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Abstract  

This paper proposes a new behavioral model for the 
linearization of radio frequency (RF) power amplifiers (PAs) 
exhibiting strong nonlinear memory effects. The proposed model 
enhances the augmented Hammerstein model through the 
inclusion of cross-terms, and as a result, improved accuracy and 
linearization performance are achieved. This technique benefits 
from the advantages of block-based models and adds more 
robustness against strong nonlinear memory effects in wideband 
applications. A proof-of-concept prototype using a commercial PA 
was built in order to test and evaluate the linearization 
performance of the proposed DPD. The performance assessment 
was carried out using 5G new radio (NR) signals with a bandwidth 
of 40 MHz and a PAPR of 8 dB. The proposed predistorter showed 
better linearization performance compared to the conventional and 
augmented Hammerstein-based predistorters. 
Keywords 
Behavioral model, digital predistortion, linearization, memory 
effects, power amplifier 

1. Introduction 

New fifth-generation (5G) mobile communication 
systems feature modulated signals with a high peak-to-
average power ratio (PAPR) [1] [2]. However, signals with 
high PAPRs are critical for the performance of the 
transmitter, in particular, the power amplifier (PA). In fact, 
to achieve maximum efficiency, PAs need to be driven 
close to their saturation region, where, considering their 
nonlinear input-output relation, there will be considerable 
levels of distortion [1]-[3]. On the other hand, backing off 
the PA from saturation reduces the power efficiency. 
Therefore, a trade-off between linearity and efficiency has 
always been crucial in the design of PAs. To overcome this 
trade-off, linearization techniques can be used to maximize 
power efficiency and reduce the distortion level. The main 
linearization techniques are feedback, feedforward, and 
digital predistortion (DPD) [3]-[9]. Indeed, DPD is 
considered the dominant method for the linearization of 
PAs. DPD consists of applying digital signal processing 
techniques in order to compensate for the nonlinear 
distortions generated by the PA. To realize that, the inverse 
nonlinearity of the PA needs to be identified then included 
before the nonlinear device. As a result, the cascade of the 

inverse nonlinearity and the PA would behave as a linear 
system. 

In order to predict the behavior of the PA, various 
modeling techniques have been introduced in the literature 
[3]. One of the most used behavioral modeling methods is 
the memory polynomial model (MPM) as it allows 
compensating for the nonlinear distortions produced by PAs 
with memory effects. It has been proven that using the 
MPM results in high modeling and linearization 
performance. However, the implementation of this model 
adds hardware complexity caused by the large number of 
coefficients. For this reason, block-oriented modeling 
techniques that aim to reduce the computational complexity 
and improve the numerical stability are becoming more and 
more popular. Indeed, the Hammerstein model is 
considered one of the most used block-oriented models that 
tend to reduce the required number of coefficients, and 
therefore enhance the dispersion of coefficients and matrix 
conditioning. The Hammerstein behavioral model is based 
on combining a nonlinear memoryless function, such as a 
look-up table (LUT) model [3], [10]-[11], and a linear filter 
to predict the memory effects of the PA. This formulation 
showed reduced complexity in various systems in literature 
[3], [12]. However, the Hammerstein model only considers 
the linear memory effects of the PA, and considering the 
fact that new transmitter systems are required to support 
much higher bandwidths, both linear and nonlinear memory 
effects should be taken into account in the modeling process. 
In this context, the augmented Hammerstein model [3], 
[12]-[13] solves this issue by including nonlinear memory 
effects in the formulation of the model. Nevertheless, if the 
PA exhibits strong memory effects, the aforementioned 
formulations would provide a limited performance for 
wideband applications. 

In this paper, we propose a new version of the 
augmented Hammerstein model that is able to predict the 
nonlinear behavior of PAs exhibiting strong nonlinear 
memory effects. The proposed technique enhances the 
augmented Hammerstein model through the inclusion of 
cross-terms, and therefore, improved linearization 
accuracy is achieved. The inclusion of cross-terms in the 
non-block-based models such as the generalized MPM 
(GMPM) and hybrid MPM (HMPM) has shown significant 
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improvement in the modeling and linearization 
performances [14], [15]. However, this principle has never 
been applied in the block-based modeling context. This 
technique maintains the low complexity provided by the 
block-oriented models, and at the same time offers more 
robustness against strong memory effects in wideband 
applications. 

