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Summary  

During the past decades, detection of gear defects remains as a 
major problem, especially when the gears are subject to non-
stationary phenomena. The idea of this paper is to mixture a 
multilevel wavelet transform with a fast EMD decomposition in 
order to early detect gear defects. The sensitivity of a kurtosis is 
used as an indicator of gears defect burn. When the gear is 
damaged, the appearance of a crack on the gear tooth disrupts 
the signal. This is due to the presence of periodic pulses. 
Nevertheless, the existence of background noise induced by the 
random excitation can have an impact on the values of these 
temporal indicators. The denoising of these signals by 
multilevel wavelet transform improves the sensitivity of these 
indicators and increases the reliability of the investigation. 
Finally, a defect diagnosis result can be obtained after the fast 
transformation of the EMD. The proposed approach consists in 
applying a multi-resolution wavelet analysis with variable 
decomposition levels related to the severity of gear faults, then 
a fast EMD is used to early detect faults. The proposed mixed 
methods are evaluated on vibratory signals from the test bench, 
CETIM. The obtained results have shown the occurrence of a 
teeth defect on gear on the 5th and 8th day. This result agrees 
with the report of the appraisal made on this gear system. 
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1. Introduction  

A complex electromechanical system containing in 
rotating machine degrades slowly and can cause 
emergency shutdown and even equipment breakdown or 
casualties. Therefore, we need a robust, efficient, and 
accurate fault diagnosis technique that not only detects a 
fault after its occurrence, but also predicts an upcoming 
fault. In recent years, the analysis of vibration signals 
based on time-frequency analysis of mechanical 
vibration signals has become a more efficient and 
successful technique. Many methods have been 
developed, but Empirical mode decomposition (EMD) 
has been proven to be an interesting alternative to deal 
with non-stationary and nonlinear signals such as 
vibration signals. The EMD approach has been widely 
studied and applied in several fields, such as process 
control [5] [6], modeling [7] [8] [9], surface engineering 

[3], medicine [4], voice recognition [12] and system 
identification [13] [14]. 

The concept of the process is to break down the 
signal into its Intrinsic Mode Functions (IMF) and find 
the time-frequency distribution which is known as 
Hilbert–Huang Transform (HHT) [2]. IMF indicates the 
natural oscillatory mode integrated into the processed 
signals, which are determined by the signal itself.  
Therefore, it is a self-adaptive signal processing 
technique, able to separate stationary from non-stationary 
stations.  On the other hand, giving the length, 
complexity of the signals proved by [17], by the 
application of the EMD / EEMD method, [18] proposed 
an AMD-EEMD-based method for the diagnosis of 
rotating machinery failures. [19] proposed Adaptive Fast 
EEMD (AFEEMD) method associated with the CEEMD 
for the treatment of EMD problems [1]. [2] A method 
based on succinct and fast empirical mode to check its 
efficiency in the diagnosis of failure for rotating 
machines [2]. 

Emerging fault detection is considered as a hard 
task because its characteristics are often very low and 
hidden by the noise introduced in the signals by various 
disturbances. This noise produces an effect of a mask 
that makes the process of fault detection more difficult.  
In this paper, the main contribution of our approach is to 
mixture a multilevel wavelet transforms with a fast EMD 
decomposition in order to early detect gear defects and 
extract components related to defects that exist 
throughout the frequency range of vibration signals. In 
the proposed method, it is necessary to minimize the 
noise from the recording tape. However, vibration 
signals are usually composed of several components, e.g., 
components related to failures, background noise and 
interference from other normal parts of the machine. 
Therefore, it is important to remove the noise and 
interference components from the raw vibration signals 
to improve the quality of the extracted impulse shocks. It 
is known that the EMD method can break a signal down 
into some self-adapted mono-components, and these 
mono-components are almost orthogonal according to 
[22, 23]. Therefore, components related to failures, 
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background noise, interference, etc., can be decomposed 
and treated 

Finally, the principal effectiveness of our approach 
is experimentally confirmed by applying it to the 
simulation experiment.  And then, the practical 
effectiveness of the proposed method is experimentally 
confirmed by applying it to the test bench CETIM. 

2. Theory Part 

2.1. Discrete Wavelet  

The first step is to implement noise reduction 
algorithms to reduce the noise vibratory signals coming 
from the CETIM bandwidth. The choice of the wavelet 
denoising method has been extensively researched. This 
approach is simple and effective in studies related to 
vibration signals. In this approach, the discrete wavelet 
transform (DWT) of a signal is calculated, and the 
resulted wavelet coefficients pass through a test 
threshold [20].  

