
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

406

Manuscript received February 5, 2022
Manuscript revised February 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.2.52

Hazelcast Vs. Ignite: Opportunities for Java Programmers

Bartkov Maxim 1, Katkova Tetiana 2, Kruglyk Vladyslav S.3, Murtaziev Ernest G.4, Kotova Olha V.5

1RooX Solutions Java Team Lead, Khakov, Ukraine, 1233566789b@gmail.com
2University of Customs and Finance, Dnipro, UkraineDepartment of Innovative Technologies,

Department of Cyber security, V.Vernadsky street 2/4, Dnipro, Ukraine, 49000, takit777@gmail.com
3Bogdan Khmelnitsky Melitopol State Pedagogical University, Faculty of Informatics, Mathematics and Economics, Department of Informatics and

Cybernetics, Hetmanska Street, 20, Melitopol, Zaporizhia Region, Ukraine, 72300, kryglikvlad@gmail.com
4 Bogdan Khmelnitsky Melitopol State Pedagogical University, Faculty of Informatics, Mathematics and Economics, Department of Mathematics and

Physics, Hetmanska Street, 20, Melitopol, Zaporizhia Region, Ukraine, 72300, ernest_gaf@mail.ru
 5Kherson State University, Faculty of Computer Science, Physics and Mathematics, Department of Algebra, Geometry and Mathematical Analysis,

University Street, 27, Kherson, Kherson region, Ukraine, 73000, olga-kotova@ukr.net

Summary
Storing large amounts of data has always been a big problem
from the beginning of computing history. Big Data has made
huge advancements in improving business processes by finding
the customers’ needs using prediction models based on web and
social media search. The main purpose of big data stream
processing frameworks is to allow programmers to directly query
the continuous stream without dealing with the lower-level
mechanisms. In other words, programmers write the code to
process streams using these runtime libraries (also called Stream
Processing Engines). This is achieved by taking large volumes of
data and analyzing them using Big Data frameworks. Streaming
platforms are an emerging technology that deals with continuous
streams of data. There are several streaming platforms of Big
Data freely available on the Internet. However, selecting the most
appropriate one is not easy for programmers. In this paper, we
present a detailed description of two of the state-of-the-art and
most popular streaming frameworks: Apache Ignite and
Hazelcast. In addition, the performance of these frameworks is
compared using selected attributes. Different types of databases
are used in common to store the data. To process the data in real-
time continuously, data streaming technologies are developed.
With the development of today's large-scale distributed
applications handling tons of data, these databases are not viable.
Consequently, Big Data is introduced to store, process, and
analyze data at a fast speed and also to deal with big users and
data growth day by day.

Keywords: Big Data, Stream processing framework, IMDG,
Hazelcast, Ignite.

1. Introduction

Storing large amounts of data has always been a big
problem from the beginning of computing history.
Consequently, several databases and architectures were
invented to store data, in which database management
systems, relational databases (RDBMS), and similar
architecture models are commonly used [1]. Relational
databases (such as SQL as a standard database) which got
popular in the 1980s are still in use today. Although
relational databases deal with large amounts of structured
data, they cannot fulfill the requirements of the present

day’s software applications such as scalability, cloud
storage, big users, and big data [1, 2]. To eliminate the
drawbacks of traditional models and to cater to the needs
of new applications, the concept of Big Data was
introduced in the 90s that became popular in the 2000s.
Big Data is related to storing, collecting, analyzing, and
processing large volumes of stream data (structure,
unstructured) at high speed [2, 3]. The data is collected
from different sources: web pages, social media, and the
Internet of Things [4]. Other features of Big Data are
dealing with thousands of users at a time (hence termed as
Big user), storing data on the cloud, the large volume of
data, high speed, variety of data, maintaining the quality of
data [1, 2, 5].

