
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

570

Manuscript received December 5, 2021
Manuscript revised December 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.12.79

Debugging of Parallel Programs using Distributed Cooperating
Components

1 Reema Mohammad Mrayyan, 2Ahmad AbdulQadir Al Rababah.

1Ministry of education, Telaa alali secondary school, Amman, Jordan.
2Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh 21911, Saudi Arabia.

Summary
Recently, in the field of engineering and scientific and
technical calculations, problems of mathematical modeling,
real-time problems, there has been a tendency towards
rejection of sequential solutions for single-processor
computers. Almost all modern application packages created
in the above areas are focused on a parallel or distributed
computing environment. This is primarily due to the ever-
increasing requirements for the reliability of the results
obtained and the accuracy of calculations, and hence the
multiply increasing volumes of processed data [2,17,41]. In
addition, new methods and algorithms for solving problems
appear, the implementation of which on single-processor
systems would be simply impossible due to increased
requirements for the performance of the computing system.
The ubiquity of various types of parallel systems also plays
a positive role in this process.

Simultaneously with the growing demand for
parallel programs and the proliferation of multiprocessor,
multicore and cluster technologies, the development of
parallel programs is becoming more and more urgent, since
program users want to make the most of the capabilities of
their modern computing equipment[14,39]. The high
complexity of the development of parallel programs, which
often does not allow the efficient use of the capabilities of
high-performance computers, is a generally accepted
fact[23,31].

Keywords: Debugging of Parallel Programs,

Distributed Cooperating Components

1. Introduction

At present, intensive research is being carried out in
the field of automating the development of parallel
programs, in particular, in the field of creating tools for
debugging and researching parallel programs. These tools
can be used for a variety of purposes. This is, first of all, the
search for errors in the program, including such specific for
parallel programs as errors in accessing procedures that
ensure parallelism, errors in message transmission,
synchronization errors, errors in accessing shared
resources[15,19,44].

Parallel algorithms and programs, as a rule, are
much more complex than sequential ones. Parallel

programs are more difficult to debug, as they introduce new
types of errors that are absent in sequential programs,
caused by incorrect synchronization of processes or threads
and incorrect use of tools that ensure parallelism[42]. Their
non-deterministic behavior significantly complicates the
debugging of parallel programs, since it makes it difficult to
use the usual technique of gradual error localization by
means of multiple program launches under the control of
the debugger[1,9,17].

The complexity of creating high-quality tools for
debugging and researching parallel programs is, on the one
hand, a consequence of the specific problems of developing
parallel programs, and, on the other hand, the developed
debugger of parallel programs is also a parallel program that
must interact with the debugged one[33,38], also parallel,
which is even more, complicates the problem.

The problem of visualizing the results obtained is
especially relevant for interactive debugging and research
of parallel programs[16,28]. Unlike a simple sequential
program, where there is one current point of program
execution, and a variable has one value, in a parallel
program there can be many, hundreds, or even thousands of
execution points. The same program variable can also have
many values - each process has its own[6,11,18]. The
developers of tools for debugging and researching parallel
programs are faced with the difficult task of presenting all
the available information and providing tools for
controlling the debugging process: on the one hand, in a
form that is convenient, understandable for the user, and on
the other hand, to give the user an exhaustive, complete
picture of the behavior of the program under study. How to
make this display convenient and compact, and at the same
time to allow the user, if desired[32], to get access to all the
details of interest to him - this is the task that a high-quality
tool for debugging and researching parallel programs
should solve.

Another characteristic difference between the
process of debugging and researching a parallel program
from similar actions with a sequential program is that, in a
typical case, the parallel program is executed on a remote
computer complex[5,20]. The program is executed on the
computing nodes of the complex, to which the user usually
does not have access. Therefore, the user can no longer
influence the course of execution of individual processes for
his program, in contrast to debugging a sequential program,

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

571

which is typically executed on a computer directly at which
the user sits[3,10,21]. Also, due to the fact that the
investigated parallel program is executed on a remote
complex, there is a problem of transferring the collected
information about the program to the user's computer - in
some cases; the amount of this information can be quite
large[4,12,33].

2. Materials and Methods

The known approaches to debugging and
researching parallel programs can be divided into three
main areas: automatic control of the correctness of the
program execution, comparative debugging (comparison of
program execution at its various launches)[13], and
interactive debugging. Automatic correctness control and
comparative debugging can be carried out either by
analyzing traces collected during the execution of a parallel
program, or without using traces - dynamically in the real-
time execution of a parallel program[22,43]. Dialogue
debugging is usually carried out during the real execution
of a parallel program by setting breakpoints, step through
the program and inspect the values of the specified
variables[46].

