
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

115

Manuscript received February 5, 2022
Manuscript revised February 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.2.15

A Novel Approach For Component Classifications And Adaptation
Using JALTREE Algorithm

 B.Jalender Dr.A.Govardhan
Associate Professor Professor&Rector

 VNRVJIET,Hyderabad JNTU,Hyderabad

Summary
Component adaptation is widely recognized as one of the main
problems of the components, used in component based software
engineering (CBSE). We developed methods to adjust the
components classified by the keywords. Three main methods are
discussed in this article those methods are combined with several
domain component interfaces, high level simple notation for the
adapter design patterns. The automated process for classifying
high-level components are using adaptation is novel to software
engineering domain. All Specifications and many technologies
for re-using software, CBD and further developments have been
emerged in recent years. The effects of these technologies on
program quality or software costs must be analyzed. The risk
concerns a single technology and must identify its combinations.
In this paper, we are going to discuss the methods to adapt
components of different technologies
Key words:
Adaptive, domain, component, reuse, technologies

1. Introduction

The key benefits of Component based software
Engineering is to support for the design methods that are
used for adaptive reuse .Reuse construction of the new
system need not start from scratch, but the modification of
the integration and the description of the existing ones.
CBSE was used to support evolution of the components of
the different technologies [1]. However, it is sufficient to
keep the store recently. The modification of the
components is widely accepted as one of the main
problems of the CBSE. The ability for application
developers to easily adjust closed software components to
function properly within their programs is necessary for
the market creation of real components and the
implementation of components in general [2].

A platform that focuses on components (such as
CORBA, COM, JavaBeans,React,.net) that address
common collaboration using the Interface Definition
Language (IDL) to identify the proposed functions (and
requests) from different programs. The components of the
IDL interface are important for software integration, as
they highlight the signature between components in the
view of their specifications. However, all solutions to
signature problems do not guarantee that the component
will work properly. Obviously, it can happen exactly at the

protocol level, due to the order of the exchange messages,
and it also blocks the conditions [3], i.e. due to the
corresponding behaviour of the associated components. In
addition to tests based on the case of component
compatibility, more stringent techniques are required to
maximize their integration of craft activities into
engineering. For example, the system developer must
verify that the integration of third-party components may
suggest a new technique in the application being
developed. To determine the properties of the system that
contain a large number of interactive elements, the official
description of the interaction characteristics of the
component is required [4].

Software Reuse enables us to make improve the reuse
components of software and reduces the cost of software.
Reuse allows us to make the characteristics of the software
artifacts available from not to building a computer system
from scratch. Reuse of program means reusing the inputs
techniques, and outputs after the software development
effort. Industry control of the operations of a number of
reusable components they require to build software
quickly and cost effective. If not, reuse resources
effectively becomes inefficient and takes time. The source
of reusable components to make repository to use
whenever necessary of that particular components [5].

Development of repository provides the components to
select when it required. With the assurance that at one time
the relationship will protect to adapt, ensure that the
corresponding application is built using the components
and those should not be changed because of changes in the
components. A new and added functionality we have the
components to make it easier to complete the application
and use of this components and no changes of downtime
[6].

2. Related Work

Developing software is a concept that creates in the
system. The principles focus on the creation and evolution
of software. The CBSE focus reuse of an software. It is
going to adapt the new techniques such a way that
component classification becomes easier. The CBSE focus
in on the releases new development process of the

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

116

components. In the same manner, allowed for a time for
completion of work, the development of software projects
quickly [7].component needs to change or adapting to a
new system, just make code change only. If you need to
patch a program, someone is the adaptability of the system
means that the system can easily adapt to a diverse
environment. Object-oriented software can easily adapt to
new requirements because of the high level of abstraction.

It model problems with set of types or classes from
which objects are created. It has focused the creation and
rapid evolution of the system. There is no step icon
organize in this process. A similar pattern of development
of the software and development speed. Adaptability grew
up in rapid application development. Adaptive Software
Development overall focused on the problem of
establishing the self-absorbed, sharing ideas among
individuals and teams online [8].

