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Abstract 
Image super-resolution aims to reconstruct the visually pleasing 
high-resolution (HR) image from the degraded version or 
low-resolution (LR) ones. Under the remarkable improvement in 
the field of image and computer vision tasks. Despite its 
improvement in accuracy and performance, these models used 
convolutional neural network (CNN) layers side by side to 
increase the depth of the network, which is not a suitable way of 
design and it creates the vanishing gradient problems during the 
training. Furthermore, previous deep CNN methods rely on a 
single channel to reconstruct the HR output image, but later end 
layers cannot receive the proper information and work as a dead 
layer. In this paper, we are used two parallel deep convolutional 
neural networks with the same size and order of filters, known as 
Twin Image Super-Resolution using Deep Convolutional Neural 
Networks (TISR). Additionally, proposed method used two 
parallel branches for extracting the low, mid, and high-level 
features simultaneously. For multi-level feature extraction 
purposes latest Xception block is employed from GoogLeNet 
architecture. Our method is evaluated on three different 
benchmark test datasets including SET5, SET14, and BSDS100. 
Experimental results are demonstrated that our proposed method 
(TISR) outperforms then the existing state-of-the-art methods.  
 
Keywords: Supper-resolution, Convolutional neural networks, 
Depth wise Separable convolution, Xception block, 
Deconvolution. 

1. Introduction 

Single image super-resolution (SISR) is a technique for 
reconstructing a high-resolution image (HR) with superior visual 
quality from a single low-resolution (LR) input image [1-3]. 
Access to the original data, that is unavailable, and the quality of 
the received image cannot be estimated properly. If the image 
quality is poor and restoring the information becomes very 
difficult. As a result, it is critical to restore the original image in 
super-resolution. The application of image super-resolution (SR) 
is being used in a variety of applications right now, including 
medical imaging [4], atmospheric monitoring [5], closed-circuit 
television surveillance [6] , security systems [7], satellite remote 
sensing [8], and robotics [9]. 
Before developing the deep learning-based approaches, various 

image processing-based techniques were employed in the image 
super-resolution tasks. Li et al. [10] and Nasrollahi et al. [11] 
classified image super-resolution methods into three different 
groups, namely, interpolation-based method, 
reconstruction-based method, and learning-based method. 
Several interpolation-based methods such as linear [12], bilinear 
[13], or bicubic [13, 14] interpolations can be found in image 
super-resolution applications. These methods are straightforward, 
but they may not restore the image's high-frequency information, 
therefore a more complex understanding of the image may be 
necessary to recover it [10, 11]. Although, many single image 
super-resolution based deep learning methods [15-18]  obtained 
the superior performance. All deep learning-based approaches 
used the back-propagation algorithms [19] to train the model. 
These strategies outperform prior statistics-based [20-23] and 
patch-based [24-29] models.  Dong et al. suggested a deep 
learning-based method called super-resolution CNN (SRCNN) 
for image super-resolution [15]. SRCNN achieves superior 
performance as compared to earlier learning-based techniques 
because it uses more contextual information to restore lost image 
details. In general, the receptive field size of CNN is connected 
with the effective size of visual context for reconstruction [30]. 
SRCNN's receptive field size is determined by the convolutional 
kernel size in each layer as well as the CNN depth. Kim et al. 
constructed a very deep CNN [18], which stacks more 
convolutional layers to increase the receptive field size. 
Yamamoto et al. [31] were the first to apply deep CNN-based 
super-resolution algorithm in agriculture. Larger kernel sizes and 
deeper networks, on the other hand, add more parameters and 
demand more computational resources. Furthermore, once the 
kernel scale and depth are set, CNN only gives single scale 
contextual information for image reconstruction, ignoring the 
fact that real-world images are multi-scale in nature. Even though 
they produce superior results, but deeper networks require more 
parameters, which increases the computational cost and more 
memory usage. The training process for a deeper model is 
difficult to converge, and the testing process is time-consuming. 
To address these problems, we introduce a new concept about  
fast and accurate super-resolution network called Twin Image 
Super-Resolution using Deep Convolutional Neural Networks 
(TISR). We use a very deep twin network with Xception block 
network architecture and significantly improved the performance 
as well as reduce the computational cost in terms of model 
parameters.  
In summary, the main contributions of this paper are threefold: 
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 We introduce a lightweight network architecture for 
image SR and replace the single path network 
architecture with twin networks architecture. 

