
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

280

Manuscript received December 5, 2021
Manuscript revised December 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.12.40

EFFICIENT OPEN SOURCE DISTRIBUTED ERP SYSTEM FOR LARGE
SCALE ENTERPRISE

MOHAMED ELMASSRY1† and SAAD AL-AHAMADI2††,

1 Computer Science Department, College of Computer and Information Sciences, King Saud University,
Riyadh, Saudi Arabia, 2 Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh,

Saudi Arabia

Summary
Enterprise Resource Planning (ERP) is a software that manages
and automate the internal processes of an organization. Process
speed and quality can be increased, and cost reduced by process
automation. Odoo is an open source ERP platform including more
than 15000 apps. ERP systems such as Odoo are all-in-one
management systems. Odoo can be suitable for small and medium
organizations, but duo to efficiency limitations, Odoo is not
suitable for the large ones. Furthermore, Odoo can be implemented
on both local or public servers in which each has some advantages
and disadvantages such as; the speed of internet, synced data or
anywhere access. In many cases, there is a persistent need to have
more than one synchronized Odoo instance in several physical
places. We modified Odoo to support this kind of requirements
and improve its efficiency by replacing its standard database with
a distributed one, namely CockroachDB.
Key words:
Odoo, ERP, distributed ERP systems, distributed database,
CockroachDB. Open Source ERP.

1. Introduction

One of the critical enablers for top managements and
decision makers is the information system. We can consider
information systems as the main component of nowadays’
scene. Enterprise Resources Planning (ERP) is a software
that introduces wide options of application functionality for
all organizations’ sizes while supporting a significant part
of any kind of business activities.

In the large size companies (having more than 500
employee), there is a persistent need to install and operate
more than one ERP instance, each of which may be
customized in a different way [18]. Consequently, a need
has appeared to organize data between several information
systems – not only between ERP and other systems like
CRM, website, E-commerce, manufacturing, billing system,
accounting, warehouse, project management and inventory
systems, but also between different instances of ERP
systems.

Odoo is an open source platform that contains ERP
system which contains a variety of applications, such as
Accounting, inventory management, customer relationship
management CRM and many other applications like CAD,

PDM, and SCM. These applications work consistently with
each other to manage companies of all sizes. One
application in Odoo is made up of one or several Odoo
modules which are built to work tightly with PostgreSQL as
Object-Relation Database Management System
(ORDBMS). With time, and as the amount of data stored in
PostgreSQL DB (Database) increases, the performance of
the system will be reduced, which leads to a bad customer
experience [2]. Odoo can be implemented on both local and
public servers. Each implantation has some advantage and
disadvantage like the speed of internet and synced data or
logging in to the system from anywhere, office, home or
outside the country. In many cases, there is a persistent need
to have two or more of Odoo instances in several physical
places, all of them must be synchronized with each other.
These cases like but not limited to: Having a system for both
the company and its branches. The default Odoo system
does not allow syncing the data neither between two Odoo
instances or between two databases. Because of this
limitation, Odoo cannot be useful in lots of cases.

Some companies that operate in retail sector, such as
grocery chains, restaurants chain, pharmacies, etc., often
need points of sell (POS). These POS should be distributed
around a specific geographic area, so these companies can
serve as many customers as they can. Of course, Odoo
system can be installed on the cloud, and all the sales points
will be connected to the cloud to complete the sales
processes, but if the internet is disconnected, the sale
process will stop, which will make Odoo users completely
dissatisfied. In this case, the companies will install two or
more of Odoo system instances; one in the main center and
one for each branch. The biggest problem is the data
consistency between the central system and the branches,
As Odoo server does not provide synchronization between
more than one Odoo instance by default.

In this paper we will modify Odoo system to support this
kind of needs by replacing its standard database with a new
one (CockroachDB Open Source Database) that has the
distributed system standards [1]. By default, Odoo uses
PostgresDB as a database solution. Nevertheless, we have
chosen CockroachDB to be an alternative solution for
PostgresDB for several reasons. Initially, CockroachDB is

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

281

built primarily on PostgresDB [1] which means that
CockroachDB is a new and improved version of
PostgresDB, and this feature will shorten a lot of work and
compatibility problems between the work-layer interface in
Odoo and the database. Another reason to make
CockroachDB a magnificent choice for this project is that it
is built using a Google Spanner technology. Google Spanner
is a scalable database in which a single instance can be run
from anywhere [25]. Moreover, CockroachDB is an open
source project. This means that it can be used without
paying any financial costs for licenses [1].

The remainder of this paper is organized as follows:
Section 2 “Related works”: In this section, we explain the
theoretical problem background that we try to solve in
details. To achieve that, we describe Odoo in general. Then
we describe distributed systems’ pros & cons and we
illustrate CockroachDB system. After that, we describe
other aspects like Postgres, ERP system, Google spanner
and Open source licenses. In Section 3 “Literature Review”:
We will review the solutions and previous works that tried
to solve the same problem in the ERP system area. We will
also review what the advantages and disadvantages of each
solution are. Section 4 “Suggested Design &
Implementation”: First, we describe the system
requirements. Then, we illustrate the benefits of the
CockroachDB components that we used. Then we explain
how we will implement the new Odoo system, also we show
the changes that we will apply to the current Odoo system.
In Section 5 “Experiments”: We will show the experiments
that have been made and how the proposed design surpasses
the other designs. In Section 6 “Conclusion & Future Work”:
We will list the new features and improvements that we
expect to be applied to Odoo system after proposed
modifications; including security, reliability, speed,
performance, and failure resistance and disaster resistance.
Also, we summarize our experiment steps and its results.
Finally, we suggest how we can enhance Odoo performance
in the future.

2. Related Worktyle

Manuscripts Distributed systems are systems with
multi-components that are connected through the network.
The only way to communicate between those components
is through message passing [15]. In each distributed system,
there is a common goal that the components of this system
try to communicate with each other.