Reuse is typically categorized according to the nature
of the environment, in which the software components are
restored. Vertical reuse occurs when software components
are reused for different projects in the same domain as the
application. An example of vertical reuse may be a
boundary detection process used in various image
processing programs. It should be remembered that the
recovery of software components at different stages of the
life cycle of different generations of the same project.
Sometimes uses the term "vertical reuse" in a more limited
way. Successful vertical reuse requires detailed
information about the application domain [9].

The good software recovery process facilitates
increased productivity, reliability, quality, performance
and cost reduction, effort, risk and implementation time.
The primary investment is necessary to start the software
recovery process, but this investment is amortized over
some recovery. It creates a repository and recovery process
of knowledge base, which improves the quality after each
recovery, reduces the required development of work for
the future projects, and ultimately reduces the risks of new
projects based on knowledge repository [10].

The term "reuse of software" means that there are
reusable software component files that can be used as part
of new system development. The most popular software
for reusing software components can be advanced, such as
requirements or lower level designs, such as source code
modules or related components, such as test plans or
documentation. Domain and application environments are
relatively stable, so reuse is considered appropriately
[11][12].

Software reengineering is a successful system as a
stand-alone system, but must communicate with other

applications due to changes in requirements. This can
happen if the control system now uses a commercially
available database package to store data instead of using it
as a patented package. The new interface requirements
clearly indicate that the existing system needs to be
modified. Reengineering is associated to the reuse of
software, as systems must understand in part or in full
before they can be converted or reused. However,
reengineering usually requires more changes than the ones
who wish to reuse the software [13][15].

Reuse is a great opportunity to improve software
quality while reducing costs. It is based on the concept of
reusable components and is used in the same way that
electrical engineers choose system components. Software
reuse can occur at many levels of the software lifecycle
[14].

Most reuse researchers believe that domain analysis is
a prerequisite for successful program reuse. Domain
analysis is a common system analysis whose primary
purpose is to identify the operations and elements needed
to determine the information used to process a particular
application in a domain. In addition, domain analysis can
accurately identify domains and software components in
areas that are beneficial for candidate reuse. Ideally,
anybody wants to be able to create domain-specific
languages that allow writing descriptions based on
important domains[16].

There are many options for high-quality experimental
work that is reused in the library. The problem is that it is
difficult to use parallel methods for parallel attempts to
make comparisons. System reuse is a heavy burden and it
is difficult to get more actions that are not directly related
to a particular project. However, there are some research
opportunities that can bring profits [17].

 Foundation, the lack of basic planning steps allows the
development to software quickly. Now in some cases on
the internet and do not serve the necessary detail, not a
problem. The cycle of software in this process is very short
for a new version with additional equipment could come
quickly. Method or the quick prototyping is the
cornerstone of the development of both the software and
the development of the application where the difference
between the two methods is the end point. As with the
development of the software, there is no truth, only the
endpoint that did not require software or code is ported to
a request generation. On the other hand, rapid
development application that allows for the end of a job,
free from the problems that have software which meets the
requirements of the end user [18][19].

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

117

Developing software with the three steps, each
evolving around the coding of a program. The first step is
speculation. In this section, try the coders to understand
the nature of software and the needs of those who use it.
This is dependent on improvements and user reports to
guide the work. There is no available report; the project
uses the basic requirements set by the end user [20].

The brainstorm is the ensure the individual projects they
are doing and how to combine their own place. The project
does not need any additional information or outside
contributions and determine the part of the software [21].

During the training phase, the release of new version
of the software to use. These assets will be improved and
use the reports used in the first part of the project, and the
cycle repeated itself [22].

An additional analysis of the software component
before adding it to the recovery library can lead to
significant savings on part of the life cycle, especially if
component is reused so many times, thus the reusable
component is obtained in combination with domain
analysis [23]. And re-use library assessment requires
further investigation before the system is included. This
additional results in a classification of the reusable
component before it is placed into the recovery library [25].

The classification of reusable software components is
a logical step in the reuse process. This means a
description of the component. This description is generally
more complete than the description typically used for
documented components that have been developed for
reuse, resulting from the efficiency of the documents used
in the feature [26].