Big Data is utilized in other fields such as Artificial
Intelligence (AI), Machine Learning (ML) and Internet of
Things (IoT) to analyze, predict and make intelligent
decisions on large volumes of data. AI is impractical
without data and analyses on data are not possible without
AI. The combination of AI and Big Data opened new
application areas such as, early prediction of fire risk in
smart cities [6], air pollution monitoring [7], keeping track
of health using mobile apps [8], etc. Likewise, Machine
Learning allows computers to automatically learn from the
data which is not programmed; stores a bulk of data in Big
Data and makes decisions based on the data [4, 9]. Google
and Netflix are simple examples of this category that
predict what the people want to search, based on the
existing search datasets. Similarly, the prediction of
cardiovascular risks in a health care system based on the
existing datasets is another example [9]. Another source of
data collection for Big Data is IoT, which connects
physical devices with the Internet [4]. According to a
study in the year 2020, billions of IoT devices are
connected with the Internet, generating about a trillion of
data in Big Data [10]. Handling this tremendous amount of
data, using the traditional methods and techniques, is not
possible for the programmers.

To make the life of a programmer easy, several
technological frameworks are developed each with a
distinct purpose. These frameworks provide tools, classes,

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

407

libraries, and functions to programmers for easy
development of their application(s). In addition, these
frameworks provide an abstraction to the application
programs by interacting directly with the input/output
devices, system software, network connections, and so on.
Some examples of famous frameworks include .NET,
Spring, Hadoop, etc. The .NET framework from Microsoft
provides classes and libraries for developing standard
window-based applications. Similarly, the Spring
framework provides standards for developing Java
applications. Some frameworks provide guidelines, for
example, the resource description framework describes
how the internet resources can be retrieved by the rules of
the World Wide Web. Other frameworks are used to
perform specific tasks, e.g., Hadoop, developed by Apache
software foundation, is open access distributed framework
used for storing and processing Big Data. As selecting the
right technological framework impacts the application
development in several ways, some guidelines for the
programmers are needed.

With the rapid generation of a huge amount of data, it is
now necessary to process the data in stream mode instead
of batches [11]. To this end, specific frameworks are also
available which facilitate the processing of data streams in
Big Data. In fact, frameworks are available for each of the
phases (which are data ingestion, data processing, and
analysis and evaluation) involved in the analysis of data
streams. Some well-known data streaming frameworks are
Flink, Storm, Kafka, and Samza (all developed by Apache).
Selecting the most suitable framework from this set, which
can help a Java programmer to write code to process
streaming data is very challenging. Towards this direction,
some comparisons of the existing frameworks can be
found in the literature, such as between Spark and Flink
[12], and between Spark, Storm, and Samza [13], etc.
However, these comparisons are either considering only
one property during comparison [12] or considering a
particular use case [13] or benchmark for comparison.
More importantly, a comparison of the two most famous
frameworks i.e., Hazelcast and Ignite, is not available to
the best of the authors’ knowledge.

To fill this gap, this paper provides insights into these
two frameworks for the guidance of Java programmers.
Apache Ignite and Hazelcast are selected in this work
because they are free from scalability, fault tolerance, and
latency issues, which are present in other streaming
platforms. The comparison between these two frameworks
would not only help individual Java programmers to
differentiate them and select the most appropriate but
would also allow companies/businesses to know about
them and use them to boost up their applications. This
paper is organized as follows: the famous streaming
frameworks used in big data are discussed briefly in the
next section to set the background, along with the
descriptions of Hazelcast and Ignite. Section III provides

the related work regarding the comparison of big data
streaming frameworks. The comparison between Apache
Ignite and Hazelcast based on the selected attributes is
provided in Section IV. The paper is concluded in the last
Section V.

2. Big Data streaming frameworks

The main purpose of big data stream processing

frameworks is to allow programmers to directly query the
continuous stream without dealing with the lower-level
mechanisms. In other words, programmers write the code
to process streams using these runtime libraries (also
called Stream Processing Engines).

2.1. Popular Frameworks from Apache

Apache Hadoop is an environment that can use a simple

programming model to process large data sets distributed
among groups of computers. It is designed to scale from a
single server to thousands of machines, each machine
providing local computing and storage. It is based on the
popular Map Reduce model and is the key to developing
robust, scalable, and distributed software applications.
Apache Spark is another very popular big data framework,
and its demand is growing every day. Spark is a fast data
memory handler. The programmers need to use a smooth
and expressive development API to enable data workers to
efficiently run streaming, machine learning, or SQL
workloads that require fast iterative access to data sets.

