
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

193

Manuscript received February 5, 2022
Manuscript revised February 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.2.25

Heterogeneous Parallel Architecture for Face Detection Enhancement

 Aishah Albssami 1† and Sanaa Sharaf2††,
Aalbassami0005@stu.kau.edu.sa Ssharaf@kau.edu.sa

King Abdulaziz University, Jeddah, Saudi Arabia

Summary
Face Detection is one of the most important aspects of image
processing, it considers a time-consuming problem in real-time
applications such as surveillance systems, face recognition
systems, attendance system and many. At present, commodity
hardware is getting more and more heterogeneity in terms of
architectures such as GPU and MIC co-processors. Utilizing
those co-processors along with the existing traditional CPUs
gives the algorithm a better chance to make use of both
architectures to achieve faster implementations. This paper
presents a hybrid implementation of the face detection based on
the local binary pattern (LBP) algorithm that is deployed on both
traditional CPU and MIC co-processor to enhance the speed of
the LBP algorithm. The experimental results show that the
proposed implementation achieved improvement in speed by 3X
when compared to a single architecture individually.
Keywords:
Face Detection, LBP, MIC, Scheduling.

1. Introduction

During the past years, the problem of face detection
has received a lot of attention due to its range of
applications in many fields. Moreover, various methods of
detecting human faces in photos and videos have been
proposed in recent years because it is considered the first
phase in most systems that process and analyse faces, such
as face recognition systems, face verification systems,
surveillance systems, social media, and more. These
systems totally depend on face detection, if there is a delay
in face detection time this will affect systems’ progress.
Detecting faces is a complicated process due to some
conditions such as image position and orientation,
occlusion, lighting conditions, facial skin colour, glasses
or facial hair, etc. Also due to rapid development in
computer hardware in performance and speed, and as a
result of the increase in the evolution of devices that
capture images and videos, the computational cost
increases to process these images. High- performance
computing HPC is extremely valuable in reducing these
computational costs because it provides a parallel
architecture to obtain high performance and accurate
results. Intel many integrated core (MIC) also known as
Xeon Phi is one of the heterogonies high-performance
computing architectures along beside Graphics Processing
Unit (GPU) and field-programmable gate array (FPGA).
Intel provided MIC coprocessors in 2012. It improves the
parallel performance and energy efficiency for many

applications supports all programming models that are
available for traditional intel architecture processors such
as OpenMP and MPI. MIC also support C/C++ and
Fortran languages unlike GPU which need an SDK such as
CUDA or OpenCL to run any application. In this paper we
enhanced the performance of face detection problem using
local binary pattern LBP face detector and processed by
using a heterogeneous platform involving MIC
architecture and CPU since many studies used GPU and
FPGA widely to enhanced and accelerate the face
detection algorithms. MIC architecture is the main
contribution of this study and it’s not used before to
accelerate or enhance any face detection algorithms based
on the best of our knowledge. The rest of this paper is
organized as follows: the related work will be discussed in
section2. Section 3 will discuss the LBP based face
detection. Methodology will be explained in section 4. The
experiment results will be present in section 5 while
section 6 will have the conclusion.

2. Related Work

Face detection consists of several steps that requires
the image to be scanned to find the rectangles (windows)
that contain faces. Those rectangles are size invariant and
may appear in any arbitrary location in the image. This
requires dividing the image into many overlapped
rectangles and apply certain classifier to find out either
those rectangles contain face or not. This process is
computationally intensive and thus the need to deploy
parallel architectures and co-processors aroused. Several
trials to speed up Local Binary Pattern (LBP); one of the
most common face detection techniques were made.
Previous attempts were made to parallelize LBP algorithm
to reach real time face detection as proposed in [1], the
authors using OpenCL reaching computation time of 20ms
for a 640*480 image resolution. Also, an attempt on non-
standard image resolutions was made in [2]. which we
couldn’t consider as a benchmark to compare with.
Attempts to evaluate the different performance on multiple
architectures was introduced in [3]. the authors introduced
the different performance on general purpose processors,
SIMD units, multi-core architectures and GPUs reaching
30fps and measuring the energy needed along with the
performance. In [4] authors proposed viola-jones
enhancement on GPU reaching 37fps for HD Images.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018

194

While in [5] their study was based on introducing an
implementation for LBP algorithm by both scaling feature
scaling and image scaling and a comparison between both
in terms of accuracy and performance time reaching up to
50 frame per second (fps) for feature scaling and 45 fps for
image scaling. GPGPU was used in [6] to accelerate the
computation of the LBP-based face detection algorithm
using feature scaling, the authors achieved processing
speed up to 287fps for 640*480 image resolution.