Consider the source code of the module, which is
used for adding the recovery library. Good software
engineering practices require a description of the module
interface and the maintenance cost of that software.
However, this document does not apply to reusable
components for a variety of reasons [27].

Many organizations use programming practices and
require each source code to be tested against
organizational standards. This may mean that every
decision in the Tree module must perform some test results
during the test. If there are no errors, the module is
assumed to be correct. Now suppose that the same module
is reused, and the application is usually different from the
application being created. If the new application system is
required in real time, due to the new real-time restrictions,
it is not immediately clear that the module can be used in
the new system [28].

In addition to the source code, potential reusable software
components must be authenticated before being added to
the reuse library. For example, all documents must be read
by an independent team before reusing the libraries in the
new system. The goal is to provide an independent review
of the documents and avoid key in accuracies [24].

The classification of reusable software components
should be based on at least two factors: perceptual
component corrections and some metrics describing the
likelihood of component reuse. Indicators should show the
number of other software systems. It is planned to use a
section, difficulties include a part of other software
systems and quality assessment of certain types of
equipment [29].

Source code classification is the most common
complementary evaluation of software components before
they are placed again in libraries. Let's say that the source
code is satisfactorily tested by the development of
organization and is at the present considered as candidate
for recovery [30].

The metrics should be about test ability, easy pairing
with other module, and the probability that the source code
of the module is complete if it is placed in the reuse of the
library. Portability is considered to be an ideal feature of
most software. In the era of ubiquitous computer
technology and rapid development, few software products
are unable to implement many environments throughout
their lifecycle. Storage products must use their own cost to
implement as many platforms as possible [31].

3. Proposed Work

Reuse of components is a process of recovery and
processing. Adjust the components in the component
database. Resolve a specific problem. To achieve these
goals, tool users must extract and compare the
requirements, formats and implemented in the search
process: details of adaptation. Although the traditional
component representation language is completely removed
copies the implementation details, it does not work during
the search [36].

The formal interface specifications can simplify and
make the assistant search process more precise
representative components and requirements of the
problem directly. Also, support for formal specifications.
Perfect automated mathematical operations. This can take
into account three forms of interface specification Aspects
of reuse of components: (i) potential recovery solutions; (ii)
evaluation of the correction; and (iii) architecture to make
changes [37][38].

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

118

Recovery and modification of individual components it is
a process to find and modify components. Resolve the
problem given a question and a set of components,
recovery is one or more processes. The component focuses
on more potential solutions. A trivial answer is the most
appropriate model for research activity. Component sets
are spaces and solution problems. The description and the
satisfaction criteria are defined in the research objectives.
When the problems and requirements of the official
description component, the satisfaction criteria can be
defined by mathematical techniques [39]. The evaluation
of the correction is to determine if a component meets the
specifications of a problem and how does it. Because of
problems and components, the evaluation of the correction
is the process to determine, if a component can be used to
solve the problem. Evaluation of the correction is best
simulation for satisfaction model of formal specifications
and use of formal satisfaction standard support for the
formal evaluation of the component correction [40].

Component based development makes a lot of sense
for the software engineering industry and the success
achieved. Successful CBD is widely accepted as a
promising method of software re-use. Recently, the CBD
has been presented as a complex and adaptable solution for
the corporate IT system of buildings. Another new
programming paradigm, feature-oriented programming is
designed to be a modular feature. Provides the mechanism
for implementation and execution the characteristics that
make up the concept of representative fields [41].

Most existing studies only analyze a subset of the
object-oriented concepts evaluate the design quality of
reusable components. Almost all studies are taken into
account but the important features of the object-oriented
paradigm excessive focus on implementing languages C++
and Java. Deep observation has been made in this study
consider all the basic concepts of the sample and measure
it at design time as common as possible (independent of
any implementation language). Measurement trend
analyze during the evolution of industrial strength software
components over a period of time. Software metrics help
measure the properties of a program. The metrics have two
types of reuse-oriented paradigms have been studied one is
component-based software development (CBSD), and
another one is object-oriented software development
(OOSD)[42].

