
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

232

Manuscript received February 5, 2022
Manuscript revised February 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.2.30

Evolutionary Computing Driven Extreme Learning Machine for
Objected Oriented Software Aging Prediction

Shahanawaj Ahamad

College of Computer Science and Engineering
University of Hail, Hail, Saudi Arabia

Summary
To fulfill user expectations, the rapid evolution of software
techniques and approaches has necessitated reliable and flawless
software operations. Aging prediction in the software under
operation is becoming a basic and unavoidable requirement for
ensuring the systems’ availability, reliability, and operations. In
this paper, an improved evolutionary computing-driven extreme
learning scheme (ECD-ELM) has been suggested for object-
oriented software aging prediction. To perform aging prediction,
we employed a variety of metrics, including program size,
McCube complexity metrics, Halstead metrics, runtime failure
event metrics, and some unique aging-related metrics (ARM). In
our suggested paradigm, extracting OOP software metrics is done
after pre-processing, which includes outlier detection and
normalization. This technique improved our proposed system's
ability to deal with instances with unbalanced biases and metrics.
Further, different dimensional reduction and feature selection
algorithms such as principal component analysis (PCA), linear
discriminant analysis (LDA), and T-Test analysis have been
applied. We have suggested a single hidden layer multi-feed
forward neural network (SL-MFNN) based ELM, where an
adaptive genetic algorithm (AGA) has been applied to estimate the
weight and bias parameters for ELM learning. Unlike the
traditional neural networks model, the implementation of GA-
based ELM with LDA feature selection has outperformed other
aging prediction approaches in terms of prediction accuracy,
precision, recall, and F-measure. The results affirm that the
implementation of outlier detection, normalization of imbalanced
metrics, LDA-based feature selection, and GA-based ELM can be
the reliable solution for object-oriented software aging prediction.

Keywords:
Software Aging Prediction; Extreme Learning Machine; Genetic
Algorithm; Software Metrics, Object-oriented Software

1. Introduction

Software engineering is concerned with the design,
development, and maintenance of software [1, 2]. The
software systems usually run for extended periods of time
in order to produce trustworthy computations and valuable
decisions based on the running programs and users’
specifications. In actuality, however, there is a constant
buildup of bugs during the software run time because of
program design, improper application environment, and
usage pattern, which accumulate errors and finally cause
software aging (SA). The aging-related bugs (ARBs) or

defects [3] are the prime root cause that makes software
systems more susceptible to suffer aging caused failure
because of their dynamic errors accumulation across an
operational period [9]. These error accumulations can
increase performance degradation and lead to system
crashes. Unplanned computer system outages are more
likely to happen as a result of aging-caused failures than
hardware-caused failures [4,5,6]. Aging caused software
failures have been observed in numerous events and
operating conditions where it has caused money loss, or
even human lives [7, 8, 9]. Such bugs in software
components introduce incorrect results that adversely affect
the decision process and normal intended functions. The
early detection of software aging-related bugs (ARBs) is
necessary to rejuvenate the system and mitigate the
potential negative effects.

However, predicting aging is a time-consuming
operation that has become more complicated when dealing
with large-scale software, online applications, and other
software products. In practice, eliminating entire bugs is
even impractical that eventually makes a system probable
of being aged after some time. As a result, attempts of
research have been undertaken to discover age-related bugs
in object-oriented software, that allow for rapid aging
prediction, and also the prevention of system crashes. Early
aging prediction consequently execution of rejuvenation
processes can increase the system’s availability, durability,
and reliability.

This research has suggested an evolutionary
computing-driven ELM learning scheme for aging
prediction in object-oriented software. This research has
considered some software features such as code complexity,
program size, events of faults, and memory availability,
these features largely impact the probability of aging. The
study provides a multilayered optimization technique for
SA prediction, in which pre-processing is used to get the
software aging-related metrics, which includes outlier
identification and normalization. Different feature selection
approaches, including PCA, LDA, and T-Test, have been
used to pre-processed metrics in order to achieve time-
efficient aging prediction. A single hidden layer multi-feed-
forward neural network (SL-MFNN) has been designed to

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

233

give a basic ELM model, with an evolutionary computing
approach termed Adaptive Genetic Algorithm (AGA) used
to select and optimize ELM weight and bias parameters.
The aging prediction was done using multivariate
regression, and the effectiveness was evaluated in terms of
precision, accuracy, recall, F-Measures, and G-mean,
among other things.

2. Related Work

Software aging have been found in various application
scenarios, such as web servers [12], communication
systems [13], defense systems [14], mail servers [15], cloud
infrastructures [16,17], and in the Linux kernel code [18].
SA concept and aging-related failure were discussed in [19].
Later, authors identified ARBs [20, 21], identified in two
classes such as the issues that are easily isolated and other
are those defects that emerge regularly in specified
functional conditions which may be caused due to error
accumulation and complexity. Authors in [22] examined the
relationship between the static software features like code
complexity, resource consumption and size of code, and
aging probability. Researchers in [23] applied resource
utilization or usage pattern to examine aging probability
where they used neural; networks for aging probability
estimation. [24] discovered a technique named as Mann-
Kendall test for the purpose. A machine learning method
was recently used to forecast aging in a web application [25].
A non-parametric statistical paradigm with an AR model
was suggested for web server aging prediction [21]. The
time series analysis-based SA prediction was suggested in
[26, 27] where ANN [26] and SVM [27] classifiers were
applied to perform aging prediction. Considering software
metrics as a potential tool to assess aging probability, in [28]
the inter-relationship between software metrics and aging
probability was examined. Machine learning methods to
forecast aging using software metrics were applied in [29],
some data mining approaches have been examined in [34].
[30] reported on memory leak-based aging prediction. The
stress testing and trend detection approaches for aging
prediction were employed in [31].

