
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.1, January 2022 
 

 

429

Manuscript received January 5, 2022 
Manuscript revised January 20, 2022 
https://doi.org/10.22937/IJCSNS.2022.22.1.56 

 

Deep Dense Model for Classification of Covid-19 in X-ray Images 

Wesam H. Alsabban1, Fareed Ahmad2, Ali Al-Laith3, Saeed M. Kabrah4, Mohammed A. Boghdadi5, 
Farhan Masud6  

1Information systems department, Faculty of computer and information systems, Umm Al-Qura University, Makkah, 
Kingdom of Saudi Arabia. 

2Quality Operations Laboratory, Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and 
Animal Sciences, Lahore, Pakistan 

3Center for Language Engineering, Alkhawarizmi Institute of Computer Science, University of Engineering and 
Technology, Lahore, Pakistan 

4Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of 
Saudi Arabia. 

5King Faisal Specialist Hospital and Research Centre (KFSH&RC) Jeddah, Kingdom of Saudi Arabia. 
6Department of Statistics and Computer Science, Faculty of Life Sciences Business Management, University of Veterinary 

and Animal Sciences, Lahore, Pakistan 

 
Summary 
Novel Coronavirus, SARS-CoV-2, can be fatal for humans and 
animals. The ease of its propagation, with its extraordinary ability 
to cause disease and even death in humans, makes it a hazard to 
humanity. Chest X-ray is the most popular but difficult to 
apprehend radiographic analysis for immediate diagnosis of 
COVID-19. It yields significant anatomical and physiological 
information. However, extracting the appropriate information 
from it is seldom difficult, even for radiologists.  Deep CNN 
architectures can assist in reliable, swift, and accurate results. We 
propose a deep dense model fine-tuned from scratch and 
statistically analyzed its results using paired two-sided t-test with 
state-of-the-art deep learning models, namely, SqueezeNet, 
AlexNet, DenseNet201, and MobileNetV2. Current datasets are 
limited and generally unbalanced. However, we devised a larger 
and well-balanced dataset for training the model.  Moreover, as the 
dataset is still not significant, thus data augmentation and fine-
tuning approaches are employed to evade overfitting and generate 
a better-generalized model. Our deep dense model produces better 
performance from analyzed deep learning models to generate 
Specificity, Recall, FScore, and Accuracy of 97.33%, 92.01%, 
92.00%, and 96.01%, when trained on a significantly larger and 
balanced dataset, while employing 5-Folds cross-validation. The 
statistical analysis also shows that our model is better than its 
competing methods. Our deep model can help radiologists in the 
correct identification of COVID-19 in X-rays.  
That can contribute toward speedy and reliable diagnosis, thereby 
saving precious lives and minimizing the socio-economic burden 
on society. 
Key words: 
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1. Introduction 

Microbes cause many zoonotic diseases, which are 
transmitted from animal to humans [1]. The effects of such 

diseases present a risk not only to human and animals but 
also to world health safety [2]. About 1500 microbes are 
known to cause infections in human beings [3]. About 61% 
of the documented and 75% of the evolving contagious 
infections in the community are zoonotic [2, 4]. Moreover, 
16% of the mortalities and 44% of the deaths in 
underdeveloped nations caused by infectious diseases [2]. 
Zoonotic diseases induce 2.7 million mortalities and 2.5 
billion infections in the society [5]. The evolving zoonotic 
illnesses are liable for numerous high-level pandemics [6]. 

COVID-19 is a zoonotic disease that transfers to humans 
through bats or pangolins [7, 8]. There exists no direct 
relation among human beings and various other species. As 
the virus is a mutated microbe, it can conveniently cross the 
specie barrier and affects human respiratory tract [9,10]. As 
a result, the virus can cause kidney malfunction, acute 
respiratory infections and pneumonia, and can also cause 
mortalities [11]. The virus can survive in aerosol form and 
on numerous surfaces from many hours to several days [12]. 
The research reports that the virus propagates either by 
exhaled or sneezed or coughed droplet particles of 5 to 10 
μm and around thirty times smaller than the diameter of a 
human hair. [12,13]. Experts report in [14,15] that the 
pathogen can exist in the air as droplets. WHO is presently 
evaluating the role of aerosols in transmission [16]. The 
organization informed that the virus can prevail in closed, 
crowded, and poorly ventilated environments [17]. 
Research [18] reports that sneeze can cause the droplets of 
the pathogen to travel up to 27 feet. Its capacity to prevail 
and propagate in the environment and infect and even cause 
mortality in individuals makes it a probable contestant for 
biological warfare [19–21]. The epidemic is extensively 
widespread in the USA, UK, and Europe. Millions of 
individuals got infected, and thousands have lost their lives 
due of the virus. Globally, as of 24 September 2021, there 
were 230 million infections and 4.7 million reported deaths. 
In the US, there were 42 million positive cases and 0.48 
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million deaths. The virus may cause 2.4 million mortalities 
in the US if proper safety measures are not initiated [22, 23]. 
In the United Kingdom and the EU states such as France, 
Germany, Spain, and Italy about 15.88 million people were 
infected, and 0.34 million died [22]. The UK's health 
officials maintain that the infection can affect 80% of the 
community, and 0.5 million mortalities are expected [24]. 
Overall, billions of individuals are in self-quarantine or 
under lockdowns. If the pathogen is permitted to propagate 
at this speed, the primary-care setup will be overwhelmed, 
markets will crumble, and valuable human lives could be 
wasted [23, 25]. 