Debug prints

The simplest way to debug programs is to add
additional print statements or output statements to a file in
the program code[26,29]. These seals usually contain
information on the basis of which the user determines from
where in his program the print was made, and, possibly, the
values of any variables at these points. Thus, you can track
on which branches the program was executed and with what
data. Based on this information, the user can track an
operator or a group of operators leading the program to an
incorrect state[5,36].

Dialogue debugging

In dialog debugging, a specially created tool is
used - the debugger. When developing a dialog debugger,
special attention is paid to its interface - the user should feel
comfortable and convenient when working in the debugger
environment[9,40,45]. All debugger functions and how to
use them should be intuitive and, if possible, match those of
a traditional sequential debugger.

During interactive debugging using the tools and
tools provided by the debugger, the user defines one or more
controlled points in the program[3,22,35]. These points can
be breakpoints or watch points. The user gives the
command to start or continue the program execution, and
the program execution is interrupted at the first reached
control point. The step-by-step mode of program execution
is also possible and widely used. Further, the user analyzes
the state of the program at the moment of shutdown. At this
point, he can inspect the values of variables, look at the

stack and parameters of subroutine calls, and use all the
other tools and tools that a particular debugger provides him.
If the state of the program is correct, the user continues its
execution until the next control point, while it is possible to
quickly adjust the further progress of debugging (set
additional breakpoints, view the values of any other
variables)[25,39]. Or, if the state of the program is already
incorrect, the user defines additional monitored points and
restarts the program in order to track the operator or a group
of operators leading the program to an incorrect state.

Automatic correctness control

Automatic control of program correctness -
checking additional correctness conditions in the process of
its fulfillment. This check can be carried out both according
to the previously obtained trace of the program execution,
and in the process of real-time program execution. The
conditions for the correctness of parallel programs are the
correctness of calls to libraries that provide parallelism and
message exchange, correct synchronization of processes
and threads when using shared data, and so on. The
advantages of automatic correctness control in comparison
with traditional debugging methods is its complete
automation, quality of debug diagnostics and the ability to
detect a wide range of errors. However, the absence of
diagnostics about errors when analyzing the correctness of
the program does not guarantee the correctness of its
operation, since the limited resources may not allow
performing all the desired checks[24,30].

Comparative Debugging

In cases where the user has two versions of the
program, one of which works correctly (reference), and the
other does not (debuggable), a working version can be taken
as a formal specification that is not working[37]. The idea
of comparative debugging is precisely to compare the work
of two versions of the same program, and at the same time
the values of variables at certain controlled points of
program execution are compared. Data for comparison can
be taken both dynamically from running programs and from
traces obtained during their execution. When debugging
parallel programs, a sequential program is usually used as a
reference program, which can often be debugged using
standard tools, but a parallel program can also be taken as a
reference. Comparative debugging allows you to detect
differences caused by program changes, such as
parallelization, as well as differences that arise when
programs are porting from one platform to another or when
the processor configuration is changed. The revealed
differences indicate the errors in the program[9,47].

All of the above approaches to debugging and
researching parallel programs have both their advantages
and disadvantages. Even such a seemingly outdated
approach as debug prints can be successfully applied in the
absence of any other debugging tools on a particular

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

572

computer system. Dialogue debugging is good for its
interactivity, the ability to quickly influence the course of
debugging, and its proximity to traditional sequential
program debuggers[2,37].

When using automatic trace-based debugging
methods, the amount of data saved is usually very large,
which can cause problems with disk space and the time
required to save the data. In the process of searching for
errors, due to the large volume and unstructured data, using
only the tracer for debugging programs larger than test
programs seems to be a rather tedious task. From this point
of view, interactive debugging or dynamic debugging
during program execution looks preferable. From this point
of view, interactive debugging or dynamic debugging
during program execution looks preferable[6,17].