3. Our Contribution

For the importance of software operations with
reliability an early aging prediction might be crucial. Any
potential interruption and failure of the software system
may be avoided by earlier aging identification.
Evolutionary computing-driven extreme learning machine
(ECD-ELM) for ARB identification and aging prediction
has been suggested in this study. Eventually, the research
was carried out in four stages:

1. Data collection,
2. Data pre-processing,
3. Dimensional reduction or feature selection, and
4. Learning and aging prediction.

Fig. 1 represents the overall proposed approach for software
aging prediction.

Fig.1 Proposed model for Software aging prediction

A. Data collection
The standard data for "Software Aging and Rejuvenation
(SAR)" was initially gathered from two open-source
projects, MySQL DBMS and Linux Kernel, and used to
accomplish SA prediction in this research. The extracted
benchmark data [32] contains various ARBs found in these
open-source projects. The prime novelty of our applied
datasets is the consideration of a new Aging-Related
Metrics (ARM) for aging prediction purposes. In addition,
our dataset contains complexity metrics, failure information
during run time, etc. The metrics encompass key parameters
such as line of code, program declaration, files, statements
etc. It encompasses a total of 49 attributes related to the
“Program size”, 18 attributes representing “McCabe's
cyclomatic complexity metrics”. In addition, we took into
account 9 factors related to software's "Halstead" metrics.
These metrics refer to operands and operators in the
software program. Unlike existing researches, we have
introduced six additional metrics called “Aging-related
metric (ARM)” for efficient aging analysis. These metrics
represent the software failure events during the stress test,
memory leak, memory usages in run time.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

234

B. Data Pre-processing
We performed pre-processing on the collected software
metrics because the obtained software metrics were often
uneven in form. In our study, we first performed outlier
detection and elimination, which allows for more efficient
data processing. Furthermore, the collected metrics have
been normalized to eliminate the problem of unbalanced
data. We used the Min-Max normalization technique, which
normalizes data in the [-1, 1] range. We wanted to prevent
early neural saturation by doing normalization.

C. Dimensional reduction and Feature Selection
There are two major issues that arise in every high-
dimensional data-based classification procedure. The first
issue is the “curse of dimensionality”, whereas the second
issue is that many characteristics might have little influence
on the aging prediction or ARB classification outcome.
These two major concerns have an impact on the whole
prediction process in some way. Selecting the appropriate
and sufficient features can enable accurate aging prediction.
During the software monitoring period, we removed
characteristics and data items with fixed values or
comparable meanings from our prediction model. We used
three different ways to achieve dimensional reduction and
feature selection: principal component analysis (PCA),
linear discriminant analysis (LDA), and T-Test analysis.
The following is a summary of the dimension reduction
strategies used:

1. Principal Component Analysis (PCA)
In the applied benchmark SAR data, there can be numerous
attributes or parameter elements having similar meaning
and constant values. Exclusion of such insignificant or
relatively least significant data elements or attributes can
make aging prediction swifter and more efficient. In our
proposed aging prediction model, the relationship between
these parameters and the software aging has been derived as
(1):

𝑚 ൌ 𝑓ሺ𝑖ଵ, 𝑖ଶ, … . . , 𝑖௡ሻ (1)
where m represents the aging probability and
𝑖ଵ, 𝑖ଶ, … . . , 𝑖௡ represent the aging features in software
systems. Principal component analysis (PCA) [32] being a
multivariate statistical analysis scheme selects multiple
principal components to characterize the major changes in
the data elements. Here, PCA algorithm is applied for
dimensional reduction and feature selection from the input
normalized metrics. A brief of PCA implementation is
presented as follows:
Consider the data metrics be isሺ𝑋 ൌ 𝑋ଵ,𝑋ଶ, … . . ,𝑋௡ሻ். In
our model, two matrixes, the relative matrix ሺ𝑃ሻ and the
covariance matrix ሺ𝐶ሻ have been obtained from the sample
data. Retrieving these matrixes, the eigenvalues
𝜆ଵ, 𝜆ଶ, … . . , 𝜆௡ and associated eigenvectors have been
obtained. With the obtained eigenvectors, we have obtained
a new factor called influencing factor (IF) for individual
attribute (Program size, line of code, Halstead metrics,

McCube cyclomatic complexity, and ARBs). Here, IF
indicates the amount to which these characteristics impact
the likelihood of software aging (SA). To select principal
components, two factors named variance contribution rate
(VCR) and cumulative contribution rate (CCR) have been
obtained. Mathematically, these factors are given as:

𝑉𝐶𝑅௞ ൌ
𝜆௞

ሺ∑ 𝜆௜௡
௜ୀଵ ሻ

 𝑘 ൌ ሺ1,2, … ,𝑛ሻ
(2)

Similarly, CCR is estimated as follows:

𝐶𝐶𝑅௠ ൌ
∑ 𝜆௜
௠
௝ୀଵ

ሺ∑ 𝜆௜௡
௜ୀଵ ሻ

(3)

where 𝑚 ൌ 1,2,3 … ,𝑛.
Higher, VCR means stronger ability of the first principal
component (PC) to abstract the information
of 𝑥ଵ,𝑥ଶ, … . . , 𝑥௡. If the CCR of the initial m components is
greater than 85%, the initial m components are deemed
chosen features for future aging prediction and provide
input to the ELM model.

2. Linear Discriminant Analysis (LDA)
In general, PCA uses the most expressive features

(MEF) function to pick features; however, MEFs cannot
always be the most discriminating features (MDF) function.
Furthermore, with the PCA-based technique, a unique PC is
created for each class. On the contrary, the linear
discriminant analysis (LDA) method provides automated
feature selection. To adopt the LDA technique for feature
selection, PCA was initially performed, in which all data,
regardless of parameter (attributes) category, was projected
onto a single PC. Our model yielded two matrices: intra-
class scatter matrix 𝐼௡௠ and inter-class scatter matrix𝐼௧஻ .
Mathematically,

𝐼௡௠ ൌ෍ ෍ ൫𝑦௝ െ 𝜇௜൯൫𝑦௝ െ 𝜇௜൯
்ெ೔

௝ୀଵ

௣

௜ୀଵ

(4)

𝐼௧஻ ൌ෍ ሺ𝜇௜ െ 𝜇ሻሺ𝜇௜ െ 𝜇ሻ்
௣

௜ୀଵ

(5)

where 𝑝 represents the total number of parameters
(attributes or classes) under study, 𝜇௜ states the average
vector of a class 𝑖 , and 𝑀௜ signifies the total number of
samples within a class 𝑖 . Here, the mean 𝜇 of all the
averaging or mean vectors is obtained as:

𝜇 ൌ
1
𝑃
෍ 𝜇௜

௉

௜ୀଵ

(6)

Here, LDA emphasizes on maximizing the inter-class scatter
while minimizing the intra-class scatter by increasing a
ratioሺdet|𝐼௧஻|/det| 𝐼௡௠|ሻ. A prime significance of this ratio
is that in case of non-singular 𝐼௧஻matrix, it can be increased
when the column vectors of the projection matrix can be the
eigenvectors of 𝐼௡௠

ିଵ𝐼௧஻. In this case, the projection matrix
𝑊 with 𝑃 െ 1 dimension allocates the data onto a new space,
commonly referred to as fisher vector, which is then used to
do aging prediction.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

235

3. T-Test based feature selection
In addition to the PCA and LDA based feature selection,

we have applied T-Test Analysis for dimensional reduction
and feature selection. T-Test analysis, in contrast to
traditional methodologies, seeks to minimize the data
dimension by identifying a limited collection of critical
features that may enable excellent classification and
prediction. To do this, we used a basic criterion on each
feature, with the premise that there is no interaction between
the features. In our method, we used a two-class problem,
with the null hypothesis ሺ𝐻଴ሻ stating that the means of two
populations are identical. i.e.; there exist no significant
differences between their means and hence signifies the fact
that both the features are almost similar. Since, the similar
features do not influence the prediction results significantly
and therefore such features can be discarded. On contrary,
the features having significant differences can affect
prediction and therefore are accepted for further processes.
In our work, we have accepted and considered the
hypothesis 𝐻ଵ. We used the T-Test on each feature, followed
by an analysis of the resulting P value (or the absolute values
of T-statistics) for each feature as a metric of how successful
it is in distinguishing the groups. Using the T-test for all
features, the important features were identified, which were
then used to conduct GA-based ELM for ARB classification
and software aging prediction. In our investigation, we used
software aging as the dependent variable, while other
features like ARB, Halstead metrics, McCube metrics, ARM,
and so on were used as independent variables.
Mathematically,

𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝐴𝑔𝑖𝑛𝑔
ൌ 𝐹ሺ𝐴𝑅𝐵,𝐴𝑅𝑀,𝐻𝑎𝑙𝑠𝑡𝑒𝑎𝑑,𝑀𝑐𝐶𝑢𝑏𝑒ሻ

(7)

D. Software Aging Prediction by Artificial Intelligence

Based Learning
A multivariate regression-based analysis was done after
conducting feature selection and choosing the data for aging
prediction. Understanding the fundamental drawbacks of
standard neural network methods, such as local minima and
convergence issues, an AGA-based ELM for aging
prediction has been created in this research. The suggested
ELM-based aging prediction method is described in the
following subsections.