The discrete wavelet transform (DWT) is derived 
from the discretization of the continuous wavelet 
transform CWT given by: 
 

DWTሺ j, kሻ ൌ  ଵ 

ඥଶౠ
 sሺtሻ
ାஶ
ିஶ

 ψቀ
୲ିଶౠ୩

ଶ୨
ቁ                (1) 

 
where Ψ denotes the mother wavelet, 2୨ and 2୨k replaces 
the scale index and the time shifting of CWT. DWT 
consisted of decomposing the original signal s(t) into 
several under-signals of various scales with a pair of 
filters, namely, low pass filter (LPF) and high pass filter 
(HPF), and its cutoff frequency is the middle of input 
signal frequency [12]. From these two vectors, we obtain:  
1.  The detail coefficients (D1) corresponding to the high 
frequencies. 
2.  The approximation coefficients (A1) correspond to 
the low frequencies. 

After the first level, only the approximation 
coefficients is consequently divided into new 
approximation and detailed coefficients. During 
decomposition, the signal S(t) and vectors (Aj) 
underwent down sampling. The decomposition process is 
called the wavelet decomposition tree that is shown in 
Fig. 1. 
 
 

 
 

Fig. 1:  Five-level wavelet decomposition of the signal related 
to a meshing frequency  

 
The process after decomposition or analysis is called 
synthesis where we reconstruct the signal s from the 
wavelet coefficients. It can be described by Equations (2) 
and (3) given as follows: 
 
               cA୨ିଵ ൌ cA୨   cD୨    (2) 
              s ൌ cA୨   ∑ cD୧୧ஸ୨   (3) 
 

Where (cAj) are approximations, (cDj) are details. i and j 
are positive integers. In reconstruction, components can 
be assembled back into the original signal without loss of 
information. 

2.2. Fast Intrinsic Mode Functions Fast-EMD 

The Fast-EMD method which is based on EMD 
differs from the classic EMD basically in the steps of 
estimating the envelopes and limiting the number of 
iterations of each IMF to be one, for thus we called it 
Fast-EMD. In the proposed method, the extreme is 
considered as the local maximum (or minimum) only 
when it is located at the middle of a local window, which 
is named “median extreme” [1]. Interpolation methods 
have been proposed to create the upper and lower 
envelopes in the EMD; however, in Fast EMD spatial 
domain sliding order-statistics filters (OSF) are applied. 
The upper and lower envelopes, obtained by using OSF, 
make the method used in this work independently of a 
stander deviation (SD) value used in classical EMD. 
Because in the shifting process, each mode is extracted 
based on the window width of OSF, components that are 
smaller than the filter window will be extracted from the 
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original signal, and components that are larger than the 
filter widow will remain for the next.  

Algorithm of Fast-EMD:  

Step 1 Identify all the local extrema in the signal. 
Connect all the local maxima by a cubic 
spline line as the upper envelope  

Step 2 For each local maximum (minimum) point 
in Pi (Qi), the Euclidean distance to the 
nearest other local maximum (minimum) 
point is stored in an array dmaxሺdminሻ; 
 d1= min {min (dmax), min (dmin)}     (4)   
 d2= max {max (dmax), max (dmin)}   (5) 

 
Step 3 Select window size of  OSF and then obtain 

the upper envelope UE and lower envelope 
LE using OSF; 
   UEൌ MAXሼPiሺsሻሽ                                    (6) 
   LEൌ MIN ሼQiሺsሻሽ                              (7) 

 
Step 4 Calculate mean of the upper and lower 

envelopes 

  Eavሺxሻ ൌ
ሺୱሻାሺୱሻ

ଶ
                           (8)        

 
Step 5 

 
Subtract the mean envelope from the signal 
Sdሺtሻ and obtain FIMF. 
Fy ൌ yd - EAV                                              (9) 

 
Step 6  Extract ,Fast IMF  

if  Fy1(t) satisfies the requirements of an 
IMF, set the first IMF as c1 (t) = Fyy1 (t). 
Otherwise, let y1 (t) be the raw signal, and 
repeat step 1 to step 2. It is noted that an 
IMF is defined as a function that satisfies 
the following requirements: 

(i) In the whole data set, the number of 
extrema and the number of zero-
crossings must either be equal or 
differ at most by one; 

(ii) At any point, the mean value of the 
envelope defined by the local maxima 
and the envelope defined by the local 
minima is zero. 

 

Fig. 2: Schematic plot upper and lower envelopes. 