Component-based software metrics discuss at two
levels: system level and component level. Component-
based research, software indicators are not yet mature. The
basic concepts of C language and Python are similar and
C++ and Java are similar because C++ and Java are object
oriented programming. Lack of automation indicators
therefore, the number of empirical studies in this area is

also very small. The object-oriented paradigm has several
concepts, such as abstraction, inheritance, information
hidden, polymorphic, coupled and cohesive, which helps
to develop an object-oriented program easy to modify and
expand, so it is easy to reuse. Object-Oriented metrics are
discussed at different levels, such as systems, software
packages, and course levels [42].

3.1 Estimated reuse

Based on the number of criteria corresponding to the
total number of current guidelines, assessment recovery is
part of the assessment process and an assessment report is
presented. Here we have to automate this process. The
result of this process is to ensure that the project being
restored meets certain important features.

3.2 Improving reuse

Improved reuse is the process that converts and
improves the reuse of components when adding attributes
to reuse. This process is based on the assessment report
drawn up in the previous step. The recyclable enhancer
must know which abstract traits must be reusable. Again,
automatic recovery improvement is essential. Eventually,
it produces components that are potentially reusable [33].

3.3 Find the right component.

The research process is more than just finding the
perfect match. It is often necessary to locate similar
components, because even if the target component requires
partial upgrades and is not so reusable, it can be close
enough to the ideal components, reducing costs and
eliminating many errors. More accurate, the larger the
component, the less likely it is to be reused across multiple
applications. In many cases, it's hard to find the perfect fit
[34].

3.4 Substitution

As new components become more demanding,
components can be created, modified, and developed.
Suppose we can build a system that allows significant
recovery of unaltered parts of the component is unrealistic.
The percentage change must be defined as the value of the
input cost and quality model. Anybody can use some tools
for modifying components.

A logical reuse repository in the component library
that stores reusable components and has the characteristics
of the resources it contains. In order to use the software
repository effectively, the user again needs to know its
content exactly to determine if the library can be satisfied.
The repository is used as a mechanism for storing,

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

119

searching and retrieving components [41]. However,
finding and re-using the right software components is
often very difficult, especially when it comes to many
components and documentation on how to use them.
Development often extends the method used for software
libraries. Reusable composers are defined for developing
the components. This applies not only to the comprises
code, but also is manufactured in such a way that the
products define the system's life cycle, in the form of
specifications, requirements and design.

 The components in question are intended to be re-used
in the visualization system and include code,
documentation, design, requirements, architecture, etc.
Creating repositories of reusable software implementation
of a classification scheme to create a library and provide
components of the scanning and recovery interface. The
main requirement is the compositional classification
mechanism. The system must fulfils three functions: load
components, download components and search for
software components [40].

Object-oriented programming languages provide
another form of reuse. C, C++,Java, python and React
framework used for classification of components . Object-
oriented linguistic attributes contribute to reuse, including
information hiding, attribute inheritance and
polymorphism. Information hiding is a reusable
mechanism because when a part of these systems changes,
it cannot see that the information that needs to be changed
can be reused for the system. By absorbing variables and
methods from the super class, property inheritance allows
to create new subclasses in super classes. The inheritance
process encourages specific methods for reusing
previously defined data attributes and processes [41].

4. Experimental Results and Discussions

In this article we are proposing a novel approach for
component classification and adaptation using JALTREE
algorithm .Software developers may not know what
artifacts are available to develop adaptive software. How
the access will be understood and / or how to combine it,
modify to meet current requirements. These challenges are
contained in each phase of the modified position [25]. First
of all, we need to find some useful code (via an access
mechanism or a delivery mechanism), understand the
recovered information and adapt it to current requirements.
We had developed a tool that will use the input as source
code and will provide a series of components that will be
adjusted according to the requirements [41].

Although the reuse of software has been implemented
in some way for many years, it is still a new discipline. It

also covers non-technical issues such as law, economics,
measurement and organization.

4.1 Adapting components through JALTREE

 JALTREE as a new technique and very suitable
technology for adjusting the components of a reusable
component system. The JALTREE principle is that the
functions of the components and reusable components of
the domain are two independent units on the one hand and
on the other must be closely integrated.