RT-PCR and ELISA are the generally accepted methods for 
the classification of COVID-19 [26]. RT-PCR, which 
detects the pathogen's RNA from respiratory tract samples, 
is the key screening approach for distinguishing COVID-19. 
Swabs from the nasopharyngeal or oropharyngeal regions 
are used to obtain these samples. While RT-PCR is 
considered the gold standard [27, 28], it is a tedious, 
complex, and sensitive standard procedure [29]. Sample 
errors, low sensitivity, and low viral load can also impact 
test results [30, 31]. The test results can be falsely negative 
if the viral load is insufficient [28, 32]. Chest radiographs 
like CT-Scan and X-rays are an alternative approach for 
COVID-19 screening. Experts examine these radiographs to 
evaluate the likely lesion associated with COVID-19. 
Primary researches reveal that individual infected with 
COVID-19 exhibit abnormalities in chest radiographs [28, 
33]. Recent researches infer that radiological analysis can 
be adopted as a primary tool for virus detection in affected 
areas [28]. Radiographic examinations can be executed 
instantly and are easily available in our primary health 
infrastructure. It is a true compliment to the PCR test (in few 
instances even exhibiting greater sensitivity) [28, 32].  The 
main problem with X-ray analysis is that they need an 
experienced expert to evaluate the radiograph image, as 
visual signs are hard to infer [34,35]. However, computer-
aided models can assist radiologists interpret X-rays 
precisely and instantly to identify chest abnormalities that 
cause coronavirus infections.  

Currently, deep learning designs can expedite speedy 
diagnosis, rapid prevention, and elimination of 
contaminations induced by coronavirus [36]. A fusion of 
deep models (for example, InceptionV3 [37] and AlexNet 
[38]), open-source databases (for example, ImageNet [39]), 
and an efficient overfit checking procedure (for example, 
Dropout [40]) has demonstrated enhanced performance, 
accuracy, and excellent generalizability to resolve 
pathological [41, 42], biological [36,43], and complicated 
computer-vision endeavor’s [44]. The benefit of CNN 
models for computer vision tasks is that a design is trained 
from start to end but undergoes overfitting with minute 
datasets. For deep networks, it is difficult to attain the same 
magnitude of performance with small datasets as with large 
datasets [45]. The solution to the problem is transfer 
learning [46], which replaces few last layers of a deep model 
and fine-tune it on a distinct dataset. The method is helpful 

when augmentation [44] with suitable hyper-parameters and 
efficient fine-tuning tactics are employed. Next, we present 
the overview of the latest research related to COVID-19. 

 Image processing and CNN models have displayed 
promising outcomes, especially in the field of chest 
radiographs. These routines carry lung nodule identification 
[47], pulmonary tuberculosis classification [48], and 
specially for COVID-19 analysis [35, 49, 50, 51, 52]. 

 Xu et al. [51] propose a 3 category framework to 
distinguish among viral, normal, and coronavirus 
examples. The method is based on segmentation that 
achieves almost 87% accuracy with 618 CT images.  
Wang et al. [52] propose a deep learning model to 
attain visual features from CT images for coronavirus 
identification. The model consists of 1,065 CT images 
(325 coronavirus and 740 viral) of individuals, which 
achieves an accuracy of 79.3%. Gozes et al. [53] 
present a rapid AI base development cycle applying 
CNN's for CT image analysis.  

