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Abstract 
In this paper, a fast numerical electromagnetic (EM) method based 
on the transverse wave formulation called-up Advanced 
Transverse Wave Approach (A-TWA) is presented. An appropriate 
5G antenna is designed, simulated and investigated in the context 
of Millimeter-Wave Wireless Communication Systems. The 
obtained simulation results are found in good agreement with 
literature. Such a method can provide for the simulators a great 
library integrating the most complexly and sensitively geometry 
elements that can have a huge impact on the applications supported 
by new wireless technologies. 
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1.  Introduction 
 

The design and analysis of 5G antennas with different 
kind from large to very thin in terms of size, are the subject 
of many recent publications. Also, the 5G antennas can be 
constructed in different shapes such as rectangle [1-2] 
which is considered as the conventional one, circle or 
pseudo-circle [3-4], cross [5], or hexagon [6] and have a 
relative impact on the radiation patterns [7]. Indeed, patch 
antennas have played an important role in communication 
through wireless connections [8-9] and improved the 
radiation properties through the variations in antenna 
parameters [10-11]. A new capacitive coupled patch 
antenna array providing 360° coverage has been developed 
in [12] to cover the frequency band of 24-28 GHz used for 
5G based smartphone services. In [13], a mm-Wave phased 
array 5G antenna which is running in the frequency range 
of 25 to 40 GHz has been designed and analyzed in the 
context of multiple-input multiple-output (MIMO) 
applications. The frequency allocation undergoes 
difficulties in terms of increasing which impel Federal 
Communication Committee (FCC) to add more than 18 
GHz of spectrum encompassing Millimeter-Wave 
frequencies [14] in order to provide an expanded framework 
for development and research in Millimeter-Wave 5G.  

Additionally, Finite element method (FEM) [15-20], 
method of moments (MOM) [21-23], and the iterative 
multilevel fast multipole method (MLFMM) [24] are 
intercepted in the full-wave-investigation of 5G antennas 
requiring a high level of accuracy or geometrical 
complexity.  These numerical methods presented certain 
shortcomings in the mm-wave investigation of planar 
antennas used in wireless communication [25]. The 
Advanced Transverse Wave Approach (ATWA) with its 
novel version which is developed by our research team 
presents several advantages setting it apart from other 
numerical EM methods, in terms of speed, compactness and 
memory in the context of wireless applications.  Towards 
this end, we present our efficient method ATWA for mm-
Wave 5G antenna simulations and we quantify its efficiency 
and stability in this circumstance. Referring to 
aforementioned works, an appropriate 5G antenna is 
selected and designed as an adequate prototype through 
respectable specific characteristics so as to validate our 
approach in mm-wave 5G applications as well as to 
investigate smart and advanced antennas for new generation 
of cellular technology. 

This paper is organized as follows: section 2 presents 
the theoretical foundation of the two-dimensional 
transverse wave approach (2D- ATWA) for EM- analysis 
of mm-wave structures. The design of the proposed 5G-
antenna is the subject of section 3. The subsequent section 
(section4) sets out to present and analyze the different 
obtained simulations results and compare them with 
literature. Section 5 concludes our work and opens a new 
trend for ongoing research. 

 
 
2.  Theory 

Defining 𝑆መ  as the spatial diffraction operator 
describing the boundary conditions from the discontinuity 
surface . It depends hence on the configuration of studied 
structure. The air-dielectric interface () is divided into 
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cells and can include three sub-domains: dielectric (Di), 
metal (Me) and source (Sce). 

𝑆መ can be expressed as: 

𝑆መ ൌ෍ 𝑆ఆೄೆಳ𝐻෡ఆೄೆಳ
ௌ௎஻

   (1) 

where 𝐻෡ఆೄೆಳ is the projection operator given in Dirac 
notation: 

𝐻෡ఆೄೆಳ ൌ |𝐻ఆೄೆಳሺ𝑢, 𝑣ሻ〉〈𝐻ఆೄೆಳሺ𝑢, 𝑣ሻ|   (2) 

 𝐻ఆೄೆಳ stands for the indicator function of the sub-
domain 𝛺ௌ௎஻ (SUB refers to the nature of sub-domain: Di, 
Me, or Sce) defined by: 

𝐻ఆೄೆಳሺ𝑢, 𝑣ሻ ൌ 1ఆೄೆಳሺ𝑢, 𝑣ሻ ൌ ቄ1         𝑖𝑓ሺ𝑢, 𝑣ሻ ∈ 𝛺ௌ௎஻
0                 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (3)  

So, the air-dielectric interface  is characterized by the 
following relation: 

𝐻ఆೄೆಳసೄ೎೐ ൅ 𝐻ఆೄೆಳసವ೔ ൅ 𝐻ఆೄೆಳసಾ೐
ൌ 1 (4) 

In 𝛺ௌ௎஻ sub-domain, the waves A and B are connected 
by 𝑆ఆೄೆಳas follows: 
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    (5) 

The detailed expressions of 𝑆ఆೄೆಳ  for different 
domains are given in [27-28]. 