There are three important features in any
distributed system. First, components synchronization.
Second, not having a global clock between those
components. Third, the system should be failure
independent (The system should not fail if any of its

components fails). There are many examples of distributed
systems ranging from sensitive systems of information
security and financial transactions to systems of electronic
games and entertainment. An application that operates on a
distributed system is called a distributed program. When we
write such programs, we call this process distributed
programming [16]. There are other ways of passing
messages in distributed systems such as using pure HTTP
[16]. There are three essential aspects of a distributed
system which include:

Availability: we can define availability as one of
the available system components that send a request to other
parties, this request must be answered by the component or
components involved in it [17].

Consistency: It means that each operation in the
system works as if it has the whole control on the data item
while being sequenced one after another. Any read
operation that begins after a write operation completes,
should answer back with the confirmation of that write
operation or the confirmation of any later write operation
[17].

Partition: If the network components are divided
into two main sets and all requests that go from one set to
another are lost we can then say that it is partitioned [17].

2.1 ERP System

Enterprise Resources Planning (ERP) is a software
that works in integrating the already available information
all over the support or core business that has an aim to be
capable planning and managing all the available resources
to an enterprise so that all business areas within a project
can run well. ERP system also consists of several integrated
modules, such as material management, sales, distribution,
production planning, financial systems and human
resources system.

2.2 Odoo

Odoo is an open source ERP system known
previously as OpenERP, and it is considered the highest
installed business application worldwide with more than
3,000,000 users [3]. Odoo has been used in many large
companies such as; Hyundai, Toyota and Danone. As it also
offers both On-Premise and Cloud ERP system, in addition
of consisting of 30 primary applications such as; (sales, e-
commerce, invoicing, accounting and user website
management). In the time of writing, around 15,612
modules were available in the Odoo app store and more than
300 modules are added per month. Odoo is developed using

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

282

Python 2.3 and 3.5 for the latest version of Odoo 11.0 At
the time of writing this paper.

Odoo provides a standardized way for developers
to develop new Odoo modules or customize and modify the
already existed modules. Odoo modules consist of several
modules which interact with each other’s and with other
modules to achieve the goal of the developed module.
Model inheritance and View inheritance are the main
features in Odoo which allows the developer to add new
features to a model or view and modify an already existed
model.

We can consider Odoo as a multitenant
architecture application. There are three main tiers in Odoo.
First, the database tier. Obviously, this tire is for data
storage. Second, the application tier. This tire is responsible
for processing and functionalities as it contains all business
roles. Third, the presentation tier which provides the user
interface. Inside Odoo server, Odoo treats those tires as
separate layers where its core is the application tier itself. In
order to create a particular instance of Odoo, there are many
other modules that can be installed. We can adapt this
instance to specific needs and requirements through
installing a combination of those modules. Moreover, Odoo
framework is based on the View and Controller (MVC)
architectural organization model.

Figure 1 shows an instance of Odoo deployment. As it also
shows that an Odoo system consists of three main tires
bases on Web embedded deployment: A PostgreSQL
database tire server: This tire contains all Odoo database.
The whole application data and the biggest part of the Odoo
instances configuration elements like menus and privilege
are stored in those databases, this tire can possibly be
deployed using other deployment methodologies like
clustered databases. The Odoo Server tire: This tire ensures
that Odoo's logic runs optimally. This tire also includes all
the business requirements or logics. There is also a
dedicated layer for communicating with the PostgreSQL
database called ORM engine.
It is possible to have more than one server instance for
multilabel reasons like in our project. The client tire: It is a
JavaScript application that runs on the client-side device
like a (web browser). PostgreSQL database tire, also
called data layer. PostgreSQL relational database provides
the main components of this tire. However, SQL queries can
be explicitly executed directly from Odoo modules. The
whole application data and most Odoo elements settings are
stored in databases. Clustered databases can be used to
deploy this tire as we propose in this paper. We can build
business requirements, or applications in top of Odoo
application server (Odoo server tire). Furthermore, we can
consider Odoo application server as a comprehensively
framework for development that provides a wide range of

options to develop the business requirements. Also, Odoo
ORM (Object Relational Mapping) offers functionalities
and interfaces included in those features provided by Odoo
application server. In order to communicate between the
standard browser applications used by the client and the
Odoo application server, Odoo provides a dedicated layer
to organize communication between the two parties.

From the developers' point of view Figure 2, Odoo
provides these properties in the form of a programming
library (API) that invokes all the benefits and properties of
the upper layer and hides all the complex details in the
bottom layer. Object Relational Mapping Server tire – ORM.
This tire is not a noticeable feature by the developers of the
Odoo apps. Odoo ORM Offers more benefits and important
features above PostgreSQL server layer. The description
and identification of the objects (data models) in Odoo are
written in Python language and then converted into tables
and fields in the database. The whole advantages of
RDPMS such as; relational queries and active queries are
used by Python language through this layer. For example,
any convention developed in Python language can be
append to any Odoo data form. Odoo also provides
scalability mechanisms for different modules. It is very
important to understand the working mechanism and
responsibilities of ORM before starting to use it in order to
be able to deal with it and with clean SQL lines. When we
use the ORM layer, Odoo ensures that the data stay clean
without any deformities. For example, if we use ORM layer,
no data can be created through any module without using
ORM layer tire.