However, during further debugging of the program,
when questions of its efficiency, memory use, computing
resources, etc. are considered, debugging along the path
seems to be more preferable. First, when analyzing the
temporal characteristics or the dynamic behavior of some
components of the program relative to others, minimal
intervention in the operation of the program under study is
required. Secondly, this kind of research is usually carried
out for the entire program in the entire time interval of its
operation, and not for any specific fragment. Therefore, the
use of a tracer for such studies seems to be the most
acceptable option. But the huge volumes of the resulting
traces greatly complicate the research process.
Consequently, the obtained traces must be somehow
automatically processed, highlighting and grouping the data
of interest to the user, and also, if the user is interested in
detailed information on some aspects of the program
execution, show him not the entire trace, but only those
events that satisfy the selected user criteria. And thus, we
again come to the need for a dialogue with the user, only
not in the process of executing the program, but later, in the
process of examining the obtained traces[19,27].

Program instrumentation

It should be noted that, without exception, all
approaches to debugging and researching programs are
based on changing the program itself. Only by inserting
additional statements intended to obtain debugging
information can the debugger obtain any information about
the program. This can be achieved by replacing the system
or concurrency libraries with their own libraries, which
provide the debugger with the information it needs, and then
call the corresponding replaced library functions. Note that
in this case, stopping and obtaining information for
debugging is possible not at an arbitrary point in the
program, but only at the entry and exit points of the
functions of the replaced library. Or it can be program
instrumentation - adding additional operators directly to the
program itself. Operators can be added to the source code
of the program, which will require recompilation, or to its

object code. The addition and removal of operators in the
object code can be done dynamically, during the execution
of the program[2,31].

Dynamic instrumentation is undoubtedly
preferable to static instrumentation in the case of an
interactive debugger, because at the same time, only those
parts of the program are changed in which breakpoints are
currently set, in contrast to the static one, when it is
necessary to control all possible breakpoints. Debuggers
that use dynamic instrumentation also most often use all
available platform-specific tools, which together provide
the most efficient scheme for obtaining debug information
with minimal interference with the program itself. Static
instrumentation usually increases execution time
significantly. But with a large number of controlled points,
dynamic and static instrumentation can be comparable in
efficiency. The low level of dynamic instrumentation and,
as a consequence, the complexity of its implementation and
support on several platforms make its development too
difficult for small research teams. Therefore, the use of
static instrumentation when creating prototypes of dialog
debuggers and when creating automatic tools for debugging
and researching programs is more than justified[13,25].

3. Experiments

The execution of parallel programs is most often
performed on specialized computing facilities - clusters or
multiprocessor systems with shared memory. Such
computing facilities are usually accessed over a network via
a host machine. The program is executed on specially
designed computational nodes.

Most often, for security reasons, access to the user
directly to the computing nodes is closed. Moreover, the
computational nodes are not accessible from outside the
computational unit, and they themselves cannot access any
external machines. Thus, a running program communicates
with the outside world only through the host machine, and
the use of any traditional methods of dialog debugging on
such computer systems is impossible.

General scheme of a distributed complex

To solve this problem, it is proposed to use an
approach in which the running program itself reports all the
information necessary for debugging about itself. Moreover,
it reports them not directly to the user's computer, to which,
as noted earlier, access from the computing node will most
likely be impossible, but to the host machine, with which
there should always be communication. And only then,
from the host machine, the data will be transmitted to the
user's computer. Thus, we come to the conclusion that it is
necessary to have a special program that will be executed
on the host machine and transfer data between the executing
parallel program being debugged and the user's computer.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

573

In the diagram below in Fig. 1, such a program is called
Monitor. In addition to simple data transfer functions, the
Monitor can perform a number of communication and
logical functions: it must serve all parallel running
processes of the program being debugged, perform various
reduction and logical actions with many of these processes,
make decisions about suspending or continuing the
execution of the program, and access the user's computer
only in case of any expected events. Thus, the Monitor
minimizes network traffic going through the global network

to the user's computer, which has a beneficial effect on
minimizing time losses when debugging and examining
programs.

When building a distributed software package for
debugging and researching remotely executing parallel
programs, it is proposed to apply the following scheme of
distributed components and interactions between them as
shown on Fig. 1.

Fig.1- General Scheme of the distributed complex

Fig.1- General Scheme of the distributed complex

User interface
The user interface is running on the user computer

(1). It is a program with a user-friendly graphical interface,
made in the style of Microsoft Visual Studio, which
demonstrates the progress of the program being debugged
or the results of the program examination, and provides a
convenient interface to all functions and tools of the
debugger. The user interface does not have any information
about the program under study, but receives all the
information for visualizing the debugging and research
process from the Monitor, and sends all commands and user
requests to it, without any preliminary processing.