This paper is organized as follows. In section II, we 
describe the DPD principle and provide an overview of the 
behavioral modeling techniques used in the literature to 
predict the behavior of RF PAs. In section III, we present 
the proposed model. Section IV describes the measurement 
setup and the evaluation procedure used in this work. The 
experimental results are given in section V. Finally, we 
provide the conclusion in section VI. 

2. Behavioral Modeling and Digital 
Predistortion of RF Power Amplifiers 

2.1 Digital Predistortion Principle 
 

 

Fig. 1. Principle of the DPD linearization technique. 

The principle of the DPD is illustrated in Fig. 1. It 
consists of pre-distorting the input signal in order to 
compensate for the distortions later generated by the PA. 
The result would be an undistorted signal at the output of 
the nonlinear device. The success of this technique came 
from the technological advances of digital signal 
processors (DSPs), analog-to-digital converters (ADCs), 
digital-to-analog converters (DAC), etc. In fact, since the 
DPD system is implemented in the digital domain, the 
configuration and parameters of the predistorter can be 
modified without changing the hardware structure of the 
transmission system. 

 
2.2 Behavioral Modeling of Power Amplifiers 
 

Various formulations have been introduced in the 
literature for the behavioral modeling and DPD of RF PAs. 
These can be classified according to several criteria, such 
as the number of boxes, inclusion or exclusion of memory 
effects, etc. In this section, we present the LUT, MPM, 
Hammerstein, and augmented Hammerstein models. 

 

2.2.1 Look-Up Table Model 
 

 

Fig. 2. Principle of the LUT model. 

The LUT model shown in Fig. 2 is the basic behavioral 
modeling technique for memoryless PA nonlinearity. The 
magnitude of the input signal and the corresponding 
complex gain of the PA are stored in a LUT. The output 
waveform of the model is given by the following expression 
[10]-[12] 
 

𝑦ሺ𝑛ሻ ൌ 𝐺ሺ|𝑥|ሻ. 𝑥ሺ𝑛ሻ ሺ1ሻ 
 
where 𝑥ሺ𝑛ሻ  and 𝑦ሺ𝑛ሻ  are the input and output complex 
waveforms of the model, respectively; 𝐺ሺ|𝑥|ሻ  is the 
complex gain of the LUT. Although most systems exhibit 
memory effects, LUT models are still employed to estimate 
the static nonlinearity box-based models, such as 
Hammerstein-based behavioral models and DPDs. 
 
2.2.2 Memory Polynomial Model 
 

The MPM technique is widely used for the modeling 
and DPD of nonlinear PAs exhibiting memory effects. It 
corresponds to a simplification of the well-known Volterra 
series, where only the diagonal terms are kept. The MPM is 
expressed as follows 

 

𝑦ሺ𝑛ሻ ൌ ෍ ෍ 𝑎௠௞. 𝑥ሺ𝑛 െ 𝑚ሻ. |𝑥ሺ𝑛 െ 𝑚ሻ|௞ିଵ

௄

௞ୀଵ

ெ

௠ୀ଴

ሺ2ሻ 

 
where 𝑦ሺ𝑛ሻ and 𝑥ሺ𝑛ሻ are the input and output waveforms 
of the model, respectively; 𝑎௠௞  are the model complex 
coefficients; 𝐾 is the nonlinearity order; 𝑀 is the memory 
depth. 

The popularity of the MPM comes from its high 
performance in terms of modeling and linearization. 
However, the relatively large number of coefficients 
required for accurate modeling adds more hardware 
complexity to the system. This issue is more severe for high 
nonlinearity orders and memory depths. 
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 2.2.3 Hammerstein Model 
 

 

Fig. 3. Block diagram of the Hammerstein-based model. 