1. Extreme Learning Machines
The number of hidden nodes increases as the neural

network's input variables and input layers rise. Growing the
number of hidden nodes necessitates additional weight
parameter estimates, lengthening the process of learning.
To address this issue, Huang et al. [33] introduced a new
learning scheme called Extreme learning Machine (ELM)
that with single-layered multi feed forward neural network
(SL-MFNN) facilitates better generalization performance.
An enhanced version is used by [10] for software reusability
has also motivates to use here also. ELM can provide high-

rate learning by selecting hidden nodes randomly and
estimating respective weights. Considering this robustness,
in our prediction model we have applied ELM algorithm as
a classifier. To perform SA prediction, ELM takes selected
features as the inputs and performs multivariate regression
to predict aging. Fig. 1 presents the schematic flow of the
ELM based aging prediction [10][33][35]. Selecting the
software metrics or the features, we have fed it as input to
the single hidden layer (with L hidden layers) multi-feed
forward neural network (SL-MFNN) with 𝑋 input.

Fig. 2. ECD-ELM for software aging prediction

As depicted in Fig. 2 for evolutionary computing

driven ELM (ECD-EML) the input 𝑋 ൌ
ሺ𝑗ଵ, 𝑗ଶ, … . . , 𝑗௠,𝑦ሻ denotes a vector with 𝑚 ൅ 1 features,
𝐺ሺ𝑎௜ , 𝑏௜ ,𝑋ሻ indicates the output of the 𝑖 th hidden neuron
where 𝑏௜ states the bias component of the 𝑖th hidden neuron,
and 𝑎௜ ൌ ൫𝑎௜ଵ,𝑎௜ଶ, … … ,𝑎௜௠,𝑎௜௬൯ refers the weight vector.
Similarly, 𝑎௜௦ሺ𝑠 ൌ 1,2, … … ,𝑚,𝑦ሻdenotes the connection
weight between the 𝑠 th input neuron and the 𝑖 th hidden
neuron. We used AGA, a very resilient and efficient
evolutionary computing approach, instead of traditional
analytical model-based weight and bias estimation. With
the above-mentioned ELM configuration (Fig. 2), the
output of the proposed SL-MFNN can be obtained as

𝑦ሺ𝑡 ൅ 𝑘ሻ ൌ 𝑓ሺ𝑋ሻ ൌ෍𝛽௜𝐺ሺ𝑎௜ , 𝑏௜ ,𝑋ሻ
௅

௜ୀଵ

where, 𝛽௜ ൌ ൫𝛽௜ଵ, … . . ,𝛽௜௡,𝛽௜௬ ൯
′
denotes the weight vector

connecting hidden layer and output layer. Similarly, 𝛽௜௞
represents the connection weight between 𝑖th hidden neuron
and the 𝑘 th output neuron. In case of additive hidden
neurons, 𝐺ሺ𝑎௜ , 𝑏௜ ,𝑋ሻcan also be represented as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

236

𝐺ሺ𝑎௜ , 𝑏௜ ,𝑋ሻ ൌ 𝑔ሺ𝑎௜
′𝑋 ൅ 𝑏௜ሻ (8)

where g: R→ R represents the activation function.
Unlike conventional analytical schemes for weight
estimation, where random weight vectors 𝑎௜ and bias
element 𝑏௜ are applied to model ELM [33][35], we have
applied GA optimization for optimal weight and bias
parameter estimation. The SL-MFNN with L hidden
neurons can approximate the N samples with zero error only
when with specific 𝛽௜, we get 𝑌௝ as,

𝑌௝ ൌ෍𝛽௜𝐺൫𝑎௜ , 𝑏௜ ,𝑋௝൯, 𝑗 ൌ 1,2, … … . ,𝑁

௅

௜ୀଵ

(9)

In generally, the standard ELM scheme uses an analytical
technique to update its weight factor; nevertheless,
calculating weights, especially for a large number of input
nodes, is extremely difficult. As a result, in this study, we
used ECD GA-based optimization to allow optimal weights
and bias factor estimates in ELM. ECD GA based ELM
parameter optimization is discussed in following sub-
sections.

2. Evolutionary computing driven ELM Learning Weight

Estimation

The selection of weight parameters plays significant
role in enabling efficient learning and prediction results. In
traditional ELM, particularly with analytical approach-
based learning scheme the parameters such as weights and
bias components are selected randomly to perform NN
learning. However, the random selection of these
parameters can’t be considered as an optimal solution for
efficient learning. Hence, the selection of the optimal
learning parameters can make prediction more accurate and
sufficient for decision process. With this motivation, in our
aging prediction model, we have applied a novel variant of
GA algorithm, called Adaptive GA (A-GA). In this case, A-
GA was used to determine the best weights and bias
parameters for an SL-MFNN-based ELM learning model.
The Genetic Algorithm is a multi-objective approach that
operates on the basis of human genetic behavior and the
preservation of the fittest concept. It is based on the human
evolution principle, which employs the evolutionary
notions of natural processes to discover the near-optimal
solution with the least amount of computing effort and
complexity. The concept that selection of a better
population or chromosome for reproduction can enable
better next generation with better features and survivability.
In function, GA algorithm at first generates random
population, where each population represents a solution.
GA assesses the fitness value of each chromosome while
generating the population, with the greater fitness value of
the chromosome indicating a higher selection likelihood. In
our proposed model, root mean square error (RMSE) (eq.
(17)) has been utilized to assess the fitness value of each

chromosome, with the goal of reducing RMSE repeatedly.
GA introduces operators based on the collected fitness
values such as crossover probability ሺ𝑃௖ሻ and mutation
probability ሺ𝑃௠ሻ to find the best solution. Using these
operations, the population creation and selection process is
repeated until the stopping requirement is reached. Unlike
classic GA-based optimization, an adaptive GA (A-GA)
method has been devised in this study, which constantly
adjusts the genetic activator to ease the problem of local
minima and convergence.