The user interface operates with general concepts:
"show the source code: file such and such a line such and
such", "a breakpoint has been reached by such and such a
process in such and such a place in the source code", etc.
The commands, the execution of which is implemented in
the User Interface, also do not depend on the type of the
program being debugged, but depend only on the current
state of the program (running, paused) and are divided by
purpose into typical for sequential debuggers (start, pause,
take a step, show the value of an expression, set a breakpoint,

etc.), specific to parallel programs (show the state of
processes, start or take a step for a selected group of
processes, show variables in individual processes, etc.), as
well as commands of the MPI program research system
(start the analyzer, show the result of its work, show a
fragment of the trace etc.).

Monitor

This is the main program in the complex; it is
responsible for establishing communication between all
components of the complex and controls the execution of
the program being debugged or the launch of its research
tools. The monitor also initially does not have any
information about the running program, but receives it from
concurrently running processes (instances) of the program
being debugged or from tools for studying the program.
Then, depending on the type of the program being debugged,
or on the type of activity (debugging or research on traces),
The monitor enters one of the predefined modes of
operation, in which it receives messages received from the
processes being debugged (or from the program research
tool) and from the User Interface, processes them, and sends

File Project Help

FUNCTION SUM (A, B)

K = A + B

1

Information collection
module

3

Information collection
module

3

USER Monitor

2
2

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

574

messages in response. Thus, the Monitor is already
dependent on the type of program being debugged, and even
the same primitives are processed differently when
debugging different types of programs. Besides, the
Monitor also contains other language-dependent
information, for example, about the way of data distribution
in the NORM-program, taking into account which the
Monitor calculates the values of expressions.

Information collection modules

These modules are responsible for the direct
collection of information about the debugged process or the
program under study. Depending on the type of the task at
hand, the modules for collecting information can be
performed in different ways. If information is collected
directly during program execution, then it must be a library
of functions linked to the program being executed. The
functions of this library are called directly from each
process of the program being debugged. In the case when
the program is analyzed on the basis of pre-assembled traces,
the Information Acquisition Modules represent a separate
program that performs the analysis. In both cases, before
starting their work, the Information Collection Modules
establish a connection with the Monitor and provide it with
information about themselves, their type and characteristics
of the debugged process or objects of research. Then, in the
case of collecting information directly during the execution
of the program, upon the occurrence of various events
(execution of a certain operator by the process, call of a
function, etc.), the Information Collection Modules can
inform the Monitor about this, and wait from him for
instructions and various requests. In this case, the execution
of the program under study is suspended. Then, at the
direction of the monitor, execution of the suspended
program is resumed.

Software package

The software package for creating tools for
debugging and investigating parallel programs in the
interactive mode was implemented in full accordance with
the above and described scheme of distributed components.

4. Implementations and Discussions

The non-procedural language Norma is designed
to automate the solution of grid problems on computing
systems with a parallel architecture. This language allows
you to exclude the programming phase, which is necessary
in the transition from the calculation formulas given by the
applied specialist to the program. Calculation formulas are
written in the Norma language in a mathematical form
familiar to an applied specialist, and then the NORMA
language compiler generates a program in the "traditional"
programming language - FORTRAN or C.

When constructing an output parallel program in
the message transfer model for parallel systems with a
distributed architecture, the compiler automatically
determines the structure of the output program according to
the Norma program, distributes data and their processing
over a given number of virtual processors, generates
operators for counting, calculating, transferring data
between parallel running processes. The generated program
can also call subroutines and functions written in Fortran or
C by the user himself. When executing programs in the
NORMA language, parallel programs automatically
generated by the compiler in Fortran MPI or C MPI
languages are actually executed. It would probably be
wrong to offer an applied specialist who has compiled a
program in the NORMA language to debug it by debugging
a parallel generated unfamiliar program in another language.
Debugging programs in the NORMA language at the source
code level and in terms of the NORMA language looks
much more preferable.

Thus, the main task of debugging programs in the
NORMA language can be formulated as follows: to
implement the possibility of interactive debugging of
declarative specifications in the NORMA language in terms
of the NORMA language, despite the fact that the generated
parallel program in the FORTRAN MPI or C MPI language
is actually executed.