2.3. Proposed method  

The objective of this work is to early detect gear 
faults from a vibratory signal. For this purpose, we 
applied a discrete wavelet threshold algorithm with a 
variable decomposition level N. Indeed, noise in the 
vibratory signal varies with the presence or not of the 
fault, and to early detect it, we propose to denoise signal 
before. The signal noise ratio SNR is calculated in each 
windowed vibratory signal and a wavelet decomposition 
level is determined. Then we used Fast-EMD method 
based on Fast Empirical Mode Decomposition to detect a 
gear fault. The detailed fault diagnosis procedure based 
on the proposed method is shown in Fig. 3.  

The raw vibration signal is first acquired from the 
machinery. Then, the DWT and the fast EMD method is 
applied to decompose the raw vibration signal into n 
IMFs, denoted as c1, c2,..,cn. Selecting the most 
dominant IMFs  with an energy rank. This is based 
on the hypothesis that vibrations produced by 
impacts have higher energy. 

 

Fig. 3:  Algorithm of the proposed method  
 

3. Experimental validation  

The vibration signals used in this work were carried 
out at CETIM, France. The CETIM test bench is a 
gearbox composed of 20 tooth gear and a wheel of 21 
teeth. The rotational speed of the shaft is 1000 rpm or 
about 16.67 Hz. The rotation frequency of the wheel is 
equal to 15.87 Hz. The meshing frequency is about 330 
Hz. The sampling frequency is 20 kHz. Each recording 
has 60,000 samples. The experiment lasted 12 days from 
a good working state of the gearbox to a deteriorating 
state. The operating conditions (speed, torque) have been 
set to obtain a flaking along the length of a tooth [15] 
[18]. This test band has been studied by other researchers 
[24, 25, 26, 27]. They have used new signal processing 
techniques. 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022 

 

 

126

 

Fig. 4: Photos of a CETIM bench wheel a) without defect, b) with 
defect [17]. 

Table 1: Expert report 

Days Observation Days Observation 

1 No  anomaly 7 No evolution on tooth 
1/2 

2 No  anomaly 8 Spalling on tooth 
15/16 

3 No  anomaly 9 Evolution on tooth 
15/16 

4 No  anomaly 10 Evolution on tooth 
15/16 

5 No  anomaly 11 Evolution on tooth 
15/16 

6 Spalling on 
tooth 1/2 

12 Spalling on entire 
tooth 15/16 

A multi-resolution wavelet analysis explores the 
signal at different resolution levels and analyses it scale 
by scale like a digital zoom. The wavelet level 
decomposition N varies with noise in the gear signal. 
Regarding the expert report (table 1), and Fig.4 a spelling 
on tooth ½ and 15/16 appears on day 6 and 8. We choose 
N=5 for recording in the days (1, 2, 3, 4, and 5) to get 
noise generated by a possible occurrence of a fault in 
gear and N=3 for the rest recording signals. 

3.1. Condition indicators 

To display the difference between the raw signals 
and the de-noised signals, the DWT and the Fast-IMF 
methods are used. The Kurtosis index (Ku) is an 
indicator used for the detection of the impulses; it’s 
widely used for detection and diagnosis of faults in   
rotating machines. 

Kurtosis This is the first order normalized moment 
of a given signal and provides a measure 
of the apogee of the signal, i.e. the 
number and amplitude of the peaks 
present in the signal [14].  It is given by:   

K ൌ
∑ ሺ୶ ି ୶തሻరొ

సభ

ሺ∑ ሺ୶ ି ୶തሻమొ
సభ ሻమ

                            (8)   

                                                                      

3.2. Simulation and result  

Fig.5 and Fig.6 represents the temporal and 
frequency representation of a vibratory signal, the early 
defect detection is not possible. That the defect in gears 
cannot be detected before the 11th day because the 
features are often extremely weak and masked by the 
noise. For this, wavelet threshold algorithm was applied. 
Fig.5 is a temporal representation of a vibratory signal in 
day 1, 6, 8, 10 and 12; we can see a fault only from a day 
10 and become more in day 12.  

 

Fig. 5-a: temporal representation of vibratory signals of the 1nd day, 
6th day, 8th day, 10th day and 12th day. 

 

 
Fig. 5-b zoom meshing frequency of a vibratory signal 
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(a) 

 
(b) 

Fig.6: Spectral representation of vibratory signals 
(a): Raw signal  (b) : Defect signal  

 

From the curves (Fast-EMD) and (K-mix mode) of 
(Fig.7), we can see three analyses phases. The first starts 
from the 1st day and ends on the 5th day, which is the 
faultless stage. From the 6th day to the 11th day is the 
second stage. At this stage, the kurtosis coefficient 
increases begin from the 6th day at a rate of 1.2 with 
Fast-EMD and 1.8 with a mixed-mode, which means that 
a defect is burning. Ku coefficients increase with the two 
methods, and this means that the defect is increasing.  
However, from the 8th day, a second fault emerges, and 
it’s more observable with Ku evolution using wavelet de-
noising 

To display the difference between the raw signals 
and the de-noised signals using Fast EMD and DWT 
method and as the Kurtosis (Ku) is an indicator used for 
the detection of the impulses, the kurtosis Values were 
calculated from day 1 to day 12 (table 2), for the raw 
signals and our  method. 
 