Ioannis et al. [54] present a deep learning approach to 
classify different chest infections with 224 COVID-19, 504 
normal, and 700 bacterial images. The model achieves a 
specificity, accuracy, specificity, and sensitivity of 96.46%, 
98.66%, and 96.78%, respectively. Although the approach 
analyzed the outcomes of different models, the results rely 
on a limited number of coronavirus images. In ref. [35] the 
scholars contribute a pooled open-source dataset and 
propose a COVIDNet model for the classification of 
coronavirus, which uses chest radiographs as input. The 
dataset comprises 5538 pneumonias, 358 COVID-19, 8066 
normal radiographs. The model attains an accuracy of 
93.3%, but like previous approaches, the model relies on 
limited COVID +ve images. Ucar and Korkmaz [55] use 
SqueezeNet deep model while employing Bayesian 
optimization approach to distinguish coronavirus infections 
in chest radiographs. The dataset consists of 3,895 
pneumonia, 66 COVID-19, and 1,349 normal radiographs. 
Although the strategy reveals inspiring outcomes on a 
minute dataset, its results need verification on a larger 
dataset. Abbas et al. [56] propose a convolutional design 
that exhibits dimensionality reduction and transforms a 
high-resolution image into a lower-dimensional feature 
space. It consists of 11 SARS, 80 normal, and 105 COVID-
19 radiographs. The design accomplishes almost 95% 
accuracy. Khan et al. [57] apply the Xception architecture 
to distinguish COVID-19 infections in chest radiographs. It 
consists of 327 viral, 284 COVID-19, 310 normal, and 330 
bacterial images. For limited data instances, the design 
accomplishes an accuracy of 89.6%, while the combination 
of the two classes (bacterial and viral pneumonia) achieves 
an accuracy of 95%. Ashfar et al. [58] propose a capsule-
based network known as COVIDCAPS. The model attains 
95.7% accuracy in 94,323 radiographs associated with 
common chest diseases. Gian-chandaniet al. [59] employ 
two deep networks, one consisting of ResNet152V2 and 
VGG16 for binary classification (normal, COVID19) and 
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the other comprising of DenseNet201 and VGG16 for three-
class identification (virus, COVID19, and bacteria). Each 
class in binary classification consists of 1525 images, and 
for three classes, there are only 401 images in each category. 
However, the results are promising but may not replicate for 
a significantly larger dataset with numerous classes. The 
approach applied a simple data split comprising of train, test, 
and validation sets. However, cross-validation is more 
feasible for small datasets. Singh et al. [60] apply genetics 

and particle swarm optimization employing deep 
architectures for the screening of individuals with COVID-
19. These architectures employ a binary classification 
procedure; they are slow to converge but still give 
acceptable outcomes. Hyper-parameters are tuned to 
increase the architecture’s performance. The author [61] 
employs ensemble learning via three deep architectures 
(ResNet152V2, DenseNet201, and VGG16) on CT images 
to produce outstanding outcomes on a significantly larger 

Table 1. Comparison of Various Approaches applied for COVID-19 Classification  

Approach Classes Dataset 
Description  

Augmentation? 

 

Balanced 

Dataset? 

Hyper-
parameter 
Tuning? 

Statistical 
Comparison? 

5-Folds 

CV? 

[30] 5 C-19 180, N 
191, B 54, V 

20, T 57  

 ×  × × 

[35] 3 C-19 180, P 
6012, N 

8851  

 × × × × 

[55]   3 C-19 66, P 
3895, N 
1349,  

 ×  × × 

[58] 5 Not stated × × × × × 

[59] 3 C-19 401, N 
401, V 401  

 ×  × × 

[62] 3 C-19 183, P 
5521, N 

8066  

 × × × × 

[63] 3 C-19 99, P 
9579, N 

8851  

 × × × × 

[64] 4 C-19 313, 
UP 6012, N 

7595, B 
2780 

× ×  × × 

[65] 2 C-19 184, N 
500 

 × × × × 

[66] 4 C-19 68, N 
1203, V 660, 

B 931 

 × × × × 

[67] 3 C-19 423, V 
1485, N 

1579  

 × × ×  

 

The class column presents the total categories in a dataset. Where C-19, P, UP, N, B, V, T, represent the total instances 
of Covid-19, Pneumonia, Pneumonia of Unknown type, Normal, Bacterial, Viral, Tuberculosis, examples respectively.  
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four categories (pneumonia, COVID-19, normal, and 
tuberculosis) dataset. A conventional test\train split is 
initiated in its place of cross-validation. 