 Our proposed Xception blocks for extracting the 
multi-scale features information efficiently. Each block 
depends on 3 types of kernel sizes of the order 3  3, 5  
5 and 7  7.  

 We are adopting a competitive strategy to replace the 
traditional bicubic upsampling strategy with 
deconvolution layer and pre-processing upsampling step 
is replaced with post upsampling step to further reduce 
the computational burden of the model.  
 

The rest of this paper is laid out as follows. Section 2 goes 
overview of the related works. In Section 3, we discuss the 
network architecture in detail. The experimental results on image 
super-resolution are presented in Section 4. Section 5 contains 
the conclusions. 
 

2. Related works  
 

Over the last five years, there have been numerous research 
articles published in the field of deep convolutional neural 
network-based single image super-resolution. Initially, stepped 
up into the field of SR by Dong et al. [32] and proposed the 
concept of super-resolution convolutional neural network 
abbreviated as SRCNN. This approach extends the idea of sparse 
representation with convolutional neural network. Deep 
convolutional neural has basically three categories of network 
architectures i.e., shallow, deep, and dense network architecture. 
SRCNN is in under the category of shallow type network 
architecture and used three CNN layers followed by ReLU 
activation function except the last layer. SRCNN has three stages 
such as feature extraction, non-linear mapping, and image 
reconstruction. The performance of SRCNN is improved as 
compared to earlier approaches and design is very simple, but it 
has some issues. Firstly, the SRCNN used the bicubic 
interpolation as a pre-processing step to upscale the LR image 
into HR image. Secondly, it uses larger kernel size and features 
are not extracted directly from the original LR input image. To 
resolve these issues and accelerate the performance, same author 
introduced the concept of FSRCNN [33]. In this approach 
removing the bicubic interpolation pre-processing step with 
post-processing step by deconvolution layer.  Furthermore, 
FSRCNN used shrinking, expanding, and deconvolution layers 
for extracting the HR image. After that, research community shift 
from shallow to deeper network architecture to further increase 
the performance of the CNN model.  In this race, first time very 
deep 20 layers based convolutional neural network for image 
super-resolution is introduced by Kim et al. [18], known as Very 
Deep Super-Resolution (VDSR). The designed concept of VDSR 
is followed by a popular VGG-net architecture having a fixed 
CNN kernel size of the order of 3  3 with 64 number of filters. 
Main issue with VDSR is to use the bicubic interpolation as a 
pre-processing step, which is the extra burden on the model and 
increase the computational cost during the training. Furthermore, 
Kim et al. [17] suggested the concept of deeply recursive 
convolutional neural network (DRCN) for image super-resolution 
purposes. In this architecture 16 times used the same layer 
recursively. The performance of DRCN is improved, but its 
testing time is too slow and requires more memory space. 

Shi et al., suggested an efficient sub-pixel convolutional neural 
network (ESPCN) [3], which included an efficient sub-pixel 
convolution layer to upscale the final LR feature maps into the 
HR output. Almost all later SR algorithms, such as SRResNet 
[16], EDSR [34], and others, incorporated the efficient sub-pixel 
convolution layer. These approaches are used the transposed or 
sub-pixel convolution layer to extract the features from the 
original LR input image. These networks can attain real-time 
performance or be designed to be exceedingly deep or wide with 
the use of deconvolution and sub-pixel convolution layers. 
Furthermore, such approaches simply stack building blocks in a 
serial manner and ignoring the hierarchical information contained 
in each building block. Lai et al., [35] use the concept of a 
pyramid and designed a new architecture known as a Deep 
Laplacian Pyramid Super-Resolution Network abbreviated as 
LapSRN. LapSRN resolve the issue of outliers with the help of 
L1 loss also known as Charbonnier loss. 
 