 Based on the above observations, we found that the
partially based software engineer requires multiple types
of customization of the reusable addition, along with a
variety of reusable components. This type of control must
be configured and can be combined to allow the adaptation
of complex components [41].

JALTREE tool provide a classification of connected
components and technologies. Underlining the
components which imports and expresses the source code.
Software components are more than just functions and
classes having group together to get the classification [42].

Like software reuse, software components will go
beyond the source code. The coverage of the components
is wider than the structure and model. Our tools show the
success of the reuse of components and evaluate using the
proposed classification scheme [41].

In this Article we used JALTREE algorithm for
developing tool

In the above algorithm we had taken Component item set
size if K L from that one we are going to extract the
keywords and frequent items .frequent items are generated
from Ck+1 and stored in the array Ck[i].Further we are
taking the subsets of generated subsets to classify the

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

120

components which are extracted from different
technologies. And finally the algorithm will return the
components which are ready to adapt.
Sample code for Banking application in C:

Sample code for Banking application in C++:

Sample code for Banking application in Java:

Sample code for banking application in Python:

The basic concepts of C language and Python are similar
and C++ and Java are similar because C++ and Java are

object oriented programming. In this below figure we are
showing the different domains in the Software Industry.

Figure 1: Component Classifications of different technologies

In this section we had taken sample banking code of

different technologies, and the classification measurement
is set to middle the source code is supplied as the input
values. The result in shown in next figure.

Figure 2: Component adaptation through JALTREE components without

cluster

In the above section we had taken sample banking
code of different technologies, and the classification
measurement is set to middle. The source code is supplied
as the input values. And if the source code is executed
with the classification we will get c and cpp are in the
same cluster. The components are shown in the below
figure.bank.c and bank.cpp are ready for adaptation
because they are in the same cluster.

Figure 3: Component adaptation through JALTREE components with

cluster

In the below table3 we supplied the values for

component compatibility test metrics. In the second result
we supplied the values within the range . Hence the
components are compatible for adaptation.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

121

Software Metric Actual Values

CEM 6.0

CSEM 8.0

CRM 5.0
CFM 3.0

CCSM 12.0
CCM 4.0

Table 3. Software metrics with actual values

In the below Graph we taken the values with in range
of all metrics. The graph will provide the pictorial
representation of metric values when the metrics are
having actual values of the given range.This graph will
show the metric vs resource when the values are in with in
the range of actual.

In the above table we had taken the values with in

range of all metrics. The metrics we are provided are
supplied as the input for the interface. The graph will
provide the information about the software metric vs
resources when the metrics are in the given range. That is
shown in figure.

5. Conclusions

The main purpose of this article is to bring the
meaning of the automatic development method of the
adapter with the ability to solve the behavior between

different interaction components. Our work is based on a
good research flow that supports the application of official
methods to explain the interaction features of the software
system. More specifically, we perform a way to fill the
interface components with behavioral explanations to
facilitate the analysis of the system and, in general, the
validation and detection behavior, particularly the
reference, but slightly more closely.

A number of targeted academic studies are
diagnosing problems. Different domains are found for
classification of the components. Manual Adjustment of
third-party components for resources in the context (can be
serious) different (also the problem of software regulation
is determined in particular by the work, which is
considered the starting point for our work. We developed
this tool which constitutes the group of software that is
important in the context of classification theory. The
connection between the components is made by the
overlap that determines the polymorphism during
operation in both components. Polymorphisms and
inheritance is similar to our mapping, even if the type of
adjustment is more restrictive: they can not remember the
previous action or data, or change the different behavior at
the protocol level, simply changing the type of translation
of the name similar to that provided by the description of
the signature.

Our approach will enhance the ability to adjust
components by combining expressiveness and
effectiveness and reliability. For the future work, this is
recommended to expand the adaptation framework for
different technologies.

References
[1] Algestam, H., Offesson, M., Lundberg, L.: Using Components to

Increase Maintainability in a Large Telecommunication System. Proc.
9th International AsiaPacific Software Engineering Conference
(APSEC’02), 2002, pp. 65-73.