3. LBP-based Face Detection Algorithm

Nowadays according to the exponential growth of
computer hardware in speed and performance we try to
solve the face detection problem which is a classical and
time-consuming problem. One of the most important
classifiers in face detection is the Local binary Pattern
(LBP). The LBP- based face detection process starts by
converting the input colour image to grayscale then using
integral image to speed up the calculation of LBP feature
extraction. Sliding window technique is used where the
input image is scanned by sliding a rectangular sub
window of fixed size (The LBP detector) over image from
left to right and top to bottom. Then process every sub
window to recognize if there a humane face or no. This
process repeated many times by rescale and shift the sub
windows until entire image is scanned, and faces are
detected. We will apply specific scheduling strategy to
process and mapping the LBP detector to the
heterogeneous architectures to achieve better utilization
and more speedup.

3.1 Local Binary Pattern (LBP)

Local binary patterns (LBP) is one of visual
descriptor type in computer vision used for classification.
It is a texture operator that is robust, extremely fast, highly
effective and computationally simple with powerful
discrimination introduced by Ojala et al [7].It used in
texture analysis initially but later used in many fields of
computer vision and image processing such as image face
detection. LBP-based face detection applications are one
of the active research topics gave excellent results that
outperformed many techniques in face detection tasks.
LBP algorithm come in a variety of forms. The basic LBP
investigated the relationship between the center pixel in a
3*3 grid and its eight neighboring pixels. Later, it
expanded to apply to any region of the image. The center
pixel is compared with its surrounding neighbors. If the
value of the center pixel is equal to or larger than the
neighbour’s values LBP will threshold the neighbor’s
values by zero; otherwise, the neighbor values will be one.
The generated code is represented as eight bits in binary
format. Each 1 in binary bits will convert to decimal in a
clockwise direction. The pixels that have less than eight

neighbours will be ignored because it will generate
incorrect information. Generally, the LBP operator is
applied to a grayscale image because it has just 256
potential values because the 3*3 grid consists of eight
pixels where 28=256 values as shown in Fig.1

3.2 Cascade Classifier

A cascade classifier is a machine learning technique
that consists of consecutive stages each stage represents a
weak classifier these weak classifiers are composed
together to be a strong classifier. It determines whether a
given sub-window contains a face or not by discarding
non-face regions, which helps in reducing the computation
time. After image is scanned the generated sub windows
are flow to the cascade classifier. Each stage consists of a
threshold and three to ten of LBP features. Each feature
has two weights one is a negative and one is positive and a
256-bit lookup table (LUT). The 8-bit LBP number that
generated from comparing the central region with its
neighbours’ regions (Fig. 1) is used as an index to the LUT
to get either 0 or 1 bit. The 0 bit are indicating the negative
weight of the feature while the 1 indicates the positive
weight. These weights summed together and compared to
the stage’s threshold. If the sum is larger than the stage
threshold this means the current sub window probably
have face and then the window will pass to next stage and
so on. otherwise, if the sum is less than the stage’
threshold this means the stage is failed and classifier will
reject all the following stages. Then the next sub window
will be passed to first stage to be processed. This process
is repeated until the window passes all stages and the face
is detected as shown in Fig 2. The features at the latest
stages are more restricted than the earliest ones.

Fig 2 Cascade Classifier.

Fig. 1 Local binary pattern.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018

195

4. Methodology

Overview of our work is described in Fig.3. To
process one frame of given image we scan the image and
divide it into multiple sub windows using sliding window
technique. The generated sub windows from input image is
a challenge, because to detect faces in image of size 640 x
480 almost 1051993 sub windows will be produced. All
these sub windows must be process in millisecond of time.
Can we process these sub windows in parallel? Can we
split these sub windows to be run over CPU and MIC as
hybrid process? Yes, and this is what we are did in this
study. According to the scheduling strategy described in
[8]. we will be assigning these sub windows to different
architectures (CPU-MIC) this will be described in section
5.

Fig. 3 Implementation Overview.

4.1 Image Processing

Before detecting a human face in an image, the input
colour image is converted to a grayscale image where all
pixel values become in range 0 to 255 to quickly calculate
the integral image. The grayscale image was then
converted to an integral image and stored in a 2D array
structure.