Apache Hive is a big data analysis framework
developed by Facebook that combines the scalability of
one of the most popular big data frameworks. It can be
considered as a data processing tool for Hadoop. It is
basically a query tool for HDFS, and its query syntax is
almost the same as traditional SQL. Apache Hive is open-
source software that programmers can use to analyze large
data sets in Hadoop. It is an engine that converts SQL
queries into MapReduce task chains. Apache Flink is
another powerful open-source distributed big data stream
processing framework in which processing is performed in
batches. It is the successor of Hadoop and Spark. It is the
next-generation big data engine for stream processing.
Unlike Spark, (which is not a real threading framework but
just an improvisation), Apache Flink is a real threading
engine with additional capabilities for processing batches,
processing graphs, and tables, and running machine
learning algorithms. One of the limitations of this
framework is that it doesn’t provide scalability [14].

Apache Kafka is another open-source framework that
provides scalability and fault tolerance. Compressing and
decompressing data in Apache Kafka decrease its
performance and output [14]. Apache Samza processes the
messages in one stream and produces the output on
another stream. It combines the advantages of Kafka and

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

408

YORN, as it uses Kafka’s architecture and messaging
system and YORN’s resource negotiation. It offers reliable
persistency due to replicated storage and it is highly
available, easy, and inexpensive (as it follows
publish/subscribe model). However, it does not support
low latency, fault tolerance, languages other than JVM,
and exactly-once semantics [14].

Apache Storm is designed for real-time stream
processing, just like Hadoop is used for batch processing.
The framework focuses on processing large data
streams in real-time. This implies that programmers
can create applications that are very sensitive to the
latest data and require to react within seconds. For
example, finding the latest hot topics on Twitter or
following payment gateway failures. Apache Storm
is suitable for real-time processing as it provides
results with very low latency. Other main features of
Storm are scalability and rapid recovery from
downtime. In addition, it is easy to set up and operate
[14].

2.2. Apache Ignite

Apache Ignite is distributed in-memory database that
processes big data. An In-Memory Database (IMDB) is
different from traditional databases as it stores data in the
main memory rather than storing it in the disk. As main
memory is volatile so the data is also stored on the disk to
minimize the risk of data loss [15]. Apache Ignite provides
several advantages to an application over previous
frameworks such as increased memory capacity and
introduction of GPU for fast computing and performance.
Apache Ignite is also suitable for transactional operations
[16].

In-Memory Data Grid (IMDG) copies the disk data,
such as RDBMS, etc. in the main memory.

IMDG works on top of the databases that are used to
read and write through cache. It is installed on a virtual
machine and has cloud storage. Additionally, it can also
deal with the IoT and machine learning workload.
Furthermore, the grid supports various API and key values.
Applications do read and write operations from the grid
and then the grid changes the data value accordingly [17-
19]. To increase the performance of IMDG, Apache Ignite
is placed between the database layer and application layer
as shown in Fig. 1. Through it, multiple APIs and
distributed databases can be used [17].

Fig. 1. The architecture of Apache Ignite

Apache Ignite is a memory platform that offers the
following advantages:
 It supports both IMDB and IMDG.
 It provides the data loading and data streaming

capabilities through which a finite amount of data can be
transferred in a scalable and fault-tolerant manner.
 It can combine with other stream technologies

and frameworks including Kafka, Camel, etc. to offer
more advanced features [20].

2.3. Hazelcast

Hazelcast is an open-source distributed and cloud-
native1 IMDG used for data management and application
execution. This memory computing platform provides high
speed and scalability. This is achieved by connecting
several devices through their main memories and
processors so that data structures such as Map, Queue, etc.
can be shared, and parallelized workloads can run [21].
Although Hazelcast is written in Java language, it is
lightweight, stored as a JAR file, and doesn’t depend on
any external file. Due to its significance, it is used by
many well-known companies, including Platform,
Hepsiburada, Infrastructure, Groww, and others. The
architecture of IMDG Hazelcast, shown in Fig. 2,
describes how devices or computers are connected in a
cluster and can view and share the data including maps,

1 https://github.com/hazelcast/hazelcast

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

409

queue, etc. on its center.