We infer therefore that the diffraction operator 𝑆መ is the 
responsible to link the incident and reflected waves in 
spatial domain. This relation can be translated as: 

𝐵 ൌ 𝑆መ𝐴      (6) 

By the way in the modal domain, 𝛤෠  represents the 
reflection operator ensuring the connection between 
incident and reflected waves. This can be ensured by the 
following equation: 

 𝐴 ൌ 𝛤෠𝐵      (7) 

Indeed, the modal expansion of the reflection operator 
𝛤෠ can be written following the Dirac notation as: 

𝛤෠ ൌ෍ ෌ ∑ |𝑓௠௡ఈ 〉୒
௡

୑

௠ఈୀ்ா,்ெ
𝛤௠௡ఈ 〈𝑓௠௡ఈ | (8)  

Where: 
ሼ|𝑓௠௡ఈ 〉ሽare Transverse TE and TM Eigen-functions of 

̂ verifying 〈𝑓௣,௤
ఈ |𝑓௣ᇲ,௤ᇲ

ఈ 〉 ൌ 𝛿௤,௤ᇲ
௣,௣ᇲ.  

Overall, the mutual coupling between incident (A) and 
reflected (B) waves leads to the following scheme:  

൝
𝐴 ൌ 𝛤෠𝐵               In modal domain

𝐵 ൌ 𝑆መ𝐴 ൅ 𝐵
ሺ଴ሻ

    In spatial domain
  (9)   

Where:  

𝐵
ሺ଴ሻ

stands for the global excitation wave on the source. 
The transition between spatial and modal spaces is 

established by the intermediary of spectral space. Indeed, 
the transformation from spatial to spectral domains is 
guaranteed by two-dimensional fast Fourier transform (2D-
FFT) [26-28] for uniform and non-uniform distribution on 
discontinuity space.  

 
3. Design of Elliptical Antenna for 5G 

We propose as 5G antenna the elliptical patch already 
studied and investigated in [20] as depicted in Fig. 1. This 
antenna can be used in 5G wireless mobile applications. The 
design parameters are given in Table1 which are closed to 
the one given in [20] in order to make a judicious 
comparison between the different simulation results. The 
modeling parameters chosen for the proposed antenna 
based on our A-TWA approach are defined and detailed in 
Table2.  

 

Fig.1 Design of 5G elliptical antenna 
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Table1. Design parameters 
Parameters (mm) W L Rx Ry fw 

Our approach 5.12 5.12 1.64 1.44 0.82 
Ref [20] 5.00 5.00 1.60 1.40 0.80 

Parameters (mm) h g1 I1 Iw δ 

Our approach 5.2 1.82 0.78 0.72 0.05 

Ref [20] 1.6 1.8 0.75 0.7 0.035 

 
Table2. Modeling parameters 

Paramete
rs  

Mesh 
grid 

Waveband Permittivi
ty of 
regions 

Polarizati
on 

Our 
approach 256

ൈ 256 

F_min=50GHz 
F_max=70GHz 
Step_Frq=0.5G
Hz 

ε୰భ ൌ 1 
ε୰మ ൌ 4.4 

Unilateral 
in y-
direction 

Paramete
rs  

Box 
nature 

Iteration 
Number 

Surface 
impedance 

Layers 
number 

Our 
approach 

Periodi
c walls 

300 Zୗ ൌ 0 monolayer 

 
 

4. Simulation results and Discussions 

The simulation examination was carried out by our 
electromagnetic simulator which is developed under C++ 
environment and built on ATWA approach. The admittance 
observed by the excitation source named Yin is computed 
to each iteration from the electromagnetic quantities, and it 
is pertinent for the validation of the stability or no of the 
system. Fig.2 demonstrates the convergence of the system 
for less than 100 iterations at 25GHz which confirm the 
stability of our A-TWA approach for mm-wave 
investigation of 5G antennas.  
We notice that the reference 28 GHz antenna [20] is 
simulated using the Finite-Element Method (FEM) based 
high-frequency structure simulator (HFSS) of ANSYS, Inc. 
Or, the computational complexity for both the forward and 
backward of the 2D-ATWA process is guaranteed at 
Oሺ𝑁்𝑙𝑜𝑔𝑁்ሻ  where 𝑁்  represents the meshing density 
applied to the structure to be analyzed. Our approach is 
much faster than FEM method in the context of EM 
simulations of planar antennas. This has been well-proved 
in the previous work presented in [22]. 
 The proposed elliptical antenna is designed on a compact 
Fr-4 substrate [29] with relative permittivity ε୰మ ൌ 4.4.  

The simulation results as shown in Fig.3 displays the 
evolution of S11 parameter of the proposed antenna 
obtained based on our approach and compared to the one 
investigated in [20]. The resonance frequency obtained by 
our approach is depicted at 28.7 GHz which is in good 
similitude and better performance with the reference 
antenna [20] resonated at 28 GHz. The return losses are 
respectively -42.7 dB and-43.3 dB and the impedance 
bandwidth is attained from 26.2 to 32.8 GHz by the way 
from 26.6 to 32.1 GHz for antenna reference. This proves 

the efficiency and accuracy of our advanced approach in the 
investigation process of 5G antennas in low computation 
time.  

 

 

Fig.2  Evolution of both imaginary (R(Yin)) and real (Im(Yin)) parts of 
Yin as function of iteration number at 28 GHz  

 

Fig.3 Insertion parameter (reflection coefficient) S11 

5.  Conclusions 

A rapid Advanced Transverse Wave Approach 
(ATWA) has been well presented and developed in the 
context of mm-wave wireless communication systems. An 
elliptical 5G compact patch antenna has been successfully 
designed, simulated, and validated by our approach which 
proves again its stability and fastness in terms of time 
complexity and accuracy contrasted with the commercial 
simulator HFSS based on Finite-Element Method. The 
Simulation results show that the proposed 5G antenna 
resonates at 28.7GHz and achieved the impedance 
bandwidth of 26.2-32.8 GHz which are in satisfactory 
agreement with references. This approach can be improved 
and extended to investigate the unlicensed mm-wave ISM-
band applications. 
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