 

Most of the above COVID-19 classification approaches 
apply machine and deep learning techniques with 
augmentation, fine-tuning strategies. The dataset in these 
approaches is unbalanced with limited COVID-19 images 
that may not generate substantial results on a large dataset. 
Hyper- statistical analysis, cross-validation, and parameter 
tuning are also not applied by most researchers.  Table 1 
summarizes the various research strategies applied for 
COVID-19 classification using CNN architecture’s. In the 
current work, we devise a comparatively larger and 
balanced dataset comprising four classes (normal, COVID-
19, bacterial, and viral). These images are analyzed by 
employing fine-tuning with transfer learning on pre-trained 
deep learning models to demonstrate if these deep models 
can render more reliable outcomes when data is limited. We 
also implemented regular data augmentation practices like 
reflection and rotation [68] which, help resolve the issue of 
limited data instances by supplementing them with altered 
original instances. Lastly, we present a deep dense model 
comprised of Dense blocks with convolution pooling layers, 
as presented in Fig. 1. The model delivers better results than 
various deep learning models. Our research contributions 
are summarized in the following paragraph: 

(i) A well-balanced and significantly larger dataset if 
prepared to comprise of four categories (viral, normal, 
bacterial, and COVID19). In each category, there are 1200 
instances. 
(ii) The work unifies various approaches (fine-tuning, 
hyper-parameter tuning, and augmentation) in one model. 
(iii) The work presents a deep model with dense blocks used 
as the main component of our architecture. 
(iv) The Performances of various deep designs are 
compared with the proposed deep dense model in terms of 
accuracy, F-Score, recall, and specificity. 

(v)  We also assess the performance of the proposed design, 
statistically by applying paired II-sided t-test and 5-Folds 
CV (Cross-validation). 

2. material and methods 

A deep dense design for classification of COVID19 in X-
ray images is proposed in the Figure 1. The presented deep 
dense model comprises of five steps: (i) Large-scale image 
resizing 

 (ii) Splitting the dataset (iii) Augmenting the dataset (iv) 
Fine-tuning of proposed dense model (v) Adding fully 
connected, soft max and classification layer for conducting 
classification on the deep dense model. The complete 
detailed architecture of the model is described in Table 2. 

2.1. Software and Hardware 

The study is conducted with the help of different deep CNN 
architecture like DenseNet201 and MobileNetV2 with 
Matlab version: R2021a.  An 8-Gb Nvidia GPU is used for 
training various deep models. Matlab Add-On Explorer is 
used to download and install these models. 

2.1. Data description and augmentation 

 

 
The dataset comprises X-ray images about four different 
classes( Normal, Viral, Bacterial, and COVID-19). The 
dataset consists of 4800 images, with 1200 images in each 
category. 

The normal, viral, and bacterial images are retrieved from 
the Kaggle dataset. [69]. The COVID-19 images are from 
four sources, 900 images are from Mendeley open-source 
dataset [70], 200 images are from King Faisal Specialist 
Hospital and Research Centre [71], and the remaining 
radiographs are from SIRM [72] and Radiopaedia [73]. 

Table 2. The detail design of Deep dense  

Layers Output 
Size 

Proposed Model 

Convolutional 
layer 

112 x 112 stride-2, 7 x 7  

Pooling  
layer 

56 x 56 stride-2, 3 x 3 Max-
pool 

Dense (block-1) 56 x 56 ቂ1 x 1 𝑐𝑜𝑛𝑣
3 x 3 𝑐𝑜𝑛𝑣

ቃ x 6 

Transition 
(layer-1) 

56 x 56 1 x 1 convolution 
28 x 28 stride-2, 2 x 2 

Average-pool  
Dense (block-2) 28 x 28 ቂ1 x 1 𝑐𝑜𝑛𝑣

3 x 3 𝑐𝑜𝑛𝑣
ቃ x 12 

Transition 
(layer-2) 

28 x 28 1 x 1 convolution 
14 x 14 Stride-2, 2 x 2 

Average-pool  
Dense (block-3) 14 x 14 ቂ1 x 1 𝑐𝑜𝑛𝑣

3 x 3 𝑐𝑜𝑛𝑣
ቃ x 11 

Classification 
Layer 

1 x 1 7 x 7 Average-pool 
    4 4D fully-connected,  

          softmax 

 
Fig. (1). Various stages of the proposed Deep dense model 
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Augmentation is applied to augment the volume of the 
dataset for training, which helps in handling overfitting. 
Various augmentation routines are for training the model. 
Which are as follows:  

(i) Random horizontal reflection, (ii) Random vertical 
reflection, (iii) Random vertical shear, (iv) Random 
horizontal shear, and (v) Random rotation. During training, 
80% of the data is for training and 20% is for testing the 
design. 

2.2. Preprocessing 

The chest radiology images are large, with several 
radiographs with a size of 1013 × 1016 pixels. These 
radiograph images need resizing, so they are adjusted 
according to the input size of the models. Different models 
have different input-size such as Densenet201 has an input 
size of 224-by-224. Cropping further helps in improving the 
quality by removing the extended black background from 
the X-ray images. 