Fig. 2. Detailed Architecture of IMDG Hazelcast

The data and their data types (int, float, double, etc.)

are stored in IMDG in the form of an object and these
are invoked as variables in application [22]. There
are also some drawbacks of IMDG Hazelcast, for
example, it has limited memory space, does not deal
with large volumes of data, damages the data when
the system fails, and hence it is not reliable in all cases
[23]. To overcome these weaknesses Hazel Jet 2 is
introduced that treat a large amount of data with low
latency. Overall, Hazalcast has overcome the limitations of
Apache Ignite by having multiple threads through which it
deals with any type of CPU core, it gives an infinite
number of maps and cache to each cluster, provides
distributed environment [24]. In addition, Hazalcast
provides the following benefits to Java programmers:
 Store data up to a terabyte in Java without

exchanging the interface.
 Established connection of Java client with the

Hazelcast cluster.
 Each cluster supports unlimited maps and caches,

and all available CPU cores can be used.
 The cluster can be accessed from any JVM

language.
 Easy to import the Hazelcast in Java programs

just like other libraries, because it is written in Java [25,
26].

3. Related Work

In this section, certain research works providing the

comparison of Bid Data streaming platforms are discussed.
For instance, a comparison on different big data streaming
platforms such as Apache Kafka, Apache Samza, Apache
Spark, and Apache Storm based on their features is
presented in [27]. The study includes the detailed
description, limitations, and advantages of these
frameworks, to help companies and businesses in selecting
the best platform for data flow. Similarly, the

2 https://github.com/hazelcast/hazelcast-jet

technological frameworks are categorized according to the
data processing and data ingestion phases of big data in
[28]. The study categorized Kafka, Flume, Nifi as data
ingestion frameworks and Spark structure, spark streaming,
Strom, Flink, Samza, Apex, Beam as data processing
frameworks. The study also compared their features based
on performance and latency. Another comparison of big
data frameworks such as Hadoop, Spark, Flink, Storm, and
Samza is based on different features like programming
languages used, data processing mode, etc. [29]. The
comparison shows that Flink is more reliable among all
these frameworks because it is fault-tolerant and supports
data processing as well as batch processing.

Likewise, Hadoop, Spark, Flink, and Storm are
compared based on some performance measures i.e., CPU
consumption, latency, throughput, Execution time, and
fault tolerance [30]. On the other side, a survey paper
compares the big data hardware and software platforms
based on scalability, real-time processing, fault tolerance,
and data size [31]. However, most of these mentioned
works are survey papers [28-31], each comparing Big Data
frameworks using certain attributes. More importantly, we
cannot find and hence conclude that no work has been
done on the comparison of Apache Ignite and Hazelcast
before. To fill this gap, we have performed a comparison
between Apache Ignite and Hazelcast, in this paper.

4. The Comparison

Apache Ignite is widely used around the world and
provides the capability of advanced SQL queries and
indexing. The well-known alternative of Apache Ignite is
Hazelcast. Hazelcast supports multithreading and deals
with large amounts of data with low latency. According to
Eliana Fernandes [27], the streaming platforms discussed
above have common problems such as scalability, and
fault tolerance, etc. Whereas Hazelcast and Apache Ignite
have excellent scalability and fault tolerance
characteristics. This is why these two are selected and
compared in this paper so that organizations, businesses,
and individuals can easily select the best between them,
which suits their requirements. In this work, the following
attributes are taken into account for the comparison of
Apache Ignite and Hazelcast.

Distributed Network: It refers to the ability of the
framework to spread the data, software applications on
more than one computer in the network.

Scalability: It is the ability to increase the number of
nodes or computers and utilizing the resources to the
number of nodes while maintaining the quality of the
system.