4.2 Parsing classifier

The pre-trained LBP classifier set is obtained from
OpenCV [9]. as an XML file with a fixed detection
window size (24*24). We convert the XML file into a C
structure. This XML file consists of 20 stages. Each stage
contains three to ten weak classifiers (LBP feature) and
one threshold. Each weak classifier has a lockup table
consisting of eight integers and one indication to a
rectangles list. These rectangles represent the dimensions
of the features. Also, each weak classifier has two leaf
values that represent the weight of the features. All this
information from the XML file is converted into a 1D
array structure to refer to each value by stage and feature
indicators. Image processing and parsing classifier both
are sequentially executed.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018

196

4.3 LBP detector parallelization

The LBP detector are implemented as a function with
five parameters the original image, integralimage, scale
factor, the x and y position, which represent the step size
of the sub-window to scan the whole image. The sub-
windows are scaled by scale factor =1.1 and shifted two
pixel each time, then incremented until cover all image
dimensions and faces are detected. This function then
offloads to be run on MIC side. Intel MIC Programming is
identical to CPU programming. Only one line of code is
the main difference to declare that a specific part of the
code should be executed on the Intel MIC architecture.
OpenMP are used to parallelize scale and shift process of
the sub- windows and Offload mode are used to run this
parallel part on MIC as shown in pseudocode Fig.4. Then
results are aggregate to display.

Fig. 4 Implementation pseudocode.

5. Experiment Results

The experiment has been conducted on AZIZ
supercomputer. Each compute node has dual processor
with total 24 core and Intel Xeon Phi Coprocessor with 60
core each core has 4 thread. Single compute node is used
to run the implementation of proposed work. The code is
written using C++ language while Intel compiler is used to
compile it. We evaluate the work performance by testing
three images with different resolutions (640x480, 1280 x
720, 1920x1080). Each image has distinctive number of
human faces with different position. It can be seen from
our discussions in sections 4 that the sub windows
processing is the complex process in face detection.
Therefore, any increase in the number of generated sub
windows leads to significant increase in the total time of
face detection process. We run the code on CPU and MIC
separately and calculate the execution time to each
architecture. Fig.5 shows the execution time of each
architecture when running one frame for different sizes of
images. Fig 6 show the speed of different architecture
where we have achieved processing speed up to 9.81 fps
from image of size 640 x 480 on CPU while on MIC, we
have achieved processing speed up to 3.52 fps. And for
image of size 1280 x 720 we have achieved processing
speed up to 5.66 fps on CPU and 3.23 fps on MIC.

Fig. 5 Execution time of one frame on CPU and MIC.

Fig 6 Speed of different architectures.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018

197

From Fig.5 and Fig.6 we can notice that the execution time
of CPU is better than execution time of MIC which is not a
promising result. However, we can enhance the
performance of LBP algorithm by using both CPU and
MIC together as heterogeneous platform instead of using
any of them individually. Based on speed-based
scheduling strategy described in [8] we distribute the
image frames to be processed over MIC and CPU based on
specific ratios. This ratio decides how many frame should
be assigned to CPU and MIC as shown in Fig. 7. We are
formalized the ratio as in Eq. 1, where R is the ratio of the
tasks assigned to the architecture, p represent the
architectures and N represent the total speed of
architectures.

ሺ𝑝ሻ ൌ ሺ𝑠𝑝𝑒𝑒𝑑ሺ𝑝ሻ/𝑁ሻ ∗ 100. (1)

Fig 7 Ratio of tasks assigned to architectures based on speed

Therefore, to process 1000 frames for image of size
(640 x 480) we divide these frames into (740 frames) to be
processed by CPU which equals 74% of tasks while MIC
will process (260 frames) which equals 26% of the tasks.
After assigning frames to the different architectures we
observed that the finish time of these two architectures are
approximately equal which mean the MIC and CPU are
processing the right amounts of frames, thus the frames
were successfully assigned to the architectures as shown in
Table 1.

Table 1: Finish time of CPU and MIC
#frames 1000

Frame Size 640x480 1280 x 720 1920x1080

CPU #frame 740 640 350

MIC #frame 260 360 650

Finish Time (CPU) 75.433 113.07 243.06

Finish Time (MIC) 73.864 111.46 241.64

Comparing the run time of the CPU and MIC with a run
time of a hybrid platform is also shown in Fig. 8 Which

gives us an idea about the improvement in the total run
time. For clarification, If CPU were used only the
processing time will be 101.9368sec and if MIC were used
only the processing time will be 284.0909sec But if the
CPU and MIC used together as heterogeneous the
processing time will be 75.43323 sec, this gives us an idea
about the improvement in the total run time.

Fig 8 Experiment result comparison for different images size for CPU,

MIC and heterogeneous (CPU-MIC).

