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Abstract 
 
The growth of deep learning-based convolutional neural 
networks (CNNs) for image super-resolution (SR) tasks has 
improved every day and achieved tremendous performance in 
recent years. Many deep CNNs based image SR are restricted in 
practical applications due to their high computational cost, more 
memory consumption, and more training time. In this paper, we 
propose a residual-inception multiscale image super-resolution 
network known as RIMS. Proposed network architecture stacked 
a 3 CNN layers, 2 skip connection ResNet (SCRB) block and 2 
multiscale inception blocks (MSIB) are followed by Leaky ReLU 
(LReLU) activation function. In addition, shrinking and 
expanding layers are also used to further reduce the number of 
parameters while preventing the over-fitting problem during the 
training. Furthermore, we used a deconvolution layer instead of 
interpolation to extract the rich features information for 
reconstruing the high-resolution (HR) output image. The 
experimental evaluations in terms of both quantitative, as well as 
qualitative, suggest that the proposed method achieves 
comparable performance to the existing state-of-the-art methods. 
 

Keywords: Supper-resolution, Convolutional neural networks, 
Leaky ReLU, PSNR. 

1. Introduction 

One of the most important research challenges in the field of 
image and computer vision is the single image super-resolution 
(SISR), which attempts to reconstruct the high quality or 
high-resolution (HR) output image from their degraded version 
of low quality or low-resolution (LR) input image. The rapid 
evaluation of deep convolutional neural network-based image SR 
achieved remarkable performance as compared to earlier 
conventional methods. In this regard, Dong et al. first time 
introduced the shallow type network architecture known as 
super-resolution convolutional neural network (SRCNN) to 
recover the HR image [1]. The performance of SRCNN is 
improved as compared to previous SR approaches, but it 
increases the computational cost because all CNN layers 
operations are performed in the high-resolution space. 
Furthermore, to increase the performance, the same author 
introduced the new algorithm known as FSRCNN [2]. In 

FSRCNN authors are replaced the bicubic interpolation with a 
deconvolutional layer. For reducing the computational cost of the 
model shrinking, an expanding layer is employed. Aside from the 
study of shallow CNN methods, there is also a lot of research on 
deeper network architecture available. Performance of deeper 
model is better and having a low-computational cost in terms of 
number of parameters, but it introduces the vanishing gradient 
problem in the training. Skip connection was originally 
introduced into VDSR [3] by Kim et al, which is utilized to solve 
the vanishing gradient problem and aids in the training of deeper 
and larger networks. The performance of the deeper model is 
improved than shallow models, but they demand more 
computational cost and a very slow convergence rate. 
Additionally, the main issue with deeper network architecture is 
that the last end layers work as a dead layer because the 
information is not received properly and more important features 
are dropped. To report these issues, we proposed a novel 
architecture known as a residual-inception multiscale image 
super-resolution network known as RIMS. We used ResNet 
architecture-based block (SCRB) and Inception-based block 
(MSIB), which are significantly improved the quantitative as 
well as qualitative performance and reduced the computational 
burden of the model. 
 

In summary, we design a new architecture known as 
single image super-resolution residual-inception multiscale 
image super-resolution network (RIMS), which produces a 
satisfactory performance with fewer number parameters as well 
as takes less CPU processing time. The contributions of this 
paper can be summarized as follows. 

 For initial low-level feature extraction purposes, we 
used 3 CNN layers followed by Leaky ReLU activation. 

 Mid and High-level feature extraction, we used SCRB 
and MSIB blocks. All blocks provide the multiscale 
features information simultaneously. 

 We employed the post-processing strategy for upscaling 
the LR image into HR image because traditional CNN 
used pre-processing bicubic interpolation strategy for 
upscaling. 
 

The remaining section of this paper is divided into different 
sections. Section 2 discusses the information about related works.  
In Section 3 and 4, explain the proposed methodology of RIMS 
architecture, as well as discuss its experimental calculations for 
reconstructing the HR image. Finally, we present the conclusion 
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in Section 4. 