1. Fastest speed: This allows the application to do
complex transactions in milliseconds or sub-millisecond.

2. Backup Recovery: When any disaster happens
then the framework can take automatic backup of all data.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

410

3. Non-proprietary software: The software is
easily accessible by the user and has the facility for
the user to use, and study.

4. Fault tolerance: When a node fails due to any
reason then it automatically handles the fault by creating
another node and dividing the workload.

5. Cloud storage: The framework allows the
applications to store data on the Internet using cloud
storage. Cloud storage gives a service to operate and
manage data that is free of cost.

6. SQL queries support: It means the framework
allows the applications to retrieve, insert data and easily do
transactions in the data using SQL supported queries.

7. In-memory storage Transparency: The framework
automatically saves the data in the memory without giving
any knowledge to the user.

8. Multithreading architecture: This means that
more than one thread can execute at a time with any type
of CPU core.

Based on the above-selected attributes, the two
streaming frameworks are compared and the results are
shown in Table 1.

Table 1: Comparison of Hazelcast Vs apache ignite

No. Elements Hazelcast Apache Ignite

1.
Distributed
network

2. Scalability

3. Fastest speed

4. Backup recovery

5.
Non-proprietary
software

6. Fault tolerance

7. Cloud storage

8.
SQL query
support

SQL
queries
language

ANSI 99 queries

9.
In-memory
storage
Transparency

10.
Multithreading
architecture

Do not use equations and figures here. The comparison

showed that both Hazelcast and Apache Ignite have some
common features such as distributed network, scalability,
in-memory storage, backup recovery, fault tolerance, and
non-proprietary software. But Apache ignite is faster than
the Hazelcast in performing transactions of data flow.
However, Hazelcast has some additional features, such as
cloud storage and multi-threading architecture, which
make it more valuable. To conclude, for Java programmers
who care about performance, read and write speed, and

want to ensure that data is saved correctly, using Hazelcast
as a data grid would be very useful and permanent.

5. Conclusion

Different types of databases are used in common to store
the data. With the development of today's large-scale
distributed applications handling tons of data, these
databases are not viable. Consequently, Big Data is
introduced to store, process, and analyze data at a fast
speed and also to deal with big users and data growth day
by day. To process the data in real-time continuously, data
streaming technologies are developed. Big Data offers
different streaming platforms such as Apache Kafka,
Apache Flink, and Apache Storm, etc. Mostly these
frameworks have limited scalability, and fault tolerance.
Apache Ignite and Hazelcast are also streaming
frameworks. Apache Ignite includes the features of both
image data grid and in-memory database. Data loading and
data streaming capability solve the issue of scalability and
fault tolerance. It also combines different streaming
platforms such as Kafka, Camel, etc., which makes it too
cutting-edge. Hazelcast is a cloud-native, image data grid
and has data structures including Map, Queue which can
execute parallelly. Hazelcast (IMDG) is improved by the
Hazelcast (Jet), which processes the huge data with low
latency. In this paper, we have compared Apache Ignite and
Hazelcast, to give the knowledge to the Java programmers,
companies, and business holders to speed up their
application development. Using the comparison, Java
programmers are in a good position to decide which
framework performs better and suits their application. The
comparison is performed using specific attributes selected
based on the weakness of the previous frameworks. From
the comparison results, it is evident that Hazelcast
outperforms Ignite due to the additional features it has such
as multi-threading, and cloud storage.

References
[1] Zaki, A. K.: NoSQL databases: new millennium database

for big data, big users, cloud computing and its security
challenges. International Journal of Research in
Engineering and Technology (IJRET), vol. 3, no. 15, pp.
403–409 (2014)

[2] Madden, S.: From databases to big data. IEEE Internet
Computing, vol. 16, no. 3, pp. 4–6 (2012).

[3] Sagiroglu, S., & Sinanc, D.: Big data: A review. In: 2013
International Conference on Collaboration Technologies and
Systems (CTS). IEEE. (2013, May).