[2] Baldassarre, M.T., Bianchi, A., Caivano, D., Visaggio, C.A.,
Stefanizzi, M.: Towards a Maintenance Process that Reduces Software
Quality Degradation Thanks to Full Reuse. Proc. 8th IEEE Workshop
on Empirical Studies of Software Maintenance (WESS’02), 2002, 5 p.

 [3] Basili, V.R: Viewing Maintenance as Reuse-Oriented Software
Development. IEEE Software, 7(1): 19-25, Jan. 1990.
 [4] Bennett, K.H., Rajlich, V.: Software Maintenance and Evolution: a

Roadmap. In ICSE’2000 - Future of Software Engineering, Limerick,
2000, pp. 73-87.

[5] Damian, D., Chisan, J., Vaidyanathasamy, L., Pal, Y.: An Industrial
Case Study of the Impact of Requirements Engineering on
Downstream Development. Proc. IEEE International Symposium on
Empirical Software Engineering (ISESE’03), 2003, pp. 40-49.

[6] Jørgensen, M.: The Quality of Questionnaire Based Software
Maintenance Studies, ACM SIGSOFT - Software Engineering Notes,
1995, 20(1): 71-73.

[7] Lehman, M.M.: Laws of Software Evolution Revisited. In Carlo
Montangero (Ed.): Proc. European Workshop on Software Process
Technology (EWSPT96), Springer LNCS 1149, 1996, pp. 108-124.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

122

[8] Lientz, B.P., Swanson, E.B., Tompkins, G.E.: Characteristics of
Application Software Maintenance. Communications of the ACM,
21(6): 466-471, June 1978.

[9] Malaiya, Y., Denton, J.: Requirements Volatility and Defect Density.
Proc. 10th IEEE International Symposium on Software Reliability
Engineering (ISSRE’99), 1999, pp. 285-294.

[10]Basalla, G. (1988) The Evolution of Technology, Cambridge
University Press, New York. Brown, J. S. & Duguid, P. (2000)

[11]The Social Life of Information, Harvard Business School Press,
Boston, MA. Curtis, B., Krasner, H., & Iscoe, N. (1988) "A Field
Study of the Software Design Process for Large Systems,"
Communications of the ACM, 31(11), pp. 1268-1287.

[12]Dawkins, R. (1987) The Blind Watchmaker, W.W. Norton and
Company, New York - London. Fischer, G. (1987) "Cognitive View of
Reuse and Redesign," IEEE Software, Special Issue on Reusability,
4(4), pp. 60-72.

[13]Fischer, G. (1994) "Domain-Oriented Design Environments,"
Automated Software Engineering, 1(2), pp. 177-203

[14]Knowledge-Based Design Environments, Ph.D. Dissertation,
Department of Computer Science, University of Colorado at Boulder,
Boulder, CO. Greenbaum, J. & Kyng, M. (Eds.) (2011)

[15] Design at Work: Cooperative Design of Computer Systems,
Lawrence Erlbaum Associates, Inc., Hillsdale, NJ. Grudin, J. (1994)
"Groupware and social dynamics: Eight challenges for developers,"
Communications of the ACM, 37(1), pp. 92-105.

[16] Henderson, A. & Kyng, M. (1991) "There's No Place Like Home:
Continuing Design in Use." In J. Greenbaum & M. Kyng (Eds.),
Design at Work: Cooperative Design of Computer Systems, Lawrence
Erlbaum Associates, Inc., Hillsdale, NJ, pp. 219-240.

[17]Henninger, S. R. (1993) Locating Relevant Examples for Example-
Based Software Design, Ph. D Dissertation, Department of Computer
Science, University of Colorado at Boulder, Boulder, CO. Kintsch, W.
(1998)

[18]Comprehension: A Paradigm for Cognition, Cambridge University
Press, Cambridge, England. Nakakoji, K. (1993) Increasing Shared
Understanding of a Design Task Between Designers and Design
Environments:

[19]The Role of a Specification Component, Ph.D. Dissertation,
Department of Computer Science, University of Colorado at Boulder,
Boulder, CO. Nardi, B. A. (1993) A Small Matter of Programming,
The MIT Press, Cambridge, MA.