2.3. Tuning Hyper-parameters  

In this research, we examined the effect of numerous hyper-
parameters on the results of the chosen deep CNN models. 
The hyper-parameters are as follows: (i) Epochs, (ii) Batch 
size, and (iii) Learning rate.  These hyper-parameters are 
applied to different models (SqueezeNet, DenseNet201, 
AlexNet, and MobileNetV2). During training, numerous 
variations of these hyper-parameters are used for each CNN 
model, as shown in table 3. The experimentation shows that 
these models display the most favorable results with a batch 
size of 24, 32, and 48. In the beginning, smaller learning 
rates have shown better results like 1e-6, 1e-7, and 1e-8.     

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Convolution neural network (CNN) 
 The convolution network relies on a traditional neural 
network and normally comprises of three kinds of layers 
(convolution, pooling, and a fully-connected layer). 
Subsequent to the convolutional operation, generally a 
pooling operation is performed, which reduces 

dimensionality. This permits us to minimize the parameters, 
lowers the training time, and also supports in handling 
overfitting. The pooling down-samples each feature map 
while preserving the vital features intact. Afterward, the 
fully connected layer tries to gain a mid-level feature map. 
Executing full connection in these layers demand a 
significant number of weight parameters. For additional 
details, please refer to [74]. The Convolution network 
operates in a feed-forward fashion; it starts from the primary 
layer to the terminal layer. The error is propagated in the 
backward direction, which originates from the terminal 
layer to the convolutional layer. Let i be a neuron in layer c, 
which receives data from a neuron j of layer c − 1 in the 
forward-pass. The input [75] is calculated as follows: 

𝒍𝒏𝒊
𝒄  ൌ ∑ 𝑾𝒊𝒋

𝒄𝒏
𝒋ି𝟏  ൅  𝒃𝒊                                                        (1) 

Where 𝑾𝒊𝒋
𝒄  𝒂𝒏𝒅  𝒃𝒊 are weight vector and bias-term of the 

cth layer. ReLU a rectified linear activation method [75] can 
be utilized to calculate the output, as follows:  

𝑶𝒖𝒕𝒊
𝒄  ൌ 𝑴𝒂𝒙ሺ𝟎, 𝒍𝒏𝒊

𝒄ሻ                                                         ሺ𝟐ሻ 

The hidden nodes in the convolutional and fully connected 
layer use Equations (1) and (2) to calculate the input and 
output. SoftMax [76] is used to compute the classification 
probability of each pathogen in the terminal layer, as 
follows:  

𝑂𝑢𝑡௜
௖ ൌ

𝒆௟௡೔
೎

∑ 𝑂𝑢𝑡௞
௖

୩
        ሺ𝟑ሻ 

 
Back-propagation is utilized for training the convolution 
network. It help’s in minimizing the cost equation [76] 
associated to the unknown weight W, as given below. 

                        C ൌ െ
𝟏

𝒎
∑ 𝑙𝑛ሺ𝑝ሺ𝑦௡|X௡ሻሻ௠
௡ୀଵ   ሺ𝟒ሻ 

 
Where m denotes the examples in a training set,  X௡ is the 
n௧௛ example in the training set and 𝑦௡ is its corresponding 
label and its true classification probability is 𝑝ሺ𝑦௡|X௡ሻ. By 
means of SGD over the mini-batch’s of magnitude N, the 
cost function is decreased and training costs are assessed by 
the mini-batch cost. If W 

ୱ represents the weights at iteration 
s for the convolution layer c and C is the cost of mini-batch, 
the weights [76] are updated at the successive iteration as 
follows: 

γ s ൌ  γሾ 
ୱ୒
୫   ሿ  

Vୡୱାଵ   ൌ  µvୡ 
ୱ  ൅  γ ୱαୡ   

∂C 
∂Wୡ

 

Wୡ 
ୱାଵ   ൌ Wୡ 

ୱ ൅  Vୡ 
ୱାଵ   

 
Where layer c’s learning rate is represented as  αୡ .The 
symbol γ denotes scheduling rate, which reduces the initial 
learning rate α after stated epochs, and while µ signifies the 
momentum that describes the impact of formerly adjusted 
weights in the current iteration. 
 

Table 3. The detail of learning rate and batch size for 
various Pre-trained models 

CNN Network  Batch-
size 

Learning rate 

Alex Net  48, 16 
32, 24 

5e-10, 7e-5, 1e-5, 8e-7, 
1e-8, 1e-7, 6e-7, 1e-6, 5e-

4, 1e-4 

Squeeze Net 48, 16, 
32, 24 

1e-7, 1e-4, 1e-8, 9e-4,  
8e-7, 9e-5, 1e-6,  

MobileNetV2 48, 16, 
32, 24 

 6e-4, 1e-8, 1e-4, 6e-7, 
5e-6,  4e-7, 1e-7, 9e-6, 

3e-6, 1e-6, 8e-5  

DenseNet201 48,  16, 
32, 24 

 1e-4, 1e-7, 1e-6,1e-5 
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2.5. Transfer learning and Fine tuning of deep models 

Different CNN networks possess a varying number of 
parameters and layers, as depicted in Table 4. 