Consider the predefined input nodes (or neurons),
hidden nodes, output nodes SL-MFNN model be𝑖, ℎ and𝑜.
We have selected 32 features as the input to the ELM model
for ARBs classification and bug prediction, after
completing the dimensions reduction and attributes features
selection. Here, in our ELM model there are 32 input
neurons or nodes, one output node and 𝑛 hidden nodes,
where 𝑛 can be in 𝑛 to 2௡. In our ELM model, the value of
𝑛 is 47, and total weights (N) to be estimated for SL-MFNN
based EML model would be:

𝑁 ൌ ሺ𝑖 ൅ 𝑂ሻ ∗ ℎ ൌ 1551 (10)

The estimation of bias parameters is also an intricate task.
In traditional ELM models, these parameters (weights and
biasing factors are found, which may give inaccurate results
for decision process. Therefore, for handling this situation,
our proposed A-GA algorithm assists ELM model to select
optimal weight and bias parameters for ELM learning and
ARBs prediction or aging detection. A brief of A-GA
implementation for ELM learning parameter calculation is
given as follows:
Let gene length is 𝑙, then chromosome length 𝐿஼௛ will be

𝐿஼௛ ൌ 𝑁 ∗ 𝑙 ൌ ሺ𝑖 ൅ 𝑂ሻ ∗ ℎ ∗ 𝑙 (11)
In our model, we have estimated weights (𝑎௜) using
following conditions.

𝑎௜ ൌ

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑖𝑓 0 ൑ 𝑥௜௟ାଵ ൏ 5

െ
𝑥௜௟ାଶ∗10௟ିଶ ൅ 𝑥௜௟ାଷ∗10௟ିଷ ൅⋯൅ 𝑥ሺ௜ାଵሻ௟

10௟ିଶ
𝑖𝑓 5 ൏ൌ 𝑥௜௟ା௟ ൏ൌ 9

൅
𝑥௜௟ାଶ∗10௟ିଶ ൅ 𝑥௜௟ାଷ∗10௟ିଷ ൅⋯൅ 𝑥ሺ௜ାଵሻ௟

10௟ିଶ

(12)

In our proposed ECD-ELM scheme, the genetic parameters
(𝑃௖ and𝑃௠) are updated dynamically (13).

ሺ𝑃௖ሻ௞ାଵ ൌ ሺ𝑃௖ሻ௞ െ
𝐾ଵ ∗ 𝑛

7

ሺ𝑃௠ሻ௞ାଵ ൌ ሺ𝑃௠ሻ௞ െ
𝐾ଶ ∗ 𝑛

7

(13)

where ሺ𝑃௖ሻ௞ାଵ and ሺ𝑃௠ሻ௞ାଵ signifies the crossover and
mutation probabilities, respectively. The variables ሺ𝑃௖ሻ௞
and ሺ𝑃௠ሻ௞ represent the current crossover and mutation
probability, while 𝐾ଵ and 𝐾ଶ are the positive constant (𝐾ଵ ൌ
0.01 and 𝐾ଶ ൌ 0.001ሻ and 𝑛 is number of weights having
similar fitness value. In ECD-EML, A-GA continues till
95% of chromosomes are having similar fitness value. As

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

237

discussed above, in our model, inverse RMSE as the
unbiassed function, where we are purposeful to reduce
RMSE iteratively to achieve optimal solution. Now,
rewriting equation (9), we get

𝑌 ൌ 𝛽𝐻 (14)

where

Y ൌ ቎
Yଵ୘

⋮
Y୒
୘
቏

୒ൈ୑

, β ൌ ቎
βଵ୘

⋮
β୐
୘
቏

୐ൈ୑

and H ൌ ൥
Gሺa୧, b୧, Xଵሻ … Gሺa୐, b୐, Xଵሻ

⋮ … ⋮
Gሺa୧, b୧, X୒ሻ … Gሺa୐, b୐, X୒ሻ

൩

୒ൈ୐

Once retrieving the learning parameters (i.e., weights

and biasing factors) using A-GA, the ELM model with SL-
MFNN configuration has been executed for learning. To
perform learning we have applied an additional factor called
minimum norm least-squares solution ሺ𝛽∗ሻ where we
intend to reduce𝛽∗. Mathematically, 𝛽∗ is presented as

𝛽∗ ൌ 𝐻ା𝑌 (15)

where 𝐻ା represents the inverse of matrix H. The overall
ELM training process for ARB detection and aging
prediction is presented as follows:

Phase-1 Assign L as hidden layer’s number,
Phase-2 Assign Activation function 𝑔ሺሻ
Phase-3 for i =1, 2... L,
Apply A-GA Based bias (𝑏௜) and weight (𝑎௜) vector
estimation
Phase-4 Put the estimated vectors to model ELM and
calculate the hidden layer (H and𝐻ା) output,
Phase-5 Estimate the vector 𝛽* as weight output using (15).
Phase-6 Estimate output for each sample.
For any input sample, the output 𝑦∗ has been estimated as:

𝑦∗ ൌ෍𝛽௜
∗

௅

௜ୀଵ

𝑔ሺ𝑎௜𝑥 ൅ 𝑏௜ሻ
(16)

Phase-7 Estimate Root means square error (RMSE) as

𝑅𝑀𝑆𝐸 ൌ ඨ∑ ൫𝑦ሺ𝑖ሻ െ 𝑦ොሺ𝑖ሻ൯
ଶே

௜ୀଵ

𝑁

(17)

In eq. (17), 𝑦ሺ𝑖ሻ denotes the targeted output, while 𝑦ොሺ𝑖ሻ
denotes the outputs. RMSE indicator has been used for
aging prediction in this research. In contrast to the ELM and
AGA-ELM, we used a linear kernel function-based support
vector machine (SVM) in our study model for ARB
categorization and aging prediction. Thus, performing
multivariate regression between ARBs and aging causing
factors, we have obtained confusion metrics, that is further
employed to examine aging prediction efficiency.

4. Results and Discussion

Evolutionary computing driven software aging
prediction model was developed in this research work. The
hypothesis that the continuous accumulation of the bugs
either caused by design complexity, memory leak, usages
patterns, etc results into software aging, has been
considered for study. To examine competence of the AGA-
ELM based aging prediction model, at first SAR benchmark
data has been retrieved from two open-source project, Linux
Kernel and MySQL DBMS. Retrieving software metrics
from these open access data, pre-processing is done that
reduces data imbalance issue. The implementation of
dimensional reduction and feature selection schemes such
as PCA, LDA and T-Test analysis has also been done,
which has been followed by proposed AGA-ELM based
aging prediction. To test the performance AGA-ELM based
aging prediction model, two other classification models
including traditional ELM and SVM have been applied. The
overall software aging prediction model is established using
MATLAB R2015a software.

The confusion metrics were created to evaluate the
effectiveness of the suggested aging prediction model. The
four key variable true positive (TP), false positive (FP),
false negative (FN) and true negative (TN) are found and
then used to estimate key performance parameter like
software aging prediction accuracy, precision, F-Measure,
recall and G-Mean etc.

Table 1 Results for MySQL-DBMS SAR data set

D
at

a

F
ea

tu
re

S

el
ec

ti
on

A
gi

n
g

P
re

d
ic

ti
on

T

ec
h

n
iq

u
e

A
cc

u
ra

cy

P
re

ci
si

on

F
-M

ea
su

re

R
ec

al
l

MySQL
DBMS

PCA

SVM 0.829 0.826 0.997 0.839
ELM 0.849 0.850 0.836 0.823
AGA-
ELM

0.911 0.926 0.961 1.000

LDA

SVM 0.794 0.897 0.799 0.721
ELM 0.867 0.888 0.827 0.775
AGA-
ELM

0.944 0.923 0.876 0.843

T-
Test

SVM 0.860 0.852 0.865 0.879
ELM 0.879 0.861 0.834 0.809
AGA-
ELM

0.930 0.913 0.891 0.871

Exploring results in Table 1, we find that with MySQL

DBMS SAR data, AGA-ELM outperforms traditional ELM
and SVM based aging prediction approaches. Results depict
that AGA-ELM gives 94.4% prediction accuracy with LDA
feature selection, and is followed by 93.0% accuracy by the
same classifier with T-Test analysis based selected features.
In addition, AGA-ELM shows 92.3% aging prediction
precision with LDA features; however, with PCA it has
exhibited slightly elevated precision (92.6%). The proposed
AGA-ELM has outperformed other prediction schemes in

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

238

terms of F-Measure (96.1%). Similarly, with Linux-Kernel
SAR data (Table-2), AGA-ELM has exhibited better aging
prediction accuracy (91.3%) with LDA features, precision
(92.6%) with T-Test based features and the recall of 96.6%
with T-Test features. The relatively better precision and
recall with T-Test features has reflected F-measure of
93.0%, which is slightly lower than LDA features (93.6%).
Thus, observing overall research outcomes, we find the
suggested evolutional computing driven AGA-ELM can be
a useful classifier for aging prediction, while LDA can be
selected as a feature selection measure for accurate aging
prediction based on software metrics. However, T-Test
features may be suggested because of its simple and easy to
implement feature selection approach.