[4] Machine learning and big data. In: Edureka, Big Data and
Hadoop. Retrieved October 22, 2021, from Edureka.co
website: https://www.edureka.co/blog/machine-learning-
and-big-data/(2019, September 24).

[5] Ishwarappa, & Anuradha, J.: A brief introduction on big
data 5Vs characteristics and Hadoop technology. Procedia
Computer Science, vol. 48, pp. 319–324 (2015)

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

411

[6] Zhang, Y., Geng, P., Sivaparthipan, C. B., & Muthu, B. A.:
Big data and artificial intelligence based early risk warning
system of fire hazard for smart cities. Sustainable Energy
Technologies and Assessments, vol. 45, no. 100986, p.
100986 (2021)

[7] Li, V. O., Lam, J. C., Han, Y., & Chow, K. A big data and
artificial intelligence framework for smart and personalized
air pollution monitoring and health management in Hong
Kong. Environmental Science & Policy, vol. 124, pp. 441–
450 (2021).

[8] Khan, Z. F., & Alotaibi, S. R.: Applications of artificial
intelligence and big data analytics in m-health: A healthcare
system perspective. Journal of Healthcare Engineering, vol.
2020, p. 8894694 (2020)

[9] Beam, A. L., & Kohane, I. S.: Big data and machine
learning in health care. JAMA: The Journal of the
American Medical Association, vol. 319, no. 13, pp. 1317–
1318, (2018)

[10] Asharf, J., Moustafa, N., Khurshid, H., Debie, E., Haider,
W., & Wahab, A.: A review of intrusion detection systems
using machine and deep learning in Internet of Things:
Challenges, solutions and future directions. Electronics, vol.
9, no. 7, p. 1177 (2020)

[11] Puentes, F., Pérez-Godoy, M. D., González, P., & Del Jesus,
M. J.: An analysis of technological frameworks for data
streams. Progress in Artificial Intelligence, vol. 9, no. 3, pp.
239–261 (2020)

[12] García-Gil, D., Ramírez-Gallego, S., García, S., & Herrera,
F.: A comparison on scalability for batch big data
processing on apache spark and apache flink. Big Data
Analaytics, vol. 2, no. 1 (2017)

[13] Samosir, J., Indrawan-Santiago, M., & Haghighi, P. D.: An
evaluation of data stream processing systems for data
driven applications. Procedia Computer Science, no. 80, pp.
439–449 (2016)

[14] Fernandes, E., Salgado, A., & Bernardino, J. : Big data
streaming platforms to support real-time analytics. In:
Proceedings of the 15th International Conference on
Software Technologies. SCITEPRESS - Science and
Technology Publications (2020)

[15] In-memory database: Retrieved October 22, 2021, from
Hazelcast.com website: https://hazelcast.com/glossary/in-
memory-database/ (2019, July 17).

[16] Sojoodi, A. H., Salimi Beni, M., & Khunjush, F.: Ignite-
GPU: a GPU-enabled in-memory computing architecture
on clusters. The Journal of Supercomputing, vol. 77(3), pp.
3165–3192 (2021)

[17] In-memory data grid with apache ignite. The Apache
Software Foundation. Retrieved October 22, 2021, from
Apache.org website: https://ignite.apache.org/use-cases/in-
memory-data-grid.html (2021)

[18] Ivanov, N.: In-memory data grids vs. in-memory databases.
Retrieved October 22, 2021, from Infoworld.com website:
https://www.infoworld.com/article/3300747/in-memory-
data-grids-vs-in-memory-databases.html (2018, August 29).

[19] Bryant, D.: John DesJardins on in-memory data grids,
stream processing, and app modernization. Retrieved
October 22, 2021, from InfoQ website:
https://www.infoq.com/podcasts/imdg-stream-
processing/(2020, September 14).