A significant volume of training data is essential for the 
optimization and training of deep CNN models. Though for 
a comparatively scantier dataset, it is very difficult to 
acquire the appropriate local minima for the cost function, 
represented by Equation 4, due to which the design may 
encounter overfitting. So, originally, trained parameters are 
acquired from these deep networks. Then these deep 
networks are fine-tuned on we fine-tuned COVID19 dataset 
by using diverse alterations of the learning rate, batch size, 
and epochs. The primary layers possess generic features, 
while the succeeding layers maintain domain-related 
features. To preserve the features from the original layers 
and reduce the learning rate in the subsequent transfer layers, 
the primary rate is adjusted to a minimum value. But, to 
learn more rapidly in the recently attached layers, the 
learning rate of in recently added fully-connected layer is 
fixed to a larger value. The fully-connected layer of these 
models comprises of 1000 neurons, which corresponds to 
the number of categories in the ImageNet repository. To 
acquire the domain-rated features, the terminal fully-
connected layer is attuned according to categories in the 
COVID19 dataset. The CNN networks are described as 
under. 

 

 

2.5.1. AlexNet 

AlexNet was the winner of the 2012 ImageNet competition, 
which is mainly used for image classification tasks. It can 
be considered as a wider and deeper variant of LeNet, which 
includes the primary modules of CNNs, providing the 
foundation for other deep learning architectures [38]. It 
preserves the original design but includes more functions 
such as LRN, dropout, and ReLU. The work’s main 
outcome was that the model’s depth was crucial for its huge 
performance, which was computationally expensive but 
made possible due to the use of GPUs during training. The 
model comprises of 5 convolutions, and 3 fully-connected 
layers, as displayed in in Fig. 2. 

 

2.5.2. SqueezeNet 
SqueezeNet is a deep CNN design for image classification 
that was released in 2016. The model was proposed by 
researchers at Stanford, Berkeley, and DeepScale [77]. The 
goal was to create a smaller CNN with lesser parameters that 
require lesser memory and can quickly be sent over a 
computer network. The basic building block of this deep 
model is a fire module, which consists of: a convolution 
layer comprising of 1x1 filters, feeding into an expand layer 
that has both 1x1 and 3x3 convolution filters, as shown in 
Fig. 3. 
   

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. (2). AlexNet Architecture 

 

 
Fig. (3). SqueezeNet Architecture 

Table 4. The description of Parameters and Layers for 
various Pre-trained models 

Deep Models Layers Parameter 

Alex Net  8 60 million 

Squeeze Net  18 1.24 million 

MobileNet V2 53 3.5 million 

DenseNet201 201 20 million 
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2.3.3. MobileNetV2 

 MobileNetV2 is a CNN model that comprises 53 layers. 
The deep network is a continuation of MobileNetV1, which 
offers a depth-wise separable convolutional layer, which 
fantastically decreases the complexity cost and size of the 
model. The model proposes a further useful module with an 
inverted residual architecture, where the residual-based 
connections are among the bottleneck layers. The middle 
layer is an expanded design that utilizes lightweight depth-
wise convolution to separate features. Furthermore, non-
linearities are eliminated in the thinner layers to sustain the 
representational capacity [78]. MobileNetV2 generates 
excellent performances in object detection, image 
classification, and semantic segmentation tasks. The Fig.4 
displays the MobileNetV2 block diagram.  

 
2.5.4. DenseNet 
For the proposed deep design, the DenseNet architecture 
serves as a building block. Dense models require lesser 
parameters than traditional convolution models as they do 
not need to learn unnecessary feature-maps. Some 
disparities in ResNet models were handled and removed in 
Dense models. ResNet models have large number of 
parameters, however, DenseNet layers are narrower and 
they offer new feature-maps in lesser number. RESNET 
models are difficult to train due to previously reported 
gradients and data. As layers are connected to the gradients 
by the loss function and the original image, DenseNet 
models resolve the problem. 
 The basic idea of DenseNets is reuse of features, which 
produces a very compact design. Consequently, the model 
requires lesser parameters than other deep models as no 
feature-maps are duplicated. Deeper models, face numerous 
problems. The issue is mapping of data from the inner layer 
to the external layer (also the gradient) gets so large that it 
can disappear before entering any other side. DenseNet 
models make this connectivity simpler by just combining 

each layer immediately with every layer. These models take 
advantage of the model’s capability by reusing features. To 
maximize computational recycling within the classifiers, 
combining various classification algorithms into an ideal 
and deep CNN and connects them with dense connections 
for effective image identification [79]. The study has 
revealed that CNN's with limited connections within layers 
and those near to the output can be sustaintially deeper, and 
will be much more realistic to train [80]. DenseNet delivers 
substantial enhancements over the other deep learning 
models while using minimum processing and memory to 
improve its performance. 
In the presented methodology, deep dense block 
architecture is proposed, which takes the advantage of fine-
tuning and data augmentation to further improve the 
generalizability of the model. 