Table.2: kurtosis result proposed method  

Days  Raw signal DWT Mixing mode 

01 2.6557 9.7893 4.69 
02 2.6380 4.7713 4.85 
03 2.8504 5.6106 4.67 
04 2.8597 5.7813 3.9 
05 2.9547 6.0235 5.25 
06 2.9029 13.3594 6.42 
07 2.9966 4.0506 4.39 
08 2.9228 7.0501 5.10 
09 2.9962 8.0495 6.90 
10 3.0175 13.1602 7.48 
11 13.5869 28.5208 9.58 
12 13.9180 29.6379 10.02 

    

4. Results And Discussion 

Fig.7 presents the evolution of kurtosis value as a 
function of the acquisition day for vibratory signal: 
without treatment (k-Raw signal), by applying Fast-EMD 
without denoising and after wavelet denoising (K-mix 
mode). By analyzing the evolution of kurtosis as a 
function of the days, we note that for the signals without 
treatment, the curve presents two phases. 

A constant phase extends from the 1st day to the 10th 
day and a fast-increasing phase which indicates the 
presence of one or more faults. Looking at the experts’ 
report, we can say that on the 10th day the two faults are 
already well installed [16]. From the curves (Fast-EMD) 
and (K-mix mode), we can see three analyses phases. 
The first starts from the 1st day and ends on the 5th day, 
which is the faultless stage. From the 6th day to the 11th 
day is the second stage. At this stage, the kurtosis 
coefficient increases begin from the 6th day at a rate of 
1.2 with Fast-EMD and 1.8 with a mixed-mode, which 
means that a defect is burning .Ku coefficients increase 
with the two methods, and this means that the defect is 
increasing. However, from the 8th day, a second fault 
emerges, and it’s more observable with Ku evolution 
using wavelet de-noising. By using a denoising signal 
with a wavelet threshold as an input signal to a Fast-
EMD system, we can detect very easily the emergence of 
the two defects.  Indeed, when several faults occur, they 
can interact with each other, cause vibration, and 
complicate the feature extraction. By applying the 
orthogonal wavelet transform, the energy of a useful 
signal is compressed to a relatively small number of big 
coefficients, while the energy of the noise is dispersed 
throughout the transform with small coefficients. 
Threshold keeps the approximation coefficients 
unchanged because they represent the useful signal. 
However, the small coefficients of the details are 
considered as noise and will be eliminated. We can say 
that the second stage is related to the occurrence of faults. 
The last stage is related to the critical state of chipping of 
the teeth. 

 

Fig. 7: Kurtosis values variation proposed method  
(Green_line: raw signal, Blue_line: fast EMD, Red_line: DWT+FAST 

EMD) 
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The figures (8,9,10) give a graphical representation of 
the IMFs of the Fast EMD decomposition of the signals 
recorded on day 5, day 8, day 11, . For each signal 12 
IMFs were obtained. But only the first 8 IMFs were 
taken into consideration, the other IMFs were added to 
the residue. 

 
Fig. 8: Proposed method of the signals of the 5th day 

 

 
Fig. 9: Proposed method of the signals of the 8th day 

 

 
Fig. 10: Proposed method of the signals of the 11th day 

 

5. Conclusion  
 
The main contribution of this paper is to mixture a 

multilevel wavelet transforms with a fast EMD 
decomposition in aim to early detect gear defects, 
The results presented in this study demonstrated that the 
combination of Fast-EMD and DWT methods based on 
denoising can be used to identify early damage in 
gearboxes. It’s notable, that the appropriate choice of the 
conservation parameters in the post-treatment phase is 
significantly important. The numerical results prove that 
the mixed method can increase the precision of results 
given by the Fast-EMD. 
 

Finally, a defect diagnosis result can be obtained 
after the rapid transformation of the EMD. The method 
and two commonly used methods are applied to the 
failure diagnostic of a CETIM test strip with a gear 
scaling defect. The results show that the proposed 
method effectively detects gear defects and achieves 
better results than other methods. Our results showed the 
occurrence of a teeth defect on gear on the 5th and 8th 
day. This result agrees with the report of the appraisal 
made on this gear system 
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