[20] B.H. Liskov and S.N. Zilles, “Specification Techniques for Data
Abstractions,” IEEE Transactions on Software Engineering, vol. SE-1,
no. 1, March 1975, pp. 7-19.

[21]Sullivan,K.J.;Knight,J.C.;“Experience assessing an architectural
approach to large-scale, systematic reuse,” in Proc. 18th Int’l Conf.
Software Engineering, Berlin, Mar. 1996, pp. 220–229

[22] Schmidt, D. C., Why Software Reuse has Failed and How to Make it
Work for You [Online], Available:
http://www.flashline.com/content/DCSchmidt/lesson_1.jsp

 [23] Douglas Eugene Harms “The Influence of Software Reuse on
Programming Language Design” The Ohio State University 1990.

 [24] “Breaking Down the Barriers to Software Component Technology”
by Chris Lamela IntellectMarket, Inc

[25] D'Alessandro, M. Iachini, P.L. Martelli, “A The generic reusable
component: an approach to reuse hierarchical OO designs” appears in:
software reusability,1993

[26] E.M. Dusink. Cognitive Psychology, Software Psychology, Reuse
and Software Engineering. Technical report, TU Delft, Delft, the
Netherlands, 1991.

[27] E.M. Dusink. Testing a Software Engineering Method Statistically.
Technical report, TWI, TU Delft, Delft, the Netherlands, 1991

[28] Gomaa, H., Kerschberg, L., Sugumaran, V. et al. Autom Software
Eng (1996) 3: 285.

[29] A. Kumar, “Software Reuse Library Based Proposed Classification
for Efficient Retrieval of Components,” International Journal of
advanced research in computer science and software engineering,”
Vol 3, pp.884-890, 2013.

[30] J.-M. Morel,"The REBOOT Approach to Software Reuse," in
Software Reuse: The Future, The BCS Reuse SIG1995 Workshop,
1995.

[31] Bosch, Jan. Design and use of software architectures: adopting and
evolving a product-line approach. Pearson Education, 2000

[32] Merijn de Jonge, To Reuse or To Be Reused Techniques for
Component Composition and Construction,2003 pages 57-58.

[33] Roberto A. Flores-Mendez, “Towards a Standardization of Multi-
Agent System Frameworks”

[34] Grady H. Campbell, Jr. Adaptable Components (1999) { Proc. 21st
Intl. Conf. Soft. Eng., Association for Computing Machinery, 1999, pp.
685-6 }

[35]Kelly T.P. and Whittle B.R. (1995) Applying lessons learnt from
Software reuse to other domains. The Seventh Annual Workshop on
Software Reuse. 28-30 August 1995.St. Charles, Illinois, USA.

[36] Marius, Lucian-lonel, “Multi-criterion Analysis of Reference
Architectures and Modeling Languages used in Production Systems
Modeling, IEEE, 2005.

 [37] Mugurel T. Ionital, Deiter K. Hammer, Henk Obbink,
“ScenarioBased Software Architecture Evaluation Methods: An
Overview”, Technical University, Eindhoven, 2003

[38] Pragnesh Jay Modi, Spiros Mancoridis, William M. Mongan,
William Regli, Israel Mayk, “Towards a Reference Model for
AgentBased Systems”, ACM, 2006 .

[39] Rem William Collier, “Agent Factory: A Framework for the
Engineering of Agent-Oriented Applications”, 2002.

[40] Richard N.Taylor, Will Tracz, Lou Coglianese, “Software

Development Using Domain-Specific Software Architecture”, ACM,
1995

[41] Oliver Hummel , Colin Atkinson, Using the web as a reuse
repository, Proceedings of the 9th international conference on Reuse of
Off-the-Shelf Components, June 12-15, 2006, Turin, Italy .

[42] Shahanawaj “AhamadEvolutionary Computing Driven Extreme
Learning Machine for Objected Oriented Software Aging Prediction”
IJCSNS Vol. 22 No. 1 pp. 781—78-2022.

[43] Ch. Kishore Kumar , Dr. R. Durga “Estimation of Software Defects
Use Data Mining-Techniques of Classification Algorithm” IJERT Vol.
10 Issue 12, December-2021.