3. Proposed Method 
 

In this section, we present our proposed Twin Image 
Super-Resolution using Deep Convolutional Neural Networks 
(TISR) for reconstructing the high-quality output image from the  
low-quality input image. Fig 1 shows the overall network 
architecture comprising two paths (also known as Twin 
networks). The TISR network architecture is split into four 
stages: low, mid, and high-level feature extraction, and 
upsampling and reconstruction. For upsampling strategy, we used 
a post-processing technique to reduce the computational cost as 
well as training time. 

 

Figure 1. The proposed Network architecture of Twin Image 
Super-Resolution using Deep Convolutional Neural Networks 
(TISR). 
 
3.1 Feature Extraction  
 

For feature extraction purposes state-of-the-art methods such 
as SRCNN and VDSR used a pre-processing step as a bicubic 
interpolation to upscale the LR image into an HR image. The 
total features are extracted from the upscaled version, this way of 
feature extraction is to add new noises in the features and 
increase the extra burden on the model during the training. In this 
paper, we have not used a pre-processing technique for feature 
extraction but extracted the features directly from the original LR 
input image. Furthermore, earlier approaches are used a single 
straight path for extracting the feature, we are used two paths. 
For low-level feature extraction purposes, we used 2 convolution 
layers followed each by Xception block. All CNN layers are used 
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the kernel size of the order of 3  3 with 64 feature maps. Similar 
way, we extract the mid and high-level features simultaneously.  
A convolutional layer is a basic layer of deep learning model and 
it contains several filters whose number of parameters can be 
learned. Convolution filters have a smaller height and weight 
than the input volume. To create a neuron-based activation map, 
each filter is convolved with the input volume. Another method is 
to slide the filter across the width and height of the input, 
computing the dot products between the input and filter at each 
spatial position. The output volume of the convolutional layer is 
calculated by stacking the activation maps of all filters along the 
depth dimension. Each neuron in the activation map is only 
connected to a limited local region of the input volume since the 
width and height of each filter are designed to be less than the 
input. The local connection of the convolutional layer allows the 
network to train filters that respond optimally to a specific region 
of the input. Furthermore, by convolution the filter and the input, 
the activation map is formed, and the filter parameters are shared 
across all local positions. For efficient expression, learning, and 
generalization, the weight sharing method reduces the number of 
parameters required. 

 
Figure 2.  Proposed multi-scale Xception block. 

3.2 Proposed Multi-scale Xception Block  

Xception [36] is a Depthwise Separable Convolutions-based 
deep convolutional neural network architecture proposed by 
Google. Furthermore, Google also introduce the concept of 
inception architecture. Our proposed multi-scale Xception block 
idea is borrowed from Xception architecture [36], which was 
initially proposed by Google engineers and stands as Extreme 
version of Inception with addition of depthwise separable 
convolution. In our Xception block remove all 1  1 convolution 
layers and used a 3 convolution layers with different kernel sizes. 
For low-level feature extraction purposes, we are used small 
kernel size of the order 3  3 with 64 number of filters. For 
Medium level feature extraction purposes, we used kernel size of 
the order 5  5 and similarly for high-level feature extraction 
purposes we apply 7  7 kernels with same 64 number of filters. 
Finally, all branches are concatenated to extract the hierarchical 
rich features information simultaneously as shown in Fig 2.  

3.3 UpSampling and Reconstruction 

UpSampling is the final stage of our model for generating the 
high-resolution (HR) output image.  There are many ways to 
upscale the LR features into HR features, such as bicubic 

interpolation, nearest-neighbor interpolation, or bilinear 
interpolation. The implementation of these techniques is very 
simple, but the results are not satisfactory and create the jagged 
ringing artifacts and introduce the new noises in the 
reconstructed output image. To handle such types of issues, we 
used a deconvolution layer to upscale the LR features into HR 
features. Deconvolution operation is the inverse convolution 
operation. To reduce the computational cost of the model, we 
cannot direct fed the LR features into the Deconvolution layer, so 
we add two bottleneck layers of the kernel size is 1  1. The use 
of the bottleneck layer is to reduce the number of parameters and 
then we fed the LR features to the deconvolution layer to 
reconstruct the upscale HR features. Finally, both branch features 
are concatenated to reconstruct the visually pleasing high-quality 
HR output image.    
 