Table 2 Results for Linux-Kernel SAR data set

D
at

a

F
ea

tu
re

S

el
ec

ti
on

A
gi

n
g

P
re

d
ic

ti
on

T

ec
h

n
iq

u
e

A
cc

u
ra

cy

P
re

ci
si

on

F
-M

ea
su

re

R
ec

al
l

Linux
Kernel

PCA

SVM 0.813 0.867 0.858 0.850

ELM 0.837 0.881 0.850 0.821
AGA-
ELM

0.899 0.901 0.895 0.889

LDA

SVM 0.824 0.814 0.797 0.782
ELM 0.887 0.892 0.850 0.812
AGA-
ELM

0.913 0.923 0.936 0.941

T-Test

SVM 0.843 0.810 0.825 0.840
ELM 0.851 0.821 0.867 0.918
AGA-
ELM

0.889 0.926 0.930 0.966

Fig. 3 Software Aging Prediction (SAP) accuracy for

MySQL-DBMS Project SAR data

Fig. 4 SAP Precision for MySQL-DBMS Project SAR data

Fig. 5 SAP Recall for MySQL-DBMS Project SAR data

Fig. 6 SAP F-Measure for MySQL-DBMS Project SAR data

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

239

Fig. 7 SAP Accuracy for Linux-Kernel Project SAR data

Fig. 8 SAP Precision for Linux-Kernel Project SAR data

Fig. 9 SAP Recall for Linux-Kernel Project SAR data

Fig. 10 SAP F-Measure for Linux-Kernel Project SAR data

5. Conclusion

The rapid development of software technologies and
services for common decision-making procedures for
scientific and general utility situations has become an
intrinsic aspect of human life and existence. However, the
influence of increasing development and design complexity,
operational circumstances, and usage patterns on software
aging cannot be overlooked. Software aging results into
degraded performance and unexpected failure that
eventually results into huge losses regarding service quality,
reliability, cost factors or even loss of life. To avoid these,
the earlier prediction of software aging is quite necessary.
In this paper, evolutionary computing driven software aging
prediction scheme was suggested, where to enable optimal
prediction the multilevel optimization measures were
applied. Here, the deployment of outlier removal and data
normalization has facilitated the optimal balanced metrics
data for aging prediction in object-oriented software.
Considering realistic applications where there can be huge
data elements or features, to strengthen performance the use
of dimensional reduction and feature selection methods
such as PCA, LDA, and T-Test analysis are done. Results
obtained with standard Software Aging and Rejuvenation
(SAR) datasets, affirm that LDA based feature selection
enables better prediction. T-Test implementation, on the
other hand, can be a useful measure for enabling rapid and
precise aging prediction. According to the deployment of
classifiers such as SVM (with linear kernel function),
standard ELM, and AGA-ELM, AGA-ELM outperforms
other classifiers. This is because the learning process has
been enhanced, which was reinforced by applying the
appropriate choices for weight and bias parameter. The
combinatorial performance confirms that LDA, which
frequently provides superior features for subsequent
classification when work with AGA-ELM, outperforms
other machine and supervised learning schemes, including
generic ELM, SVM, and even data mining-based aging
prediction methods.

References

[1] S. L. Pfleeger and J. M. Atlee, Software Engineering: Theory
and Practice, Prentice Hall; 4 edition, (2009)

[2] Ian Sommerville, Software Engineering, Pearson; 9e (2010)
[3] A. Bovenzi, D. Cotroneo, R. Pietrantuono, S. Russo,

Workload Characterization for Software Aging Analysis, in:
Proc. IEEE Intl. Symp. On Software Reliability Engineering,
pp. 240-249 (2011)

[4] Y. Huang, C. Kintala, N. Kolettis, N. Fulton, Software
Rejuvenation: Analysis, Module and Applications, in: Proc.
Intl. Symp. on Fault-Tolerant Computing, pp. 381-390, (1995)

[5] M. Balakrishnan, A. Puliaffito, K. Trivedi, I. Viniotisz,
Buffer Losses vs. Deadline Violations for ABR Traffic in an
ATM Switch: A Computational Approach,
Telecommunication Systems 7 (1), 105-123, (1997)

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

240

[6] E. Marshall, Fatal Error: How Patriot Overlooked a Scud,
Science 255 (5050), 1347, (1992)

[7] M. Grottke, L. Li, K. Vaidyanathan, K. S. Trivedi, Analysis
of Software Aging in a Web Server, IEEE Trans. on
Reliability 55 (3) , 411-420, (2006)

[8] M. Grottke, R. Matias, K. Trivedi, The Fundamentals of
Software Aging, in: Proc. 1st IEEE Intl. Workshop on
Software Aging and Rejuvenation, pp. 1-6, (2008)

[9] Ahamad S., Study of software aging issues and prevention
solutions. International Journal of Computer Science and
Information Security, Aug 1;14(8):307-313, (2016)

[10] Padhy, N., Singh, R. P., & Satapathy, S. C. Enhanced
evolutionary computing based artificial intelligence model
for web-solutions software reusability estimation. Cluster
Computing, 22(4), 9787-9804, (2019).

[11] Kaur, H., Ahamad, S., & Verma, G. N., Elements of Legacy
Program Complexity. International Journal of Research in
Engineering and Technology, 4(3), 501-505, (2015)

[12] M. Grottke, L. Li, K. Vaidyanathan, K. S. Trivedi, Analysis
of Software Aging in a Web Server, IEEE Trans. on
Reliability 55 (3), 411-420. (2006)

[13] D. Cotroneo, S. Orlando, R. Pietrantuono, S. Russo, A
Measurement based Aging Analysis of the JVM, Software
Testing, Verification and Reliability. doi:10.1002/stvr.467.