When generating executable parallel programs, the
translator from the NORMA language also generates for the
debugger all the necessary information about the
conversion of NORMA language operators into FORTRAN
or C language operators, about the parallelization
performed, about the distribution of data among processes,
etc. All these data are transferred to the Information
Acquisition Module, which is made in the form of a library
of functions (this library was called the Library of
Communication with the Monitor), by generating calls to
these library functions in the executable program. In this
case, all the necessary information is passed through the
actual parameters of the function calls.

Generating start / end blocks

At the beginning of the program, after calling
MPI_Init (...), a function call from the Monitor Link Library
is inserted, this records the start of the program execution.
The following parameters are passed to it: the name of the
main section of the program; the name of the file with the
source code of the program and its checksum calculated
during the broadcast; line number in the file from which the
main section of the program begins. Exit from the MPI_Init
(...) function means that all the necessary MPI instances of
this program have been launched and initialized,
connections are established between them. You can start
debugging. At the end of the program, before calling
MPI_Finalize (...), a call to a function from the Monitor

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

575

Link Library is inserted, this records that the execution of
the program ends.

Generating the start of statement execution

Before each operator in the generated program, if
it is the first operator in the group of operators that
implement a certain construction of the original NORM-
program, a call to the function of the Library of
Communication with the Monitor is inserted, this fixes the
beginning of execution of the construction of the original
NORM-program. In this case, information about the line
number in the source file is transmitted, with which the
construction of the original NORM-program begins and
ends. Based on this information, the debugger determines
whether a breakpoint has been reached and displays the
current position of the process in the source code of the
program.

Generating variable registration

In order for the debugger to have access to the
values of the variables, in each function of the generated
program, before the first executable statement, calls to the
Monitor Link Library function are inserted, which registers
one variable declared in this section. The number of calls is
inserted as many as the variables declared in this section -
one for each variable. The following are passed as actual
parameters: the name of the variable, the address of its
beginning in memory, the type of the variable, the
dimension, the names of the indices, the original ranges for
each index and, if the variable has been distributed among
the processes, the ranges of the variable description in the
generated program. Based on this information, the debugger,
using direct access to an address in memory, can get the
value of a variable at any point in its description.

When debugging a generated program in Fortran
MPI or C MPI, it is necessary to transform objects that the
user operates - objects of the NORM-program - into objects
of the generated debugged program. This must be done
when processing various users requests, as well as when
displaying the results of queries, perform the reverse
transformation. Using this transformation, it is achieved
that the user operates with the objects of the source program
in the NORMA language and receives information in terms
of those objects that he himself created in his program.

To implement support for external modules in the
FORTRAN MPI language in the debugger, the debugger
scheme was used and slightly expanded, which was
implemented when debugging NORM-programs: the
program code of external modules written by the
programmer in FORTRAN MPI is instrumented. At the
same time, operators of calling the functions of the Library
of communication with the Monitor are inserted into the text
of the program. The monitor, as in the case of the NORM-
program, collects information from all processes and sends
/ receives commands from the User interface. Only in this

case, the Monitor no longer performs any transformations -
when debugging, the user works in the context of a Fortran
MPI program written by him.

Dialogue interface for the MPI program research
system

To study an MPI program in a DVM system, the
MPI program is built with a special tracer library. Then,
during program execution, all MPI calls, their parameters,
etc. are saved as trace files. After the completion of the
program, the resulting traces can be examined both visually
(but, as noted earlier, in real problems the volume of traces
is very significant, which makes it extremely difficult to
visualize the traces), and special programs - a correctness
analyzer, an efficiency analyzer. As a result of the analyzer
operation, a textual protocol is obtained, which lists all
found and potential errors, timing characteristics, etc.

When using this system for debugging and
examining MPI programs, the user works with different
types of text files: files with source program texts, files with
trace events, files-logs of analyzers. In this case, there is a
logical connection between the contents of various files. But,
since the work takes place with simple text files, the user,
when he wants to look at the elements of other files related
to the information of interest to him, is forced to
independently open the necessary file and find the
information he needs in it.

Meanwhile, as you can see, all the data for
automating this process is available in the files themselves.
Moreover, trace files initially have a binary format, which
can allow reading and interpreting only the information that
is of interest to the user, and not the entire huge trace. The
analyzers also have a library interface that allows you to
develop programs that receive information directly from the
analyzers in a binary, structured form, bypassing its textual
representation.

To create a complex that allows the user from his
computer to conduct a dialogue with the System for
researching MPI programs operating on a remote computer
complex, it was decided to use the general scheme of
organization of a distributed complex proposed in the
second chapter for debugging and researching remotely
executing parallel programs.