Figure 1. Web deployment Odoo architecture [2]

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

283

Figure 2. Relational database server and ORM [3]

2.3 CockroachDB Database

 Databases can be split into two types: The
relational databases and NoSQL databases. In the mid
1970's, the concept of relational databases was first
developed [18]. On the other hand, the concept of NoSQL
was developed at the beginning of the 20th century [19].
Nowadays, there are more than 255 different kinds of
NoSQL databases [20][19]. Database systems are
constantly being developed due to high inflation in the data
itself.
Machine power growth can be done in X or Y axes, either
vertical or horizontal. If we add more processors, hard
drives space or random memory RAM in the same machine,
that means we are expanding our system vertically. We will
not only get a too large and expensive machine, but we will
even reach a point where we will not be able to expand
further. So, the best way is to expand horizontally by
assembling more than one machine in one organized system
(no matter if it's small or cheap). There is no doubt that
horizontal expansion is more effective than vertical
expansion in terms of cost and performance.
For relational databases, horizontally expansion faces many
difficulties. This is because relational databases are not
designed (from the beginning) to work on distributed
systems [32]. In the other hand, we can store a large volume
of data as we expand distribution and use NoSQL databases
that allow horizontal expansion. Nevertheless, it is not easy
to achieve ACID (Atomicity, Consistency, Isolation, and
Durability) operations. Over time, many developers have
developed the advantages and features of NoSQL databases.
Therefore, CockroachDB is an example of NoSQL

databases that gain more advanced features and benefits by
the time from transactional databases. CockroachDB is a
distributed NoSQL database and is currently a production
stage. CockroachDB supports distributed system features
including ACID operations and principles [22]. Developers
of the CockroachDB database say that many data centres
can be saved if they use a CockroachDB database because
they provide the lowest rate of failure [1]. There are some
similarities between CockroachDB Sqlite4 and MySQL,
because all of them are using key/value store approach [24].
But CockroachDB is able to install on a single instance as
much as the multi node clusters system. That means it can
expand in both directions horizontally by joining the other
available nodes or vertically by adding more resources.
CockroachDB provides a highly available and fault
tolerance features and is designed to store three images of
any data model. In the case of machine crash, data is
automatically redistributed to other versions to achieve 3
data instances again [24].
Furthermore, CockroachDB, which is a version of Google
Spanner, is a database with an open source license. The
most beneficial feature of CockroachDB database has
overcome the disadvantage of Spanner (Spanner cannot
work without Google infrastructure). Because of that,
CockroachDB can be implemented anywhere even on the
local machine (not like Google Spanner which limits the
choices for the ERP implementers).
The main difference between CockroachDB database and
Spanner is that CockroachDB database does not rely on
Google API’s like TrueTime. CockroachDB relies on
techniques built within its design to coordinate the clock
between different CockroachDB nodes. In the next section,
we get more about Google Spanner.
Spanner database is a scalable and global distributed
database that Google designed, built, and deployed at
Google infrastructure internally as one of Google projects.
At the highest level of abstraction, it is typically a database
that shards data across many sets of Paxos state machines in
data centres that are spread all over the world [25].
Replication is used for global availability and geographic
locality; clients automatically failover between replicas.
Spanner automatically migrates data across machines (and
across data centres) to balance load and in response to
failures.
Furthermore, Spanner automatically re-shards data across
machines as the amount of data or the number of servers'
changes. Spanner is designed to scale up to multi-millions
of machines across multi-hundreds of data centres and
multi-trillions of database lines. Applications (like Odoo)
can use Spanner for high availability, even in the face of
wide-area natural disasters, by replicating their data within
or even across continents. Google spanner is the first system
to do that at a global scale [1]. Spanner assigned a global

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

284

timestamp of the transactions across a distributed set of
nodes. The key to those global timestamps is the TrueTime
API (one of Google’s APIs) and its implementation. The
TrueTime API abstracts and exposes clock uncertainty and
allows applications to reason with uncertainty, while the
TrueTime API implementation in Google’s data centres
restricts the uncertainty to less than ten milliseconds. The
uncertainty is very small compared to other systems where
the delay between different clocks across a distributed
system can reach 250 milliseconds. By having two physical
clocks on each node atomic and GPS, Google’s TrueTime
API implementation can be achieved [25]. Because of that,
Spanner is tied and restricted to Google infrastructure.

3. Literature Review

Many studies have address the ERP and
information system architecture. With the fact that they are
not directly mapped to a single database of a unique ERP
server for a company anymore, but instead requires to be
modelled inside an organization, distributed systems
requirements have to be supported by both ERP and the
information system [30][31]. Gattiker and Goodhue [26]
discussed ERP systems’ adoption in a distributed
organization that consists of 20 units. In the first trial to
perform ERP, the units were given much autonomy to
configure the ERP instances. This strategy failed as the
project quickly ran out of budget.

MHD Fawaz [27] tried to make an experimental
performance comparing NoSQL and RDBMS data storage
systems in Odoo ERP system to increase the performance
of Odoo by replacing Postgres database with Hadoop
ecosystem, but the experiment results were not as promising
as expected. However, integrating an application with big
data technologies opens new opportunities by providing a
robust data processing framework and increase system
availability (Figure 3).

Figure 3. Comparison between PostgreSQL and HBase "Hadoop" in
filter messages process by body content [27]

An N-safe technique was proposed by Frank [36]. In

general, replication methods have “n” copies of data where
“n” have to be more than 1. The primary replication designs
that store “n” in different copies of data are n-safe, 2-safe,
1-safe or 0-safe respectively. When these n, 2, 1 or 0 of the
N copies are consistent and are up-to-date at the usual
operation. In some cases, it is not possible but to use the 1-
safe or 0-safe replication designs. However, we cannot
prefer on of the replication designs over the others as they
all have different properties. [28].

Frank has once again proposed a structure that tells us the
possibility of applying the concepts and properties ACID
(Atomicity, Consistency, Isolation, and Durability) of the
distributed systems on any ERP system as one of the trends
in the enterprise application architecture [37]. And as he
theoretically said, such a system can exist by using a
distributed DBMS (Data Base Management System)
instead of using the regular database Systems. Frank just
describes the way of designing a distributed ERP system
by using databases with relaxed ACID properties. The
described techniques are general and in the theoretical level.
These techniques need more efforts to be implemented
practically on a real ERP product.