[14] D. Cotroneo, R. Natella, R. Pietrantuono, S. Russo, Software
Aging Analysis of the Linux Operating System, in: Proc.
IEEE 21st Intl. Symp. on Software Reliability Engineering,
pp. 71-80. (2010)

[15] Grottke, M., K. Trivedi, Software faults, software aging and
software rejuvenation, Journal of the Reliability Engineering
Association of Japan 27 (7), 425-438. (2005)

[16] S. Garg, A. Pulia_to, K. S. Trivedi, Analysis of Software
Rejuvenation using Markov Regenerative Stochastic Petri
Net, in: Proc. 6th Intl. Symp. on Software Reliability
Engineering, pp. 180-187. (1995)

[17] K. J. Cassidy, K. C. Gross, A. Malekpour, Advanced Pattern
Recognition for Detection of Complex Software Aging
Phenomena in Online Transaction Processing Servers, in:
Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and
Networks, pp. 478-482. (2002)

[18] K. Vaidyanathan, K. S. Trivedi, A Measurement-Based
Model for Estimation of Resource Exhaustion in Operational
Software Systems, in: Proc. 10th Intl. Symp. on Software
Reliability Engineering, pp.84-93. (1999)

[19] W. Li and S. Henry, “Maintenance metrics for the Object-
Oriented paradigm,” in Proceedings of First International
Software Metrics Symposium, pp. 52–60, (1993)

[20] M. Grottke, K. Trivedi, Fighting Bugs: Remove, Retry,
Replicate, and Rejuvenate, IEEE Computer 40 (2), 107-109.
(2007)

[21] R. Matias, P. J. Freitas Filho, An Experimental Study on
Software Aging and Rejuvenation in Web Servers, in: Proc.
30th Annual Intl. Computer Software and Applications Conf.,
pp. 189-196, (2006)

[22] Chug, A., Dhall, S., "Software defect prediction using
supervised learning algorithm and unsupervised learning
algorithm, "Confluence 2013: The Next Generation
Information Technology Summit, pp.173-179, 26-27 Sept.
(2013).

[23] F. B. E. Abreu, R. Carapuca, “Object-Oriented software
engineering: Measuring and controlling the development

process,” in Proceedings of the 4th International Conference
on Software Quality, vol. 186, (1994)

[24] B. K. Kang and J. M. Bieman, “Cohesion and reuse in an
Object-Oriented system,” in Proceedings of the ACM
SIGSOFT Symposium on software reusability, pp. 259–262,
Seattle, March (1995)

[25] L. C. Briand, J. Wust, J. W. Daly, D. V. Porter, “Exploring
the relationships between design measures and software
quality in Object-Oriented systems,” The Journal of Systems
and Software, vol. 51, pp. 245–273, (2000)

[26] M. Halstead, Elements of Software Science. New York, USA:
Elsevier Science, (1977)

[27] B. Henderson-Sellers, Software Metrics. Prentice-Hall, (1996)
[28] T. J. McCabe, “A complexity measure,” IEEE Transactions

on Software Engineering, vol. 2, pp. 308–320, (1976)
[29] D. P. Tegarden, S. D. Sheetz, D. E. Monarchi, “A software

complexity model of Object-Oriented systems,” Decision
Support Systems, vol. 13, no. 3, pp. 241–262, (1995)

[30] M. Lorenz and J. Kidd, Object-Oriented Software Metrics. NJ,
Englewood: Prentice-Hall, (1994)

[31] S. R. Chidamber and C. F. Kemerer, “A metrics suite for
Object-Oriented design,” IEEE Transactions on Software
Engineering on June 1994, vol. 20, pp. 476–493, (1994)

[32] http://openscience.us/repo/software-aging/
[33] Huang GB, Zhu QY, Siew CK. Extreme Learning Machine:

Theory and Applications. Neuro computing, 70(1-3): 489-
501, (2006)

[34] Amir Ahmad, predicting software aging related bugs from
imbalanced datasets by using data mining techniques, IOSR
Journal of Computer Engineering (IOSR-JCE), Volume 18,
Issue 1, Ver. III, PP 27-35. (2016)

[35] Xiaozhi Du, Huimin Lu, Gang Liu, Software Aging
Prediction based on Extreme Learning Machine,
TELKOMNIKA, Vol.11, No.11, pp. 6547-6555 (2013)

Dr. Shahanawaj Ahamad is an active
educator and researcher in the field of
Computer Science and Software
Engineering with 17 years of experience.
He completed 3 master’s qualifications
followed by a Ph.D. degree in Computer
Science specializing in Software
Engineering; contributed to publish 50
research articles and 3 books. He is

designated as Asst. Professor and Program Coordinator of
Software Engineering in College of Computer Science and
Engineering, University of Hail, Saudi Arabia. He has been
contributing significantly to various academic and administrative
responsibilities, and a member of several scientific and research
organizations including fellowship of British Computer Society,
UK. His research interest includes software engineering, software
aging and program analysis, application of machine learning, IoT
and cloud computing.