2. Related works  

Over the last few years, several research articles have used 
learning-based algorithms for image super-resolution tasks. 
Learning-based algorithms, specially CNN-based methods with 
deep learning techniques, may improve performance over 
existing traditional SR methods, which rely on hand-designed 
filters. The main purpose of single image SR is to recreate an HR 
image from an LR image. Initially, Dong et al. [4], started by 
using the bicubic interpolating the LR image and then training a 
CNN to learn a nonlinear mapping from the input image to the 
HR output. To accelerate the performance of SRCNN, Dong et.al., 
proposed without pre-processing bicubic interpolation technique 
known as FSRCNN [2]. The authors used shrinking, expanding, 
and deconvolution layers for reconstructing the HR output image 
from the original LR input image. Shi et al. suggested an efficient 
sub-pixel convolutional neural network (ESPCN) [5]. This 
architecture replaced both bicubic and deconvolution upscaling 
into a sub-pixel convolution layer. It is also belonging to shallow 
type network architecture using three CNN layers followed by 
the activation function. Kim et al. were the first time to train the 
deeper model up to a 20-layer network using residual skip 
connection [3]. The same author proposed another recursive type 
architecture for image super-resolution known as deeply 
recursive convolutional network (DRCN) [6], which recursively 
extends the receptive field while maintaining model capacity. Lai 
et al. [7] proposed Deep Laplacian Pyramid Networks known as 
LapSRN. LapSRN is a unique network architecture for accurate 
and quick SR reconstructing the HR image. This technique 
contributes two useful features. First, it begins by using cascade 
learning for residual output and reconstruction results from 
various scales. Second, instead of using the usual L2 loss function, 
LapSRN uses a new Charbonnier loss function. 

 

Figure 1. The proposed Network architecture of 
Residual-Inception Multiscale Image Super-Resolution Network 
(RIMS). 

3. Proposed Methodology 

In this section, we will introduce our residual-inception 
multiscale image super-resolution network known as RIMS in 
detail. Figure 1 shows the overall architecture of our proposed 

method and it initially uses three CNN layers for low-level 
feature extraction. The extracted low-level features are fed into 
the 2-skip connection ResNet blocks (SCRB) for mid-level 
feature extraction. The 2 multiscale inception blocks (MSIB) are 
employed to extract the high-level features information, and all 
layers are followed by Leaky ReLU (LReLU) activation function. 
Finally, fed the resultant features information into the 
deconvolution layer which is connected before and after the 
bottleneck layer. The bottleneck layer connected before the 
deconvolution layer is known as the shrinking layer, and after 
deconvolution is called as expanding layer. The details of each 
step are discussed as under: 
Traditional approaches extract the local features information 
through the manually hand-designed filter, we extract the features 
information automatically from the deep learning-based 
convolutional neural network approach. However, the 
conventional deep CNN-based image SR method used the 
bicubic interpolation to upscale the LR image into an HR image. 
Authors claim that [8] bicubic interpolation is not designed for 
this purpose and introduces the new noises in the model. 
Therefore, we used an alternate strategy and extract the features 
directly from the original LR space domain with the help of CNN 
layers. For initial low-level feature extraction, we used 3 CNN 
layers followed by the Leaky ReLU activation function. All 3 
CNN layers have a kernel size of the order 3  3 with the same 
padding to preserve the spatial features information. 
Inspired by [9], a skip connection technique is used to extract 
features information of the first, second, third, and fourth layers 
concatenated together. All CNN layers are followed by the Leaky 
ReLU activation function to avoid the dying ReLU problem. The 
resultant features are fed into the next block, which is the 
multiscale inception blocks (MSIB) to extract the multiscale 
features information smoothly. The concept of this block is 
borrowed from GoogLeNet [10] as shown in Figure 2 (a). The 
original inception block used 3 types of convolution layers with 
kernel size is 1  1, 3  3, 5  5, and one max pooling layer to 
extract the multiscale features information. In our proposed 
MSIB block consists of two stages and is connected by a 
concatenation layer as shown in Figure 2(b). Furthermore, our 
proposed block removes the max poling layer because it is a type 
of candidate selection and not preserve the spatial information.  
 