Alanne, et. al. proposed a solution based on peer-to-peer
networks and web services for the distributed ERP system
for small and medium enterprises [39]. Their proposed
solution was using an “out-of-the-box” computer with a
preinstalled software, where web services must be used to
expand the functionality of the whole system. Their work
shows that their solution is very much cheaper to be
installed and maintained than the already available
solutions. But the author did not discuss information
security problems to share data among network participants.
Moreover, one of the most important features of the system
is that if a user requests a piece of data and this part is not
available in the local area, the system will automatically
search for it in other objects' databases [39]. This creates a
serious problem in information security. Moreover, the
authors were describing their solution in general and in the
theoretical level. They hope that this design will bring a new
generation of ERP systems, which may be easier to install
and maintain than the traditional ERP systems [39].

Gerhard and Michael described the effect of the
usefulness of the distributed ERP systems according to the
quality of the material master data [28]. The author
presented several issues that are in relation with the quality
of the master data (data of the customers, suppliers,
employees, or products). The master data comes from
several systems in large organizations (not just ERP, but
other systems like CRM). In addition, the problems of data
entry from different sources or wrong entries are the biggest
problems, along with a different number of ERP instances.

Elmasri and Navathe [40] showed the scientific concepts
of distributed database systems, distributed databases,

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

285

distributed database management systems, and the way the
client-server architecture is used as a platform for database
application development in their book " Fundamentals of
Database Systems " [40] in which they describe how
distributed databases bring the advantages of the distributed
computing to the management domain of the database. They
also, describe the possible mechanisms by which the data
can be divided into distributed databases systems. They also
proposed a mechanism for implementing queries in
distributed databases. Finally, they reviewed Oracle
distributed databases.

Tamer and Valduriez described more principles of
distributed database systems in their design and structure
[42]. Moreover, they have discussed deeper concepts in
distributed databases such as; parallel databases, linking
distributed databases with cloud computing, peer-to-peer
databases and other advanced concepts.

Google launched Google Spanner by disclosing it in its
scientific paper " Google’s globally distributed database"
[25]. Google says it is to be the first data distribution system
all over the world. They explained the details of their design,
the way it works, its characteristics and its features. But its
main disadvantage is that Spanner was tied with Google's
infrastructure (TrueTime API) [25].

H. Daudi & j. Vora in Serpent Consulting Services Pvt.
Ltd. have developed a module Odoo that provides a solution
for synchronizing two Odoo databases together. They call it
Multi-DB Synchronization [9].

Toolkt Co. did a similar work called OpenERP-
Base_Synchro for Odoo v7. The OpenERP-Base_Synchro
module provides the merging or the transferring the data
from one database into another. It also takes care of all the
defined constraints over the objects of other reserves’
databases. [10]

BrowseInfo Co. uses H. Daudi & j. Vora work and adds
more features to it like the automatic scheduled action,
report after synchronization and details of the database [11].
They called it Auto Multiple Database Synchronization or
bi_base_synchro.

However, all the three-previous works have some
obvious disadvantages or problems. First, the three
solutions depend on the Odoo application layer, and this
requires more resources for the application servers. Also, if
one of the application servers has a failure, the whole
syncing process will stop. Second, the admin user needs to
identify the objects one by one in both databases to be
synced. However, this is not practical from the user’s point
of view, and if we consider the hidden object (Odoo define
everything as object menus, action, and even views, etc. not
just a natural data object like a student, employee, product,
and others. Therefore, there are thousands of objects), it will
be unpractical at all. Third, this solution is acutely to union
the records in both database processes. It will work fine if

our requirement is to import our old recurred to the new
database.

4. System Design and Implementation

To optimize Odoo performance, availability,
failure resistance, disaster resistance, reliability and security,
we need to adjust Odoo to store data into database support
distrusted system features to get the benefits of a scalable
data management system. As we described in Section 2.1
“Odoo system architecture”, there are several components
and layers (see Figure 2) such as PostgreSQL database,
Odoo server, Server – ORM, Server–Web, Modules,
Clients and Odoo MVC, each of these components is
connected as Figure 2 describes.

As we previously proposed, we will replace PostgreSQL
database with our selected DB, which is CockroachDB
database. The Odoo architecture will change, Odoo ORM
will be connected with CockroachDB instead of
PostgreSQL. This change will not affect either the
representation of the Odoo models nor the views or
controllers Because CockroachDB is PostgreSQL [1].
CockroachDB will do the rest of the distributed system
work. Our new Odoo system will gain more layers from
CockroachDB. At its highest levels, CockroachDB converts
the SQL statements of the clients rinto key-value (KV) data,
which gets distributed to the nodes and then written to the
disk. In our case, SQL statements come from Odoo ORM.
CockroachDB design and architecture is the process by
which we use to accomplish that, which is manifested as
some layers that interact with those directly connected with
it (both up and down it) as relatively not transparent services.
The performed functions by each layer are described in the
following Table. Some interactions occur between layers
which are not explicitly articulated and require an
understanding of the function of each layer to understand
the entire process.

Figure 4. As Figure 2 but Odoo ORM connected with CockroachDB

Table 1. New CockroachDB layers added to Odoo ORM

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

286

Layer Purpose
1 SQL Translate client SQL queries to

KV operations.
2 Transactional Allow atomic changes to

multiple KV entries.
3 Distribution Present replicated KV ranges

as a single entity.
4 Replication Consistently and

synchronously replicate KV
ranges across many nodes.
This layer also enables
consistent reads via leases.

5 Storage Write and read KV data on
disk.

SQL: This layer helps the developers to run SQL

queries as in a traditional environment. It provides all the
familiar terms and concepts such as schema, tables, and
indexes. All feature sets are used by CockroachDB and its
own SQL.
Distributed Key-Value Store: We can develop large tables
and indexes as HBase, BigTable, and others. Because the
SQL layer communicates with the distributed key-value
store.
Distributed Transactions: we can consider transactions as
the core part of our Odoo application. The implementation
of this feature manages the transition from SQL to stores
and ranges.

Nodes: They can either be virtual or physical
machines. Nodes are the servers that store our data. Routes
messages to different nodes of our cluster are done by the
distributed key-value store.
Store: Each store can hold many ranges, and each node can
contain one or more stores. RocksDB, is an open source
storage engine that manages ranges.
Range: The lowest level of key-value data. Each store
contains ranges, and each range covers a segment of the
more important key-spaces.