3. RESULTS and Discussion 

The section demonstrates the experimental outcomes of 
deep networks besides considering the enhancements these 
methodologies i.e. (fine-tuning, augmentation, and transfer 
learning) have brought in the suggested approach. Initially, 
we select four deep models and apply fine-tuning, 
augmentation and transfer learning to future improve the 
performance of these models. We assess the performance of 
these CNN architectures from two different aspects. When 
the CNN architectures are (i) augmented and fine-tuned 
without pre-trained weights and (ii) augmented and fine-
tuned with all layers unfrozen. For the methodology, recall, 
specificity, FScore, and accuracy are computed for CNN 
models on the COVID19 dataset in Table 5.  
By examining these matrices of models on the COVID19 
dataset, we can infer the following conclusions: 
 
1) In most cases, shallow CNN networks generate better 
results than deeper networks when the dataset is limited. 
These deeper models possess an enormous number of 
parameters, which require a significant amount of training 
data. Previous researches show that shallow networks 
perform better than deeper networks for image classification 
tasks [45]. 
 
2) Fine-tuning and augmentation strategies are very 
beneficial for a network’s performance when the data is 
insignificant. Fine-tuning helps models converge speedily 
and realize domain-specific features. These can also help 
increase the FScore and accuracy of these CNN designs, 
even if trained from start during image identification tasks. 
The outcomes show that the networks only fine-tuned on the 
augmented COVID19 dataset can considerably improve 
FScore and accuracy, even if the network is trained from 
start with any pre-learned weights. Researches also show 
that fine-tuning a CNN architecture is vital for its reusability 

 

 

 

 

Fig. (5). DenseNet block 

 
 
 
 
 
 
 
 

Fig. (4). MobileNetV2 Block 
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[81]. Current works confirm that fine-tuning is beneficial 
for various computer vision tasks [82]. Similarly, previous 
works also maintain that augmentation can help increase the 
performance and generate more generalized models without 
overfitting [45, 83]. 
3) The proposed dense design produces specificity, recall, 
FScore, and accuracy of 97.33%, 92.01%, 92.00%, and 
96.01%, respectively, while employing augmentation and 
fine-tuning approaches. The design provides improved 
performance in contrast to any of the CNN architectures. 
The suggested design accomplished nearly 0.30–1.5% rise 
in specificity, 0.82–5.1% rise in the recall, 0.89–5% rise in 
FScore, and 0.41–2.4% rise in accuracy overall the 
employed CNN models. DenseNet models use dense 
connections which resolve the issue of vanishing-gradient, 
substantially reduce the number of parameters, build up 
feature propagation, and boost feature reuse [80]. Dense 

models have inspired optimizations in many other deep 
learning domains like image classification [79], medical 
diagnosis [84], image segmentation [85], image super-
resolution [86] etc. 
4) The confusion matrix more elaborates the outcomes of 
the suggested design for the COVID19 dataset, as given in 
Figure 5. The Fold-1 matrix reflects that in COVID19, there 
are only three misclassifications and in the Normal class, 
there are eight misclassifications.  Though, 
misclassification is comparatively high in the viral and 
bacterial class (bacterial 26 and viral 48). 
 
5) Overall, the matrices show only five misclassifications 
for COVID19 and slightly higher (thirty-one) for the 
Normal class.

 
Overfitting can be an obstacle, especially with modest 
training examples. A design may attain spectacular 
performance on the training dataset, but it is sometimes 
difficult to generate similar results for unseen instances. So, 
the core issue is to evaluate whether overfitting is observed, 
or the model shows substantial ability to generalize for the 
given instances. To perform this assessment, we assess the 
performance of the design by measuring the gap among the 
training/validation curves. The greater the space among the 
curves, the more the overfitting. The training chart in Figure 
6 fold-4 of the model, which shows a slight improvement in 
model’s accuracy and loss as the number of epochs increase. 
The figure also displays that the curves for training and 
validation overlap, which displays that there is no 
overfitting and the suggested design can generalize for the 
training instances. 