We also observed from the above ratios shown in Fig
7 that the MIC ratio increases when the image’s size
increases, and CPU ratio decreases because the time that
MIC spent in transfer image data to the MIC memory was
more significant than the time that MIC used to process.
Therefore, when the processing requirement increased the
time of transfer are become less than the computation time.

6. Conclusion

The hybrid program model which merges CPU with
accelerators is not an optional choice anymore. Now in
2021 we must use hybrid model and using the theory that
say merge performance of many architectures to enhance
the speed. This paper has presented an enhancement
implementation of the LBP based face detection algorithm
on heterogenous architecture that consists of Intel Xeon
processors (CPU) and Intel Xeon Phi accelerators (MIC).
A thorough study of sliding window technique, integral
image and LBP-based classifier to obtain a high detecting
rate was conducted.. Parallel implementation details of the
LBP algorithm were shown besides the parallel execution
tested on hybrid platform(CPU-MIC) . The preliminary
out- comes differed from what was anticipated then, after
deployed work on hybrid model the obtained results prove
that distributing the work between CPU and MIC as a
heterogeneous platform gives us a promising improvement
in comparison with CPU and MIC separately. Future work
may include detecting the faces from video stream instead
of solid images and use another scheduling strategies or
deploying the work on many heterogeneous architectures
instead of one.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.12, December 2018

198

Acknowledgments

This work is supported by the King Abdulaziz University ,
High-Performance Computing Center
(Aziz Supercomputer) (http://hpc.kau.edu.sa).

References

[1] N. NIKE and G. N. RATHNA, "Real time face detection on

gpu using opencl," Computer Science, 2014.

[2] M. Chouchene, F. E. Sayadi and H. Bahr, "Optimized parallel
implementation of face detection based on GPU component,"
Microprocessors and Microsystems, vol. 39, pp. 393--404,
2015.

[3] M. B. López , A. Nieto and J. Boute, "Evaluation of real-time
LBP computing in multiple architectures," Journal of Real-
Time Image Processing, vol. 13, no. 6, 2017.

[4] M. Fayez , Faheem, I. Katib and N. R. Aljohani, "Real-time
image scanning framework using gpgpu face detection case
study," Proceedings of the International Conference on
Image Processing, Computer Vision, and Pattern
Recognition (IPCV), 2016.

[5] Y. M. Abdelaal , M. Fayez and H. Faheem, "Performance
evaluation of image scanning:face detection case study," p.
pp. 1–15, 2019.

[6] M. . R. Ikbal, F. Mahmoud, M. Fouad and I. Katib, "Fast
implementation of face detection using lpb classifier on
gpgpus," Intelligent Computing- Proceedings of the
Computing Conference, p. pp. 1036–1047, 2019.

[7] T. Ojala , M. Pietikäinen and D. Harwood, "A comparative
study of texture measures with classification based on
featured distributions," Pattern recogni- tion, vol. 29, no. 1,
p. 51–59, 1996..

[8] B. König-Ries and H. Faheem, "A new scheduling strategy
for solving the motif finding problem on heterogeneous
architectures," International Journal of Computer
Applications, vol. 101, p. 27–31, sep 2014.

[9] "pre-trained LBP classifier," [Online].Available:
https://github.com/opencv/opencv/blob/master/data/lbpcascad
es/lbpcascade_frontalface.xml.

Aishah Albassami received the B.E.
With second honor degree in Computer
Science from Umm Al-Qura University,
Makkah, Saudi Arabia, and she is
currently a master's student in the
department of cmputer science at FCIT,
King Abdulaziz University (KAU),
Jeddah, Saudi Arabia. Her research
interests are in the fields of High-

Performance Computing and Machine Learning.

Sanaa Sharaf received the B.E. with
first honor degree in computer science
from King Abdulaziz University, Jeddah,
Saudi Arabia, and MSc with Distinction
from University of Bradford, UK in
Information Security in 2006. Sanaa
finished her Ph.D. in Grid Computing
from the University of Leeds, UK in 2012.
In 1998, she joined the Computer Science

Department, King Abdulaziz University, as a Teacher Assistant.
She is currently an Assistant Professor in the Computer Science
Department, Faculty of Computing and Information Technology,
KAU. Her main areas of research interest are Information and
System Security, Grid/Cloud Computing and High- Performance
Computing. Since 2013 she started some administrative
assignments includes: Supervisor of Information System
department Sulaymaniyah branch, FCIT vice-dean in both
Faisliyah branch and University of Jeddah and now she is the
High- Performance Computing Center deputy director for
Academic Affairs, King Abdulaziz University, Jeddah, Saudi
Arabia.