4. Experiments 
 

The quantitative and qualitative evaluations are present to 
validate the performance of our proposed method. We use Yang 
91 image dataset and extra 200 images are obtained from 
BSDS200 for our training purposes. The Adam was used as an 
optimizer with an initial learning rate is 0.0003 including 16 as a 
mini-batch size. Our model fully converges on 200 epochs. For 
training purposes, we run our code on NVIDIA GPU RTX 2070. 
Keras TensorFlow library is used for designing the model 
architecture.  
4.1 Computational Complexity of Proposed Method. 
 

The computational complexity of any model plays a vital role 
in the practical application point of view. The model has a higher 
computational cost it takes more testing time as compared to the 
lower computational cost of the model. All deep learning 
communities measure the computational cost in terms of network 
parameters. The network has more parameters it means having a 
more computational cost and vice versa. Our model has fewer 
parameters as compared to recent deep learning models such as 
VDSR, LapSRN, and DRCNN as shown in Fig 3 and 4.   

 

Figure 3. Quantitative evaluation of the network depth/ computational 
cost in terms of k parameters versus PSNR on image SR dataset SET5 
enlargement factor 4×. 

4. 2 Quantitative Comparison with existing 
state-of-the-art methods 

The quantitative comparison of our proposed TISR method 
with 9 standard methods including base-line bicubic method, 
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such as Bicubic, A+, RFL, SelfExSR, SRCNN, FSRCNN, SCN, 
VDSR, DRCN and LapSRN were experimentally compared with 
our proposed method. Table 1 present the PSNR (dB) / SSIM 
comparison result with the existing deep CNN-based image SR 
methods on three main benchmark datasets SET5, SET14 and 
BSDS100 with challenging factor 3×, 4× and 8×. Results are 
observed from Table 1 and 2, that our method attained the 
improved performance as compared to other state-of-the-art 
methods as well as has a smaller number of parameters. 
Furthermore, graphical representation a shown in Fig: 5 and 6. 
 

 
Figure 4. Quantitative evaluation of the network depth/ computational 
cost in terms of k parameters versus SSIM on image SR dataset SET5 
enlargement factor 4×. 

Table 1. Experimental evaluation of our proposed method with other 
image SR methods with scale factor 3, 4 and 8. First-best values are 
indicated in red color with bold and second-best in blue-colors with 
underline. 

