done by the
following commands:

sudo sysctl -q kernel.randomize_va_space

Fig. 2

Then, turn off the interspace random

sudo sysctl -w kernel.randomize_va_space=0

Fig. 3 Turn off the interspace random

The victim program is a Set-UID program, and the attack
relies on running /bin/sh, thus the countermeasure in
/bin/dash makes the attack more difficult. Therefore, /bin/sh
will link to another shell which does not have a
countermeasure. To install a shell program by the
following command.
 ls -l /bin/sh &sudo IN -sf/bin/zsh/bin/sh

Fig. 4 Install a shell program

After that, the vulnerable program (stack.c) is used. This
program has a buffer-overflow vulnerability. The aim to
exploit this vulnerability and get the root privilege by
writing the following commands.
gcc -fno-stack-protector -z execstack stack.c -o stack

Fig. 5 Exploit the vulnerability and get the root privilege

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

209

The (stack.c) is program that has a buffer overflow
vulnerability. Firs,t program reads an input from the
file(badfile). Second, passes the input to another buffer in
the function called bof(). The maximum length is 517 bytes
of original input. However, the buffer in bof() is less than
517 on BUF SIZE bytes. The buffer overflow will occur
here since strcpy() function does not check the boundaries.
In addition, this program is a root-owned Set-UID program,
thus if a normal user can exploit this buffer overflow
vulnerability, the user able to gain a root shell. It have to
create the contents for (badfile). Thus the vulnerable
program copies the contents into its buffer, therefore a root
shell can be spawned.
./stack

Fig. 6 The vulnerable program copies the contents into its
buffer

It has to turn off the StackGuard and the non-executable
stack protections using the -fno-stack-protector and "-z
execstack". In addition, it has to make the program a root-
owned SetUID program. The following are the commands
used.
sudo chown root stack
sudo chmod 4755 stack
 ls -l stack

Fig. 7 Make the program a root-owned SetUID program-1

gcc -g -fno-stack-protector -z execstack stack.c -o
stack_dbg
gdb ./stack_dbg

Fig. 8 Make the program a root-owned SetUID program-2

Fig. 9 Make the program a root-owned SetUID program-3

Fig. 10 Make the program a root-owned SetUID program-4

Fig. 11 Make the program a root-owned SetUID program-5

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

210

Fig. 12 Make the program a root-owned SetUID program-6

Fig. 13 Make the program a root-owned SetUID program-7

Fig. 14 Make the program a root-owned SetUID program-8

After that, now it have to exploiting the vulnerability using
code called (exploit.py). This code is to construct contents
for the file (badfile).

Fig. 15 This code is to construct contents for the file

(badfile) - 1

python3 exploit.py
bless badfile &>/dev/null

Fig. 16 This code is to construct contents for the file
(badfile)-2

Then, modifying the C code, and compile it.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

211

Fig. 17 Modifying the C code, and compile it

Fig. 18 Compile C code

vbindiff badfile badfilepy

Fig. 19 Construct contents (badfile)

Now, lets defeating dash’s Countermeasure by change the
real user ID of the victim process to zero. This has to be
before invoking the dash program by invoking setuid(0)
before executing execve() in the shellcode. Thus, first
change the /bin/sh symbolic link, this set back to :/bin/dash
sudo ln -sf /bin/zsh /bin/sh
sudo ln -sf /bin/zsh /bin/sh

Fig. 20 Change the /bin/sh symbolic link

Now, lets defeating address randomization by using brute-
force approach. This can be done by turn on the
Ubuntu’s address randomization.
sudo sysctl -w kernel.randomize_va_space=0

Fig. 21 turn on the Ubuntu’s address randomization.

Now, lets turn on the StackGuard protection by compile
the program without the -fno-stack-protector option. Also,
it should be o turn off the address randomization.

Fig. 22 Turn on the StackGuard protection

Now, recompile the vulnerable program using the
noexecstack option. This scheme will make such attack very
difficult.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

212

Fig. 23 No attack can occur in this schema.

4. Discussion

Due to buffer overflow attacks becoming quite common in
contemporary times, both computer experts need to
understand the methods of preventing them. To achieve this,
programmers must first ensure no buffer overflows occur in
their programs [7]. Besides, this can be achieved through
utilizing programming languages that do not result in buffer
overflows like Java, NET, PHP, Python, and PERL.
Fortunately, in cases where a program is released and
demonstrates this vulnerability, software developers can
make patches that can address some of the bugs. When the
initial development of these is tools taking place,
programmers can use additional programs like LibSafe,
StackGaurd, and StackShield to screen errors. Additionally,
developer training and code auditing can be used to resolve
the vulnerabilities that make buffer overflows possibly.
Computer experts should utilize systems that use non-
executable stacks to protect their systems from a stack
overflow. Furthermore, screening of code should be carried
out to ensure no junk characters exist and the code is not too
long. If programmers use an out-of-date or vulnerable
language, they should ensure that they use updated patches,
the principle of least privilege, and compilers that can
protect the program from overflows. Lastly, checking of
exceptions should always be carried out while factoring in
the language used and how it supports this function.

5. Conclusion

Buffer overflow attacks should be prevented by risk
managers by eradicating and detecting them before the
software is utilized. This paper presents an experiment of
buffer overflow vulnerability and attack. The aims to study
of the buffer overflow mechanism, types, and
countermeasures. Buffer overflow attacks should be
prevented since its become a critical attack against many
organizations.

References
[1] Chiamwongpaet, Sirisara, and Krerk Piromsopa. "Boundary

Bit: Architectural Bound Checking for Buffer-Overflow
Protection." ECTI Transactions on Computer and
Information Technology (ECTI-CIT) 14.2 (2020): 162-173.
Fan, X., Cao, J.: A Survey of Mobile Cloud Computing. ZTE
Communications 9(1), 4–8 (2011)

[2] Di, Bang, et al. "Efficient Buffer Overflow Detection on
GPU." IEEE Transactions on Parallel and Distributed
Systems 32.5 (2020): 1161-1177.

[3] Mihailescu, Marius Iulian, and Stefania Loredana Nita.
"Brute Force and Buffer Overflow Attacks." Pro
Cryptography and Cryptanalysis with C++ 20. Apress,
Berkeley, CA, 2021. 423-434.

[4] Nicula, Ștefan, and Răzvan Daniel Zota. "Exploiting stack-
based buffer overflow using modern day
techniques." Procedia Computer Science 160 (2019): 9-14.

[5] Sah, Love Kumar, Sheikh Ariful Islam, and Srinivas Katkoori.
"An efficient hardware-oriented runtime approach for stack-
based software buffer overflow attacks." 2018 Asian
Hardware Oriented Security and Trust Symposium
(AsianHOST). IEEE, 2018.

[6] Seedsecuritylabs.org. 2021. Buffer-Overflow Vulnerability
Lab. [online] Available at:
<https://seedsecuritylabs.org/Labs_16.04/Software/Buffer_
Overflow/> [Accessed 12 November 2021].

[7] Wang, Zhilong, et al. "To detect stack buffer overflow with
polymorphic canaries." 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN). IEEE, 2018.

Sabah Alzahrani received the B.Sc. degree in Computer
Science from Taif University, Saudi Arabia, in 2007. the M.Sc.
degree and Ph.D degree. in computer and information systems
engineering, from Tennessee State University, United States in
2015 and 2018 respectively. He is currently an Assistant Professor
with department of Computer Science, College of Computers and
Information Technology, Taif University, Taif, Saudi Arabia. Her
research interests include the Internet of Things, Cyber Security,
Computer Networking, Cloud, and Big Data.