4. STATISTICAL COMPARISION 

For statistical evaluation of the performance of the design 
against various other deep models, we repeat our evaluation 
scheme five times. Then, we follow the following steps as 
given below: 
(a) A paired II-sided t-test is applied at 5% significance and 
compare five accuracies of our design with those of 
contesting deep architecture.  
(b) We hypothesize that difference among accuracies of the 
suggested design and those of a contesting architecture 
originates from a normal distribution with variance not 
known and a zero mean. The other hypothesis is mean is not 
zero. 
 

Table 5. An Assessment of several approaches applied on Deep CNN designs. Where, ADS, ALUF, NPTW, FT augmented 
dataset, all layers un-frozen, no pre-trained weights, fine-tuned. 
Model types Methods Specificity Recall FScore Accuracy 

Proposed_Model FT on ADS-NPTW 97.33+0.36 92.01+0.85 
 

92.00+0.87 
 

96.01+0.52 
 

AlexNet FT on ADS-ALUF 97.08+0.45 91.27+1.16 91.24+1.09 95.6+0.62 

DenseNet201 FT on ADS-ALUF 96.96+0.90 90.90+2.80 91.10+3.03 95.43+1.36 

SqueezNet FT on ADS-ALUF 95.87+0.53 87.59+0.53 
 

87.62+0.52 
 

93.80+0.25 
 

MobileNetV2 FT on ADS-ALUF 97.07+0.59 91.26+1.49 91.19+1.57 95.62+0.84 

A • symbolizes that our deep dense model is statistically superior to its contending model. 
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Fig. (5). Confusion Matrices of Proposes Deep Dense Model 
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(c) In case the void hypothesis is declined, the performance 
of our design is statistically variating from the contesting 
design. We hold it to be a win for our design if the mean 
accuracy of the proposed design is higher than that of the 
contesting design. We represent it be a •. Contrarily, it is a 
loss for the proposed design. We describe it by a ◦. 
 (d) In case t-test doesn't reject the void hypothesis, then the 
performance of the proposed design is not statistically 
distinct from the contesting design. This will be considered 
as a tie, shown by no symbol. 
The identical statistical analysis scheme applies to recall, 
specificity, FScores, and accuracy. The outcomes in Table 
5 reflect the statistical significance of our design over other 
competing deep designs. 

5. COMPARISON WITH PREVIOUS 
WORK 

We present the comparison of our model with previously 
employed strategies for the identification of COVID19 in 
chest X-rays.  Initially, the comparison illuminates that the 
datasets are unbalanced and comprise a limited number of 
corona +Ve images in all of these strategies.  Secondly, 
cross-validation is used only by few approaches. Finally, 
hyper-parameter tuning and statistical analysis of deep 
networks is not employed by any of the techniques. While 
examining the quality metrics in Table 6, it can be 
concluded the suggested dense model beats the examined 
contemporary approaches, attaining an accuracy of 96.01%. 
 

6. Conclusion  

In this work, a new COVID-19 classification technique is 
presented, which applies fine-tuning, data-augmentation, 
and dense connections for distinguishing between various 
chest infections. Dense connections resolve the issue of 
vanishing-gradient, substantially reduce the number of 
parameters, encourage feature reuse, and strengthen feature 
propagation. Fine-tuning benefits the design converge 
rapidly and achieve domain-specific features. The 
augmentation technique creates diversity among instances 
of the dataset, which magnifies the generalizability of the 
design and hence helps in controlling overfitting. The 
recommended model includes Dense blocks, convolution, 
and pooling layers, which delivers more reliable 
classification performance than the examined CNN models. 
The dense model attains a specificity, recall, FScore, and 
accuracy of 97.33%, 92.01%, 92.00%, and 96.01%, which 
can be beneficial for experts in radiology and can also assist 
diagnostic staff in the correct classification of COVID19 in 
chest radiographs. Consequently, the dense model can help 
in the swift and accurate and swift identification of 
COVID19 patients. As a result, this can limit the 
socioeconomic impact of the virus on humanity. 
 
 
 
 
 
 
 
 
 
 
 

Table 6. Assessment of Proposed deep dense design with current methodologies applied for COVID19 Classification  

Approach Class Covid-19 
Images 

Hyper-
parameter 
Tuning? 

5-Folds 

CV? 

Balanced 

Dataset? 

Statistical 
Comparison? 

Accuracy 

Our Proposed Model 4 1200     96.01% 

COVID-NET [35] 3 180 × × × × 93.3% 

DELT[88] 4 305 × × × × 90.13 

CORONET[57] 4 284 × × × × 89.6% 

XGB[87] 4 130 ×  × × 79.52% 



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.1, January 2022 
 

 

439

 

 

 

Fig (6). Training chart for training and validation of Fold-4 of fine-tuned Deep dense model, for COVID-19 
classification 
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