Method Scale 
SET5 

PSNR/SSIM 

SET14 

PSNR/SSIM 

BSDS100 

PSNR/SSIM 

Bicubic  3 30.41/0.869 27.55/0.775 27.22/0.741 

A+ [25]  3 32.62/0.909 29.15/0.820 28.31/0.785 

RFL [37] 3 32.47/0.906 29.07/0.818 28.23/0.782 

SelfExSR 3 32.66/0.910 29.18/0.821 28.30/0.786 

SRCNN 3 32.78/0.909 29.32/0.823 28.42/0.788 

FSRCNN 3 33.18/0.914 29.37/0.824 28.53/0.791 

SCN 3 32.62/0.908 29.16/0.818 28.33/0.783 

VDSR 3 33.67/0.921 29.78/0.832 28.83/0.799 

DRCN 3 33.83/0.922 29.77/0.832 28.80/0.797 

LapSRN 3 33.82/0.922 29.87/0.832 28.82/0.798 

TISR (ours) 3 33.82/0.922 29.89/0.832 28.83/0.798 

Bicubic  4 28.43/0.811 26.01/0.704 25.97/0.670 

A+ [25]  4 30.32/0.860 27.34/0.751 26.83/0.711 

RFL [37] 4 30.17/0.855 27.24/0.747 26.76/0.708 

SelfExSR 4 30.34/0.862 27.41/0.753 26.84/0.713 

SRCNN 4 30.50/0.863 27.52/0.753 26.91/0.712 

FSRCNN 4 30.72/0.866 27.61/0.755 26.98/0.715 

SCN 4 30.41/0.863 27.39/0.751 26.88/0.711 

VDSR 4 31.35/0.883 28.02/0.768 27.29/0.726 

DRCN 4 31.54/0.884 28.03/0.768 27.24/0.725 

LapSRN 4 31.54/0.885 28.19/0.772 27.32/0.727 

TISR (ours) 4 31.54/0.885 28.21/0.773 27.33/0.728 

Bicubic 8 24.40/0.658 23.10/0.566 23.67/0.548 

A+ [25] 8 25.53/0.693 23.89/0.595 24.21/0.569 

RFL [37] 8 25.38/0.679 23.79/0.587 24.13/0.563 

SelfExSR 8 25.49/0.703 23.92/0.601 24.19/0.568 

SRCNN 8 25.33/0.690 23.76/0.591 24.13/0.566 

FSRCNN 8 25.60/0.697 24.00/0.599 24.31/0.572  

SCN 8 25.59/0.706 24.02/0.603 24.30/0.573 

VDSR 8 25.93/0.724 24.26/0.614 24.49/0.583 

DRCN 8 25.93/0.723 24.25/0.614 24.49/0.582 

LapSRN 8 26.15/0.738 24.35/0.620 24.54/0.586 

TISR (ours) 8 26.18/0.738 24.35/0.623 24.53/0.586 

 

Table 2. Network depth in k number of parameters of different single 
image SR methods. 
 

Method 
#Param 

k 
SET5 

PSNR/SSIM 

SET14 

PSNR/SSIM 
BSDS100 

PSNR/SSIM 

Bicubic  -/- 30.41/0.869 27.55/0.775 27.22/0.741 

A+ [25]  -/- 32.62/0.909 29.15/0.820 28.31/0.785 

RFL [37] -/- 32.47/0.906 29.07/0.818 28.23/0.782 

SelfExSR -/- 32.66/0.910 29.18/0.821 28.30/0.786 

SRCNN 57 32.78/0.909 29.32/0.823 28.42/0.788 

FSRCNN 12 33.18/0.914 29.37/0.824 28.53/0.791 

SCN 42 32.62/0.908 29.16/0.818 28.33/0.783 

VDSR 665 33.67/0.921 29.78/0.832 28.83/0.799 

DRCN 1,775 33.83/0.922 29.77/0.832 28.80/0.797 

LapSRN 812 33.82/0.922 29.87/0.832 28.82/0.798 

TISR (ours) 488 33.82/0.922 29.89/0.832 28.83/0.798 

 
 

 
Figure 5. Quantitative evaluation of PSNR on BSDS100 dataset 
enlargement factor 8 × with other state-of-the-art methods. Our proposed 
method obtained the highest PSNR as compared to other methods. 
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Figure 6. Quantitative evaluation of SSIM on BSDS100 dataset 
enlargement factor 8 × with other state-of-the-art methods. Our proposed 
method obtained highest PSNR as compared to other methods. 
 
 
Additionally, qualitative evaluation of TISR as shown in Fig. 7, 
with scale factor 4×. In Figure 7(a) Bird image is obtained from 
SET5 dataset and test the results of patch on 8 standard methods. 
Our TISR model reconstruct the fine edges smoothly as compare 
to base-line bicubic method. Similarly, in Figure 7(b), and (c) our 
proposed method visually pleasing, because other methods 
generated result are blurry and jagged artifacts. 
 

 
(a) 

 

(b) 

 
(c) 

Figure. 7 Qualitative as well as quantitative comparisons of TISR 
approach with publicly available image SR methods on sale factor 4. 
 
 
 

5. Conclusions 
 

In this paper, Twin Image Super-Resolution using Deep 
Convolutional Neural Networks (TISR) is proposed. The TISR 
model used the two way architecture with stacking Xception 
blocks for extracting the multi-scale feature information through 
the original LR input image. Furthermore, apply the different 
kernel sizes in the Xception blocks such as 3  3, 5  5, and 7  7 
to extract the low, medium, and high-level feature information 
simultaneously. Additionally, we have replaced the traditional 
bicubic upsampling pre-processing step into deconvolution layer 
as a post-processing technique to further decrease the 
computational burden of the network during the training. 
Experimental quantitative, as well as qualitative results, validate 
that the proposed lightweight TISR network achieved favorable 
results against the state-of-the-art methods. 
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