Figure 5. Architecture Diagram of CockroachDB

In the Figure above, every store potentially
contains of a number of ranges. These ranges are replicated
by using the Raft consensus protocol. The diagram below is
a blown-up version of stores from four of the five nodes in
the previous figure. Each range is replicated in three ways
using Raft. The color coding shows the associated range
replicas

Figure 6: Blown up version of stores from Figure 5

Once we have CockroachDB installed in each
node, we will connect each of them with Odoo instance
application layer. Figure 7 to simplifies Figure 4.

Figure 7: CockroachDB and Odoo layers simplify Figure 4

In the next Figure, we can see how four Odoo instances
synced with each other's through CockroachDB.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

287

Figure 8: Four Odoo instances are synchronize with each other by

Cockroach database.

5. Experiments

A. Structures Installing Experiments

We have installed Odoo in four different structures.
It is noteworthy that we faced a number of challenges in the
practical implementation. We will mention them in the next
few lines.

Structure A "Odoo as it is": The purpose of this
experiment is to install Odoo as it is using PostgreSQL
databases in order to compare it later with the proposed
structure "new Odoo distribution ERP system". In this
experiment, we installed Odoo on a local Ubuntu server (2
GB MEMORY, 1 CPU, 50 GB SSD DISK and 2 TB
TRANSFER. These specifications have been standardized
for all later testing processes). By using the following
commands:

Figure 9: Normal Ubuntu installing Odoo commands

We did not have any installation problems in this
experience because we used the pre-installed Odoo bags as
they are.

Structures B "Enhanced Odoo with
CockroachDB": The objective of this experiment is to know
whether Odoo system can work on the CockroachDB
databases in a practical way and to identify what the

potential problems and difficulties are. We installed
cockroachDB [1] and Odoo, but this did not work, and we
received many error messages. The error messages were
saying that the Odoo system could not work because there
were no PostgreSQL databases. We then changed the Odoo
database configuration file, to connect with CockroachDB
databases. The error messages still appeared, reporting that
there were errors in executing SQL queries. After
investigating and tracking the error, we found that this was
because there were differences between the CockroachDB
databases and PostgreSQL databases syntax. Although the
difference was very simple in some queries, the system was
not able to work. At that point, we had two choices.
Whether to review all PostgreSQL databases SQL queries
in Odoo's framework and modify them to CockroachDB
databases version which takes a lot of time and effort, or to
create a database using PostgreSQL and Odoo framework
and install all the Odoo modules that we need. Then, we
take a back-up of this database using the dump tool and the
pg_dump command. Then, we transfer them to the
CockroachDB database using the IMPORT command,
which is available in the CockroachDB database, and will
convert the hole PostgreSQL backup into a compatible
CockroachDB database backup which shortens a lot of
effort and time. This option is good for researches and tests,
but not for the production and operation, because there will
be more errors when we want to install more Odoo modules
or update the old ones. In this project, we chose the second
option for the above reasons. At the moment, we have a
single Odoo system running on CockroachDB databases
that work locally as well.
Structures C "n Enhanced Odoo instance with centralized
load balancer (n=4)": In this experiment, we are trying to
connect four Odoo instances of enhanced Odoo systems that
were built in the previous experiment to test what benefit
we gained from the CockroachDB databases. To make it
easier in this experiment, we have proposed a fifth server to
serve as a load balancer in order to facilitate the testing
process later, as we need to target this server only and it will
distribute the queries to the other four Odoo instances or
servers. The first problem we faced was that in the previous
two experiments, we installed the system locally, so we had
to do many settings in the LAN to connect the nodes
together. For that reason, we transferred the experience to
the cloud. After we installed four enhanced Odoos on four
virtual machines (VMs) on DigitalOcean environment, we
have activated a fifth pre-configured server VM by Digital
Ocean to act as a load balancer. At this moment, we have
“n” Odoo instances connected to each other by the load
balancer where n=4 (n is the number of Odoo instance).
Structures D "n Enhanced Odoo instance with decentralized
load balancer (n=4)": In the previous experiment, we have
already linked four enhanced instances of Odoo systems by
the load balancer successfully, but we have not yet achieved

apt-get install postgresql -y
wget -O - https://nightly.odoo.com/odoo.key | apt-key add -
echo "deb http://nightly.odoo.com/8.0/nightly/deb/ ./" >>

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

288

the proposed structure (the distributed Odoo system). One
of the most important features of distributed systems is not
having a central node, which is the opposite in experiment
C. So, we have to remove the fifth node and distribute its
task (load balancing) to the other four VMs. We distribute
the task by installing one of the load balancer tools on each
node such as HAProxy. This structure will enable us to
target any node in our system and this node will distribute
the load evenly between the four nodes (It takes itself into
account). If one of them is destroyed, the rest will not be
affected and the system will continue to function as if it had
not been destroyed.

Figure 10: Four experiments structures A,B,C and D

Table 2. Four structures description summarization

Server (VM) Description

A Default Odoo with Postgre DB

B Enhanced Odoo with CockroachDB

C n Enhanced Odoo instance with centralized
load balancer (n=4)

D n Enhanced Odoo instance with decentralized
load balancer (n=4)

B. Experiments

Comparative criteria: There is a set of criteria and
specifications that will improve in Odoo system when we
replace PostgreSQL databases with the CockroachDB
databases; Normal user level of effort: How many
techniques and steps should be taken in case the average
user wants to get this system? We will measure this standard
on the easy, medium, hard and challenging scale, where
easy means that the average user does not need to learn any
technique or do anything unusual to get the system (All
actions will be downloaded and fully prepared). Fault-
tolerance: If one of the nodes fails in the system, will the

system be able to resist the failure and complete its normal
operation? If we say yes, it means that there is no central
node in the system. In other words, the system is able to
continue working even if any node in that system failed as
long as there is at least one node still working. Availability
- DDOS attack resistance: What is the size of the attack that
the system can withstand without falling? We will measure
it in Giga Bytes (GB). Scalability: Can the system increase
or decrease the number of nodes in an unnoticed manner by
the end user or not? Response time: The time the system
needs to answer the user's query. We will measure it by the
number of seconds. Cost: We will calculate the system cost
by the number of nodes used to configure this system
multiplied with x (x is a certain amount of money measured
in a financial unit). Assuming that all used nodes have a
uniform specification (as we mention in installing
experiment A, 2 GB MEMORY, 1 CPU, 50 GB SSD DISK
and 2 TB TRANSFER) and each of them will cost x$.