5. Results and Conclusions

The created complex, which is an addition to the
Tools for debugging MPI-programs in the DVM-system,
was named "Dialogue interface for the system for
researching MPI-programs". The user interface and the
Monitor, developed for the Parallel Programs Debugger in
the NORMA language with Fortran MPI support, have been
modified to solve new specific tasks of the Dialogue
Interface being created for the MPI program research

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

576

system. In the User Interface, new types of windows were
implemented to present information in a convenient,
structured form and navigation tools were implemented
both within windows and between windows of various
types, means of partial request for information. In the
Monitor, a scheme for establishing communication and
exchange of information with a specially created program
was implemented, which plays the role of an Information
Gathering Module in the general scheme of a distributed
complex for debugging and researching remotely executing
parallel programs. This program, called the Dialogue
Analyzer, was created using the existing libraries of access
to the trace files and the libraries of the analyzers of the
Debugging Tools for MPI programs in the DVM system,
and using the component link library to communicate with
the Monitor.

The dialog interface for the MPI program research
system has demonstrated fast and stable operation when
using all its functions and tools. Regardless of the used
hardware and software architecture of the computing
complex, on which the study of the obtained traces was
carried out, and the characteristics of the communication
channel with the remote computing unit, the operation of
the complex was distinguished by stability and quick
response to all user requests.

It is provided technical information about the
software implementation of the created distributed software
package for creating debugging tools and researching
parallel programs in the interactive mode. The data on the
extensibility and modifiability of the components of the
complex are presented, the complexity of the development
of new tools for debugging and researching remotely
running parallel programs based on the created software
complex is assessed.

Main results of work

● A diagram of distributed interacting components of a

software package has been developed for creating
debugging tools and researching parallel programs in an
interactive mode .

● A software package has been created for the
implementation of tools for debugging and researching
parallel programs in an interactive mode .

● An interactive debugger for programs written in the
declarative non-procedural NORMA language has been
developed, with support for debugging external modules
written in Fortran MPI.

● An interactive debugger for programs written in Fortran
MPI has been developed.

● A dialogue interface for the MPI-programs research
system has been developed.

REFERENCES

]1 [Anduela Lile, “Analyzing E-Learning Systems Using
Educational Data Mining Techniques,” Mediterr. J.
Soc. Sci., vol. 2, no. 3, pp. 403-419, 2011 .

]2 [F. Castro, A. Vellido, À. Nebot, and F. Mugica,
“Applying Data Mining Techniques to e-Learning
Problems,” Studies in Computational Intelligence (SCI)
vol. 62, no. 221, pp. 183–221, 2007 .

]3 [Romero, Cristobal, and Sebastian Ventura, eds. “Data
mining in elearning,” WIT Press, Vol. 4, 2006.

[4] L.Behari, A. AlRababah. "Enhancing Educational Data
Mining based ICT Competency among e-Learning
Tutors using Statistical Classifier" International
Journal of Advanced Computer Science and
Applications (IJACSA), Volume 11 Issue 3 March
2020.

[5] A. AlRababah. "Neural Networks Precision in Technical
Vision Systems" IJCSNS International Journal of
Computer Science and Network Security, VOL.20
No.3, March 2020.

[6] Ahmad A. AlRababah "Assurance Quality and
Efficiency in Corporate Information Systems",
IJCSNS International Journal of Computer Science
and Network Security, VOL.19 No.4, April 2019.

[7] B. Alrami, A. AlRababah. "Information Protection
Method in Distributed Computer Networks Based on
Routing Algorithms" IJCSNS International Journal of
Computer Science and Network Security, VOL.19
No.2, February 2019.

[8] Ahmad AbdulQadir AlRababah, Ahmad Alzahrani.
"Software Maintenance Model through the
Development Distinct Stages", IJCSNS International
Journal of Computer Science and Network Security,
VOL.19 No.2, February 2019.

[9] L. Jiang, H. Zhang, and Z. Cai, “A Novel Bayes Model :
Hidden Naïve Bayes,” IEEE Transaction on
Knowledge and Data Engineering, vol. 21 , no. 10, pp.
1361–1371, 2009.
doi:http://dx.doi.org/10.1109/TKDE .2008 .