 
Figure 2.  Inception module, naive version [11] (a), and our 
proposed MSIB (b) 
Upscaling plays a vital role during the reconstruction of HR 
images. Earlier approaches use different ways to upscale the LR 
image into HR, such as bicubic, bilinear, and nearest-neighbor 
interpolation. These hands designed technique is not suitable for 
converting the LR image into an HR image, because these 
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approaches are not designed for image upscaling purposes. To 
resolve such types of problems, we employed the deconvolution 
layer to upscale the LR into HR features. Additionally, 
deconvolution operation performs the inverse of the convolution 
operation. To maintain the computational complexity and 
processing speed of the model, we add two bottleneck layers 
before and after the deconvolution layer. The first bottleneck 
layer work as a shrinking layer and the later layer is known as 
expanding layer. Finally, reconstruct the visually pleasing 
high-quality HR output image. 
 

 

4. Experimental Results 
method are discussed in this section. Furthermore, we also 
present the quantitative as well as qualitative comparison with 
the existing state-of-the-art SR method on enlargement scale 
factor 2 and 4. Our model has trained on the combination of 
Yang 91 [12] and BSDS200 [13]  image datasets. Additionally, 
to avoid the overfitting problem, the authors used the data 
augmentation technique in terms of flipping, rotation, and scaling. 
The low-resolution images were generated using the bicubic 
built-in function in MATLAB in the scale factor 2 and 4. The 
Adam optimizer is used with an initial learning rate is 0.0003 
including 32 as a mini-batch size. Our model fully converges on 
200 epochs. For training purposes, we run our code on NVIDIA 
GPU RTX 2070. Keras TensorFlow library is used for designing 
the model architecture. We evaluated the performance of our 
proposed model on publicly available benchmark test datasets 
such as SET14 [14], BSDS100 [13], and URBAN100 [15]. The 
most used technique to measure the perceptual quality of the 
image is the peak-signal-to-noise ratio (PSNR). Higher PSNR 
means the reconstructed image has more visually pleasing and 
vice versa. PSNR can be easily explained by mean squared error 
(MSE). 
 

 

 
 

 
 

 
 
Similarly, another perceptual quality metric is the structural 
similarity index (SSIM), which quantifies the image quality 
degradation due to losses or compression. SSIM depends on 
main three factors such as structure, luminance, and contrast. We 
recorded the execution time of all the compared algorithms using 
the same workstation with a 3.40 GHz Intel i7 CPU to assess 
their effectiveness (16 GB RAM) as shown in Figures 3 and 4.  
 

 
 
Figure 3. Trade-off performance in terms of PSNR and running 
time on SET14 test dataset with enlargement factor 4×.  
 

 
Figure 4.  Trade-off performance in terms of SSIM and running 
time on SET14 test dataset with enlargement factor 4×.  
 
The quantitative comparison in terms of PSNR and SSIM of our 
model with state-of-the-art methods including Bicubic, A+, RFL, 
SelfExSR, SRCNN, FSRCNN, and VDSR as shown in Table 1 
and 2. Our model achieves the best performance in terms of 
PSNR/SSIM on all test datasets, such as SET14, BSDS100, and 
URBAN100. Furthermore, quantitively comparison results are 
presented in Figures 5 and 6, that our method has a higher 
ranking than other methods.     

Table 1. Experimental evaluation in terms of PSNR of our proposed 
method with other image SR methods with scale factor 2, and 4. 
First-best values are indicated in red color with bold and second-best in 
blue colors with an underline. 