We have done a number of experiments to
compare the four structures based on the previous six
criteria. The following table shows the results of these
experiments.

Table 3: Shows the results of 6 experiments For Structure A and B

Description A B
1 Normal user level of effort Easy Medium
2 Fault-tolerance None None
3 Availability - DDOS attack 2 GB 2 GB
4 Scalability None None
5

response tim
e (seconds)

1 user * 200 records load 6 2.7
2 users * 200 records load 11 5
3 users * 200 records load 16 8
4 users * 200 records load 22 11
5 users * 200 records load 26 14
6 users * 200 records load 31 17
7 users * 200 records load 37 19
8 users * 200 records load 45 21
9 users * 200 record load 50 24

10 users * 200 records
load

55 27

6 Cost x $ x $

Table 4: Shows the results of 6 experiments For Structure C and D

Description C D
1 Normal user level of effort Hard Challengin

g
2 Fault-tolerance None* Yes
3 Availability - DDOS attack 7.5 GB 8 GB
4 Scalability Yes Yes

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

289

5

response tim
e (seconds)

1 user * 200 records
load

3 2.7

2 users * 200 records
load

3 2.7

3 users * 200 records
load

3 2.7

4 users * 200 records
load

3 2.7

5 users * 200 records
load

6 5.2

6 users * 200 records
load

6 5.2

7 users * 200 records
load

6 5.2

8 users * 200 records
load

6 5.2

9 users * 200 record
load

9 8.2

10 users * 200 records
load

9 8.2

6 Cost 5 x $ 4 x $

Experiment 1: As shown in Table 3 and 4,
structure A is the easiest in terms of installation and
preparation, because the programs are already-made by
Odoo, all you have to do is download and install it through
a simple and easy interface, while in the rest of the
structures, users must take several steps to obtain the
desired system as described in Chapter 6.1.

Experiment 2: In Structures A and B, the whole
system will fail if one of its nodes fails because these
structures have only one node. While structure C have four
nodes, each of which is connected to all the other nodes.
That means if one of them fails, the other three will remain
connected. Structure D can actually resist failure if one of
the Odoo instances fails, but will not resist the failure if the
load balancer fails. For this reason, we cannot say that
structure D has fault tolerance criteria.
Experiment 3: Using a tool to generate many requests to
make pressure on the four systems such as TPC Benchmark
(TPC Benchmark is a dataset with over than 2 terabytes in
size). We used this tool to simulate the denial of service
attack and test the four systems. This tool allows you to
control the size of the desired attack and measures when the
system stops responding at the same time. The best result
was for structure C where it stopped responding when we
hit it with 8 GB attack.

Experiment 4: In this experiment, we try to test the
possibility of increasing the number of nodes without
affecting the performance of the system. It is clear that the
number of nodes cannot be increased in structures A and B.
This is because these systems are based on a single node.

Also, there is no protocol to link those nodes with each
other’s. Therefore, we cannot increase the number of nodes.
On the other hand, structures C and D can increase or
decrease nodes easily and without end user notes.

Experiment 5: In this experiment, we tested the
response time of the four structures by simulating the
number of users (scaling up from 1 to 10) trying to call 200
records from each system. Table 5 shows that structure D
achieves the best and shortest response time for all numbers
of users, which is even better than structure C that contains
5 nodes. We can also observe that structure B responds
better than structure A with a 50% less response time. This
means that when using the CockroachDB database with the
Odoo system, the system efficiency increases by two times.

Experiment 6: In this experiment, all we have to
do is count the number of nodes in each system and multiply
them by the number x and then compare them to each other.
The results show that structures A and B are the cheapest,
while C is the most expensive structure, and structure D is
the third in terms of cost. Also, we can note that because
structure C consumes one node as load balancer, it is always
more expensive than structure D by one x$.

C. Response Time of the Extended Comparative
Experiments

In this section, we focused on the response time of
the four structures. In the fifth comparative experiment, we
fixed the variable number of records by 200 records (we
will name this variable later as r) and we made an increase
in the number of users from 1 to 10 (we will name this
variable later as u). This comparison gives us a general
indication that there is a difference in performance between
the four structures but does not describe what the actual
efficiency function for each structure is. To find out, we had
to extend this test and try the values of records’ number and
users’ number on each structure to see what the efficiency
function (growth function) for each structure is. The
following Figure shows a scaling up in the number of users
from 1 to 100 for each of the four structures and with 200
records as constant (from u=1 to u=100 where r=200 and
n=4 in structures C and D). The following figure illustrates
the efficiency of each structure by drawing the growth
function.

Figure 11: Illustrates the efficiency of each structure by drawing the
growth function for structure A, B, C and D

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

290

Figure 11 illustrates the efficiency of each
structure by drawing the growth function. As it also shows
that all structures have a linear growth function, while there
is a significant improvement in slope “a”. where “a” is
represented as in the following equation:

But what if we increase the number of records and users at
the same time? Figures 12, 13, 14 and 15 represent the
growth function of increasing users and records numbers at
the same time in the experiments for the A, B, C and D
structures respectively.