]10 [S. Taheri and M. Mammadov, “Learning the naive
bayes classifier with optimization models,” Int. J. Appl.
Math. Comput. Sci., vol. 23, no. 4, pp. 787–795, 2013.
doi:http://dx.doi.org/10.2478/amcs-2013-0059 .
]11 [W. Zhang and F. Gao, “An improvement to naive
bayes for text classification,” Procedia Eng., vol. 15,
pp. 2160–2164, 2011.

]12 [S. Banga, S. Mongia, S. Dhotre, and I. Introduction,
“Regression And Augmentation Analytics on Earth ’ s
Surface Temperature,” vol. 5, no. 3, pp. 17–19, 2017 .
]13 [X. Wu et al.,“ Top 10 algorithms in data mining,”
Springer-Verlag London, vol. 14, no. 1. 2008.
doi:http://dx.doi.org/doi:10.1007/s10115- 007-0114 -
2 .

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

577

[14] AlRababah A. "Data Flows Management and Control
in Computer Networks", (IJACSA) International
Journal of Advanced Computer Science and
Applications, Vol. 9, No. 11, 2018.

[15] A.A. AlRababah. "Problems Solving of Cell
Subscribers based on Expert Systems Neural Networks”
International Journal of Advanced Computer Science
and Applications (IJACSA), 10(12), 2019

[16] A.AbdulQadir AlRababah. "Implementations of
Hybrid FPGA Microwave Format Extension as a
Control Device", IJCSNS International Journal of
Computer Science and Network Security, VOL.18
No.11, November 2018.

[17] Ahmad AlRababah. "Assurance Quality and Efficiency
in Corporate Information Systems", IJCSNS
International Journal of Computer Science and
Network Security, VOL.19 No.4, April 2019.
]18 [A. Choi, N. Tavabi, and A. Darwiche, “Structured
features in naïve bayes classification,” 30th AAAI
Conf. Artif. Intell. AAAI, 2016 .

]19 [Zhang H., “The Optimality of Naive Bayes,” 2004.
American Association for Artificial Intelligence. 2004 .
]20 [T. Calders and S. Verwer, “Three naive Bayes
approaches for discrimination-free classification,”
Data Min. Knowl. Discov., vol. 21 , no. 2, pp. 277–292,
2010
]21 [R. Y. M. Li and H. C. Y. Li, “Have housing prices
gone with the smelly wind? Big data analysis on
landfill in Hong Kong,” Sustain., vol. 10, no .2 , pp. 1–
19, 2018.

]22 [Boyd, Danah and Crawford, Kate, “Six Provocations
for Big Data,” A Decade in Internet Time: Symposium
on the Dynamics of the Internet and Society,
September 2011.
]23 [K. Swan and L. F. Shih, “on the Nature and
Development of Social Presence in Online Course
Discussions,” Online Learn., vol. 9, no. 3, pp .115 –

136 ,2019 .
]24 [Segaran, Toby, and Jeff Hammerbacher, “Beautiful
data: the stories behind elegant data solutions,”
O'Reilly Media, Inc., p. 257, 2009 .

]25 [S. O. Material, S. Web, H. Press, N. York, and A. Nw,
“The World ’ s Technological Capacity,” vol. 60, no.
2011, pp. 60–66, 2014.

[26] Ahmad AbdulQadir. "DIGITAL IMAGE
ENCRYPTION IMPLEMENTATIONS BASED ON
AES ALGORITHM", VAWKUM Transactions on
Computer Sciences, Volume 13, Number 1, May-June ,
2017, Pages: 1-9.

[27] A.A. Alrababah. "Implementation of Software Systems
Packages in Visual Internal Structures" , Journal of
Theoretical and Applied Information Technology,
Volume 95, Issue 19 (2017), Pages: 5237-5244.

[28] AlRababah A. A. "A New Model of Information
Systems Efficiency based on Key Performance
Indicator (KPI)" (IJACSA) International Journal of
Advanced Computer Science and Applications, Vol. 8,
No. 3, 2017.

[29] Ahmad A. Rababah. "On the associative memory
utilization in English- Arabic natural language
processing", International Journal of Advanced and
Applied Sciences, Volume 4, Issue 8 (August 2017),
Pages: 14-18

[30] Ahmad A.Al. "Lempel - Ziv Implementation for a
Compression System Model with Sliding Window
Buffer", International Journal of Advanced Computer
Science and Applications (IJACSA), Volume 6,
Issue10, 2015.