[20] The Apache Software Foundation. Data loading and
streaming. Retrieved October 22, 2021, from Apache.org
website: https://ignite.apache.org/features/streaming.html
(2021)

[21] Gencer, C., Topolnik, M., Ďurina, V., Demirci, E., Kahveci,
E. B., Lukáš, A. G. O., … Katsifodimos, A.: Hazelcast Jet:
Low-latency stream processing at the 99.99th
percentile. arXiv [cs.DC]. Retrieved from
http://arxiv.org/abs/2103.10169 (2021)

[22] In-memory data grid: A complete overview - hazelcast.
Retrieved October 22, 2021, from Hazelcast.com website:
https://hazelcast.com/glossary/in-memory-data-grid/ (2019,
November 9)

[23] Guroob, A. H., & Manjaiah, D. H.: Big Data-based In-
Memory Data Grid (IMDG) Technologies: challenges of
implementation by analytics tools. International Journal of
Emerging Research in Management &Technology, vol. 6(5),
pp. 829-834 (2017)

[24] Kosandiak, I.: Spring Boot with Hazelcast. Retrieved
October 22, 2021, from Medium website:
https://ihorkosandiak.medium.com/spring-boot-with-
hazelcast-b04d13927745 (2018, September 5)

[25] Why IMDG. Retrieved October 22, 2021, from
Hazelcast.org website: https://hazelcast.org/imdg/why/
(2019, August 5)

[26] Frankel, N. (2021, April 16). Hazelcast, from embedded to
client-server. Retrieved October 22, 2021, from Dev.to
website: https://dev.to/hazelcast/hazelcast-from-embedded-
to-client-server-3j7j

[27] Fernandes, E., Salgado, A., & Bernardino, J.: Big data
streaming platforms to support real-time
analytics. Proceedings of the 15th International Conference
on Software Technologies. SCITEPRESS - Science and
Technology Publications (2020)

[28] Puentes, F., Pérez-Godoy, M. D., González, P., & Del Jesus,
M. J.: An analysis of technological frameworks for data
streams. Progress in Artificial Intelligence, vol. 9(3), pp.
239–261 (2020)

[29] Gupta, H. K., & Rafat Parveen, D.: Comparative study of
big data frameworks. 2019 International Conference on
Issues and Challenges in Intelligent Computing Techniques
(ICICT). IEEE (2019)

[30] Alkatheri, S., Abbas, S., & Siddiqui, M.: A comparative
study of big data frameworks. International Journal of
Computer Science and Information Security (IJCSIS),
vol.17(1), pp. 66-73 (2019)

[31] Singh, D., & Reddy, C. K.: A survey on platforms for big
data analytics. Journal of Big Data, vol. 2(1), pp. 8 (2015)

Bartkov Maxim
RooX Solutions Java Team Lead, Khakov, Ukraine,
1233566789b@gmail.com

Katkova Tetiana
University of Customs and Finance, Dnipro, UkraineDepartment
of Innovative Technologies,
Department of Cyber security, V.Vernadsky street 2/4, Dnipro,
Ukraine, 49000, takit777@gmail.com

Kruglyk Vladyslav S.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

412

Professor of Informatics and Cybernetics Doctor of Pedagogical
Sciences, Professor Bogdan Khmelnitsky Melitopol State
Pedagogical University, Faculty of Informatics, Mathematics and
Economics, Department of Informatics and Cybernetics
Hetmanska Street, 20, Melitopol, Zaporizhia Region, 72300
kryglikvlad@gmail.com 0000-0002-5196-7241

Murtaziev Ernest G.
Head of the Department of Mathematics and Physics PHD,
Senior Lecturer Bogdan Khmelnitsky Melitopol State
Pedagogical University, Faculty of Informatics, Mathematics and
Economics, Department of Mathematics and Physics Hetmanska
Street, 20, Melitopol, Zaporizhia Region, 72300
ernest_gaf@mail.ru, 0000-0002-2154-5523

Kotova Olha V.
Associate Professor Kherson Candidate of Physical and
Mathematical Sciences, Associate Professor State University,
Faculty of Computer Science, Physics and Mathematics,
Department of Algebra, Geometry and Mathematical Analysis
University Street, 27, Kherson, Kherson region, 73000 olga-
kotova@ukr.net, 0000-0002-5533-3844