Figure 12: Represent the growth function of increasing users and records
numbers at the same time for structure A

Figure 13: Represent the growth function of increasing users and records
numbers at the same time for structure B

Figure 14: Represent the growth function of increasing users and records
numbers at the same time for structure C

 Figure 15: Represent the growth function of increasing users and
records numbers at the same time for structure D

We have also noticed that all structures in the previous
experiments have an exponential growth function.
Structures C and D show better performance. (Note that we
will fix the number of users and records by the upper limit
of the previous experiments of 100 users and 1000 records.)

Figure 16: Shows the growth function of the results of the experiments
increase the number of n in the structure C (r=1000 u=100)

As Figure 16 shows, there is a great improvement in the
performance of Odoo system when using structure C (our
new structure) which increases the number of “n” from 1 to
100, where the growth function has become a logarithmic
function of log(n).

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

291

6. Conclusion and Future Work

The Distributed ERP was early mentioned and concerned
by many types of research. Researchers used many different
techniques to access the ERP system with the characteristics
of the distributed systems. Some of them succeeded in
achieving a part of this goal, while some wished to reach it.
In this paper, we have chosen several systems according to
several criteria. We chose the CockroachDB database for
many reasons. Most importantly, this new version because
it was built by using an open source technology, making it
secured and with low-cost and high quality. Moreover, it
was built based on PostgreSQL and PostgreSQL backend
databases, which made it easy for us to replace it, in addition
to using the Google Spanner technology, which makes it
gain all the features of the distributed systems. Furthermore,
we also chose it because it is a vibrant system with many
features and more than 15 thousand modules with 300 new
modules each month [3]. This feature makes Odoo system
attractive for a lot of users in all sectors; government,
private, commercial and non-profit sectors. Finally, Odoo
system already has a broad audience of more than three
million users [3]. All these reasons made Odoo our best
choice for this project. We have proposed a new structure
for system installation (distributed Odoo ERP system), and
conducted a number of experiments and showed that Odoo's
performance could be significantly improved when the
number of “n” was increased.
We still see that we can optimize Odoo. In fact, to render a
requested page from Odoo application, Odoo front-end
sends several requests to the back-end to retrieve the
information. Some of these requests are limited to a specific
piece of information. As a result, the front-end needs many
requests to present the page. Nevertheless, these multi-
requests are linked to each other and can be grouped in one
request, which may have a good impact on Odoo
performance.
We also aspire to simplify the process of replacing
CockroachDB Database in Odoo structure that we
mentioned in this paper by making an installation package
for Windows OS and Ubuntu OS.

References

[1] CockroachDB - For Global Cloud Services.” Cockroach

Labs, Odoo SA., 6 Mar. 2018,
www.cockroachlabs.com/product/cockroachdb/#distribute
d-sql.

[2] Technical Architecture.” Technical Architecture, Odoo SA.,
6 Mar. 2018, oc.odoo.com/6.0/developer/1
2_module_development/1_server_module/. March 06,
2018

[3] Homepage.” Odoo S.A., Odoo SA., 4 Mar. 2018,
www.odoo.com/.

[4] Nicolas, B. Odoo Community Association, what is
GeoEngine Cited 2.3.2018
http://oca.github.io/geospatial/what_is_geoengine.html

[5] Pinckaers, F., Gardiner, G. & Vossel, E. 2011. Open ERP a
modern approach to integrated business management
Release 6.0.0.

[6] Gartner, 75% of all ERP projects Fail but why? Cited
1.3.2018 http://officeoffinance.com/gartner-75-of-all-erp-
projects-fail-but-why/

[7] ERP Systems-Popularity Ranking Open Source,
Cited1.3.2018 https://erp-systems.zone/ranking/licence-
open-source

[8] “Electronic News” Overview, Yesser gov SA, 9 Mar. 2018,
www.yesser.gov.sa/EN/programdefinition/pages/overview.
aspx.

[9] S.A., Odoo, and Serpent Consulting Services Pvt. Ltd.
“Multi-DB Synchronization.” Odoo S.A., Odoo S.A., 9 Mar.
2018,
www.odoo.com/apps/modules/8.0/base_synchro/.

[10] “OpenERP- Base_Synchro (Synchronization)” The toolkit,
Toolkit inc., 9 Mar. 2018, toolkt.com/site/openerp-
base_synchrosynchronization/.

[11] BrowseInfo. “Auto Multiple Database Synchronization.”
Odoo S.A., BrowseInfo Odoo S.A., 9 Mar. 2018,
apps.openerp.com/apps/modules/10.0/bi_base_synchro/.

[12] HallFeed12votes, Jim, et al. “Homepage.” Opensource.com,
9 Mar. 2018, opensource.com/.

[13] Start a Local Cluster (Insecure).” Cockroach Labs, 9 Mar.
2018, www.cockroachlabs.com/docs/stable/start-a-local-
cluster.html.

[14] Anatoly E Doroshenko and Vlad Romanenko. Object-
relational mapping techniques for. net framework. In ISTA,
pages 81-92, 2004.

[15] Coulouris, George; Jean Dollimore; Tim Kindberg; Gordon
Blair (2011). Distributed Systems: Concepts and Design
(5th Edition). Boston: Addison-Wesley. ISBN 0-132-
14301-1.

[16] Magnoni, L. (2015). "Modern Messaging for Distributed
Sytems." Journal of Physics: Conference Series. 608 (1):
012038. DOI:10.1088/1742-6596/608/1/012038. ISSN
1742-6596.

[17] Seth Gilbert and Nancy Lynch. 2002. Brewer’s conjecture
and the feasibility of consistent, available, partition-tolerant
web services. SIGACT News 33, 2 (June 2002), 51-59. DOI:
https://doi.org/10.1145/564585.564601.

[18] Edgar F Codd. \A relational model of data for large shared
data banks". In: Communications of the ACM 13.6 (1970),
pp. 377{387.

[19] Pramod J Sadalage and Martin Fowler. NoSQL distilled: a
brief guide to the emerging world of polyglot persistence.
Pearson Education, 2012.

[20] Prof. Dr. Stefan Edlich. NoSQL Databases. http://nosql-
database.org/. Accessed: 2018-03-30.