[31] A. AlRababah, Ali AlShahrani, Basil Kasasbeh.
"Efficiency Model of Information Systems as an
Implementation of Key Performance Indicators",
IJCSNS International Journal of Computer Science
and Network Security, December 2016 Vol. 16 No.
12 pp. 139-143,

[32] P. Larrañaga, H. Karshenas, C. Bielza, and R. Santana,
“A review on evolutionary algorithms in Bayesian
network learning and inference tasks,” Inf. Sci. (NY).,
vol. 233, pp. 109–125, 2013 .
]33 [M. E. Maron, “Automatic Indexing: An Experimental
Inquiry,” J. ACM, vol. 8, no. 3, pp. 404–417, 1961. doi:
http://dx.doi.org/10.1145 .321075.321084
]34 [Rish, Irina. "An empirical study of the naive Bayes
classifier." IJCAI 2001 workshop on empirical
methods in artificial intelligence. Vol. 3. No. 22. 2001.
]35 [R. Caruana and A. Niculescu-Mizil, “An empirical
comparison of supervised learning algorithms,” ACM
Int. Conf. Proceeding Ser., vol . 148 , pp. 161–168,
2006 .

]36 [Keerthi S. S., Shevade S. K., Bhattacharyya C., and
Murthy K. R. K “,Improvements to Platt’s SMO
Algorithm for SVM Classifier Design”, Neural
Computation, 13: 637-649, 2001 .

]37 [S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K.
R. K. Murthy , “Improvements to the SMO algorithm
for SVM regression,” IEEE Trans. Neural Networks,
vol. 11, no. 5, pp. 1188–1193, 2000 .

[38] A.A. Rababah. “Embedded Architecture for Object
Tracking using Kalman Filter”, Journal of Computer
Science, Volume 12, Issue 5, Pages 241-245, 2016.
Science Publications, SCOPUS,
DOI: 10.3844/jcssp.2016.241.245

[39] Ahmad AlRababah. “A new dynamic Model for
software testing quality” journal of applied sciences

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.12, December 2021

578

and engineering technology, Elsevier (SCOPUS), Vol.
7, (1): 191-197, 2014.

[40] Tagreed Altamimi, A.AlRababah, Najat Shalash. “A
New Model for Software Engineering Systems Quality
Improvement”. Research Journal of Applied Sciences,
Engineering and Technology, Elsevier (SCOPUS),
7(13): 2724-2728, 2014.

[41] Ofeishat H. AlRababah A. "Real-time programming
platforms in the mainstream environments",
International Journal of Computer Science and
Network Security (IJCSNS), , Vol.9 No1,pp.197-204,
2009. ISSN : 1738-7906

[42] Ranjit Biswas and Ahmad AlRababah. "Rough Vague
Sets in an Approximation Space".
INTERNATIONAL JOURNAL OF
COMPUTATIONAL COGNITION
(HTTP://WWW.IJCC.US, VOL. 6, NO. 4,
DECEMBER 2008, pp.60-63.

[43] Nabeel Banihani and A.AlRababah. “Component
Linked Based System”, The VI international
conference- “Modern problems of radio engineering,
telecommunications and computer science”, IEEE,
pp: 405-407, 2004.

[44] Mohammad AlRababah and Ahmad AlRababah.
"Module Management Tool in Software Development
Organizations", Journal of Computer Science 3 (5):
318-322, © 2007 Science Publications,

[45] M.AlRababah and A.AlRababah. "Functional Activity
IJCSNS International Journal of Computer Science
and Network Security, VOL.7 No.1, January, 2007 ,
pp. 153-158
]50 [N. Matić, I. Guyon, L. Bottou, J. Denker, and V.
Vapnik, “Computer aided cleaning of large databases
for character recognition,” Proc. - Int . Conf. Pattern
Recognit., vol. 2, pp. 330–333, 1992 .
]46 [Ali Z, Shahzad SK, and Shahzad W. Performance
analysis of support vector machine based classifiers.
International Journal of Advanced and Applied
Sciences, 5(9): 33-38, 2018.

]47 [C. Jensen, M. Kotaish, A. Chopra, K. A. Jacob, T. I.
Widekar, and R. Alam, “Piloting a Methodology for
Sustainability Education: Project Examples and
Exploratory Action Research Highlights,” Emerg. Sci.
J, vol. 3, no. 5, pp. 312–326, 2019.
doi:http://dx.doi.org/10.28991/esj2019-01194.