Algorithms Factor 
SET14 
PSNR 

BSDS100 
PSNR 

URBAN100 
PSNR 

Bicubic  2 30.25 29.57  26.89 

A+ [14]  2 32.32 31.24 29.25 

RFL [16] 2 32.29 31.18 29.14 

SelfExSR [15] 2 32.24 31.20 29.55 

SRCNN [4] 2 32.51 31.38 29.53 

FSRCNN [2] 2 32.66 31.53 29.88 

SCN [17] 2 32.35 31.26 29.52 

VDSR [3] 2 33.05 31.90 30.77 
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RIMS (ours) 2 33.09 31.92 30.79 

Bicubic  4 26.01 25.97 23.15 

A+ [14]  4 27.34 26.83 24.34 

RFL [16] 4 27.24 26.76 24.20 

SelfExSR [15] 4 27.41 26.84 24.83 

SRCNN [4] 4 27.52 26.91 24.53 

FSRCNN [2] 4 27.61 26.98 24.62 

SCN [17] 4 27.39 26.88 24.52 

VDSR [3] 4 28.02 27.29 25.18 

RIMS (ours) 4 28.31 27.35 25.23 

Table 2. Experimental evaluation of our proposed method in terms of 
SSIM with other image SR methods with scale factor 2, and 4. 
First-best values are indicated in red color with bold and second-best in 
blue colors with an underline. 

Algorithms Factor 
SET14 
SSIM 

BSDS100 
SSIM 

URBAN100 
SSIM 

Bicubic  2 0.870 0.844 0.841 

A+ [14]  2 0.906 0.887 0.895 

RFL [16] 2 0.905 0.885 0.891 

SelfExSR [15] 2 0.904 0.887 0.898 

SRCNN [4] 2 0.908 0.889 0.896 

FSRCNN [2] 2 0.909 0.892 0.902 

SCN [17] 2 0.905 0.885 0.897 

VDSR [3] 2 0.913 0.896 0.914 

RIMS (ours) 2 0.920 0.896 0.915 

Bicubic  4 0.704 0.670 0.660 

A+ [14]  4 0.751 0.711 0.721 

RFL [16] 4 0.747 0.708 0.712 

SelfExSR [15] 4 0.753 0.713 0.740 

SRCNN [4] 4 0.753 0.712 0.725 

FSRCNN [2] 4 0.755 0.715 0.728 

SCN [17] 4 0.751 0.711 0.726 

VDSR [3] 4 0.768 0.726 0.754 

RIMS (ours) 4 0.778 0.731 0.758 

 

 
Figure 5. Quantitative evaluation of PSNR on SET14 dataset 
enlargement factor 2× with other state-of-the-art methods. Our proposed 

method obtained the highest PSNR as compared to other methods. 

 
Figure 6. Quantitative evaluation of SSIM on SET14 dataset enlargement 
factor 2× with other state-of-the-art methods. Our proposed method 
obtained the highest SSIM as compared to other methods. 
 
Evaluation from the perceptual quality point of view is shown in 
Figure 7. In Figure 7, we used baby image obtained from SET5, 
flowers image obtained from SET14, and the other two images 
are from BSDS100 and URBAN100. Perceptual quality results of 
Bicubic and SRCNN are blurry and not clear view, but VDSR 
and our (RIMS) obtained visually pleasing as compared to the 
baseline method. 
 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
Figure 7. Qualitative as well as quantitative comparisons of our (RIMS) 
approach with other state-of-the-art image SR approaches on sale factor 
4. 
 

5. Conclusion 
In this paper, we propose a residual-inception multiscale image 
super-resolution network known as RIMS. The proposed 
architecture stacked 3 CNN layers, skip connection ResNet 

(SCRB) block and multiscale inception blocks (MSIB) are 
followed by Leaky ReLU (LReLU). For increasing the 
computational efficiency, the authors used shrinking and 
expanding layers before and after the deconvolution layer. 
Additionally, earlier approaches are feed interpolated versions of 
HR images into a convolutional neural network for extracting the 
low, mid, and high-level features. Such methodologies improved 
the performance, but it introduces extra new noises in the model 
and increase the computational burden during the training. In our 
approach used a deconvolution layer at the later end to extract the 
features information efficiently. The quantitative and qualitative 
calculations suggest that our proposed approach achieves 
comparable performance to the other image SR methods. As 
future work, we plan to extend our work with the xception model, 
which is also introduced the GoogLeNet and its performance is 
better as compared to all previous approaches
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