[21] PC freak. What is Vertical scaling and Horizontal scaling
Vertical and Horizontal hardware/ services
scaling.http://www.pc-freak.net/blog/vertical-horizontal-
server-services-scaling-vertical-horizontal-hardware-
scaling/. Accessed: 2018-04-04.

[22] Diego Ongaro and John Ousterhout. "In search of an
understandable consensus algorithm." In: 2014 USENIX

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

292

Annual Technical Conference (USENIX ATC 14). 2014, pp.
305{319.

[23] RocksDB. A persistent key-value store for fast storage
environments. http://rocksdb.org/. Accessed: 2018-03-30.

[24] Tamir Duberstein Peter Mattis. SQL in CockroachDB:
Mapping Table Data to Key-Value Storage.
https://www.cockroachlabs.com/blog/sql-in-cockroachdb-
mapping-table-data-to-key-value-storage/. Accessed: 2018-
03-30.

[25] Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C.,
Furman, J. J., Ghemawat, S., Gubarev, A., Heiser, C.,
Hochschild, P., Hsieh, W., Kanthak, S., Kogan, E., Li, H.,
Lloyd, A., Melnik, S., Mwaura, D., Nagle, D., Quinlan, S.,
Rao, R., Rolig, L., Saito, Y., Szymaniak, M., Taylor, C.,
Wang, R., and Woodford, D. 2013. Spanner: Google’s
globally distributed database. ACM Trans. Comput. Syst. 31,
3, Article 8 (August 2013),22 pages.
DOI:http://dx.doi.org/10.1145/2491245

[26] Gattiker, T.F., Goodhue, D.L.: Understanding the local-
level costs and benefits of ERP through organizational
information processing theory. Information & Management
41(4), 431–443 (2004)

[27] Enaya, MHD Fawaz: An Experimental Performance
Comparison of NoSQL and RDBMS Data Storage Systems
in the ERP System Odoo, November-2016.

[28] Knolmayer, Gerhard F. - Quality of Material Master Data
and Its Effect on the Usefulness of Distributed ERP Systems
- Berlin, Heidelberg SN - 978-3-540-47704-4 2006.

[29] C. (n.d.). Deploy CockroachDB On-Premises (Insecure).
Retrieved April 21, 2018, from
https://www.cockroachlabs.com/docs/stable/deploy-
Cockroachdb-on-premises-insecure.html

[30] P. Maheshwari, Enterprise application integration using a
component-based architecture, in 27th Annual International
Computer Software and Applications Conference, Dallas,
USA, November 03–06, 2003.

[31] D. Smith, L. O’Brien, M. Barbacci, A roadmap for
enterprise integration, in 10th International Workshop on
Software Technology and Engineering Practice, Montre´al,
Canada,October 6–8, 2002.

[32] James Cowling and Barbara Liskov. “Granola: Low-
Overhead Distributed Transaction Coordination.” Proc. of
USENIX ATC.2012, pp. 223–236.

[33] Alexander Shraer et al. “Dynamic Reconfiguration of
Primary/ Backup Clusters.” Proc. of USENIX ATC. 2012,
pp. 425–438.

[34] Ashish Thusoo et al. “Hive — A Petabyte Scale Data
Warehouse Using Hadoop.” Proc. of ICDE. 2010, pp. 996–
1005.

[35] Jeff Shute et al. “F1—The clearly Fault-Tolerant
Distributed RDBMS Supporting Google’s Ad Business”.
Proc. of SIGMOD. May 2012, pp. 777–778.

[36] L. Frank, ‘Architecture for Integration of Distributed ERP
Systems and E-commerce Systems,’ Industrial Management
and Data Systems (IMDS), Vol. 104(5), 2004, pp 418-429.

[37] L. Frank, ‘Trends in Enterprise Application Architecture,
chapter 7, Architecture for Distributed ERP Systems’
Industrial Management and Data Systems (IMDS), 2016,
978-3-540-32735-6.

[38] Alanne, Aki; Pekkola, Samuli; and Kähkönen, Tommi,
"CENTRALIZED AND DISTRIBUTED ERP

DEVELOPMENT MODELS: OPERATIONS AND
CHALLENGES" (2014). PACIS 2014 Proceedings. 337

[39] Nico Brehm, Jorge Marx Gomez, and Claus Rautenstrauch.
2016. An ERP solution based on web services and peer-to-
peer networks for small and medium enterprises. Int. J. Inf.
Syst. Chang. Manage. 1, 1 (November 2006), 99-111.
DOI=http://dx.doi.org/10.1504/IJISCM.2006.008288

[40] Ramez Elmasri and Shamkant Navathe. 2010.
Fundamentals of Database Systems (6th ed.). Addison-
Wesley Publishing Company, ISBN:0136086209
9780136086208, SA.

[41] O. (2008, March 13). Database Administrators Guide.
Retrieved May 5, 2018, from
https://docs.oracle.com/cd/B28359_01/server.111/b28310/
ds_concepts001.htm#ADMIN12078

[42] Özsu, M. T., & Valduriez, P. (2011). Principles of
Distributed Database Systems, Third Edition [recurso
electrónico]. Estados Unidos: Springer New York

Mohamed Elmassry is a researcher
and interested in open source ERP
systems. He is a member of the
technical committee and the
administrative board of the system of
planning the facilities resources for
government agencies in King Abdul
Aziz City for Technical Sciences.
Contributing to open source technical
product development communities. He
has Master degree of Computer

Science from King Saud University. He served as IT Director in
more than one organization. He has three patents from the US and
Saudi office. He has several published technical papers. He is
technical consultant in several organizations.

Saad Al-Ahmadi received the MS
and PhD degree in computer science
from King Saud University, Saudi
Arabia. He is Associate Professor in the
Department of Computer Science, King
Saud University. Also, he serves as part-
time consultant in many public and
private organizations. His current
research interests include cybersecurity,
IoT, machine learning for healthcare,

and future generation networks.