The Hammerstein model is based on implementing a 
nonlinear memoryless function followed by a linear finite 
impulse response (FIR) filter [12],[13]. The principle of this 
technique is illustrated in Fig. 3. A LUT model can be used 
to perform the nonlinear memoryless function, and 
therefore the mathematical expressions of the Hammerstein 
model can take the following form 
 

𝑢ሺ𝑛ሻ ൌ 𝐺ሺ|𝑥ሺ𝑛ሻ|ሻ. 𝑥ሺ𝑛ሻ ሺ3ሻ 
and 

𝑦ሺ𝑛ሻ ൌ ෍ 𝑎௠. 𝑢ሺ𝑛 െ 𝑚ሻ
ெ

௠ୀ଴

ሺ4ሻ 

 
where 𝑥ሺ𝑛ሻ and 𝑦ሺ𝑛ሻ are respectively the input signal and 
the estimated output of the system; 𝑢ሺ𝑛ሻ is the output of the 
first block; 𝐺ሺ|𝑥|ሻ is the complex instantaneous gain of the 
LUT; 𝑎௠  and 𝑀  are the complex coefficients and the 
memory depth of the FIR filter, respectively. The fact that 
the Hammerstein model uses linear filters to predict the 
memory effects of the PA limits the accuracy, as nonlinear 
memory effects are not considered. 
 
2.2.4 Augmented Hammerstein Model 
 

 
Fig. 4. Block diagram of the augmented Hammerstein-based model. 

The augmented Hammerstein model [13] is considered 
as an extended version of the conventional formulation that 
includes the nonlinear memory effects component into the 
model, as shown in Fig. 4. If a LUT model is used for the 
static nonlinear function, the mathematical expressions of 
this system would be as follows 
 

𝑢ሺ𝑛ሻ ൌ 𝐺ሺ|𝑥ሺ𝑛ሻ|ሻ. 𝑥ሺ𝑛ሻ ሺ5ሻ 
and 

𝑦ሺ𝑛ሻ ൌ ෍ 𝑎௠భ
. 𝑢ሺ𝑛 െ 𝑚ଵሻ

ெభ

௠భୀ଴

               

                    ൅ ෍ 𝑏௠మ
. 𝑢ሺ𝑛 െ 𝑚ଶሻ. |𝑢ሺ𝑛 െ 𝑚ଶሻ|

ெమ

௠మୀ଴

ሺ6ሻ

 

where 𝑥ሺ𝑛ሻ and 𝑦ሺ𝑛ሻ are the input and estimated output of 
the system, respectively; 𝑢ሺ𝑛ሻ and 𝐺ሺ|𝑥|ሻ are respectively 
the output and the complex gain of the static nonlinear 
function; 𝑀ଵ and 𝑀ଶ are the memory depth of the first and 
second filters, respectively; 𝑎௠భ

 and 𝑏௠మ
 are the filters’ 

responses. 

3. Proposed Box-Oriented Model 

 

Fig. 5. Block diagram of the proposed model. 

The proposed model aims to add more robustness to the 
system against strong nonlinear memory effects. It consists 
of including the cross-terms made of the actual sample of 
the signal and its lagging envelope samples.  

Fig. 5 shows the principle of the proposed modeling 
technique. An additional FIR filter is applied to the 
envelope samples, and its output is multiplied by the 
complex sample of the signal. Then, the output is added to 
the outputs of the other filters. If a LUT is employed as the 
memoryless nonlinear function, we can express the 
proposed model by the following equations 
 

𝑢ሺ𝑛ሻ ൌ 𝐺ሺ|𝑥ሺ𝑛ሻ|ሻ. 𝑥ሺ𝑛ሻ ሺ7ሻ 
 
and 

 𝑦ሺ𝑛ሻ ൌ ෍ 𝑎௠భ
. 𝑢ሺ𝑛 െ 𝑚ଵሻ

ெభ

௠భୀ଴

                 

        ൅ 𝑢ሺ𝑛ሻ. ෍ 𝑏௠మ
. |𝑢ሺ𝑛 െ 𝑚ଶሻ|

ெమ

௠మୀ଴

                   ൅ ෍ 𝑐௠య
. 𝑢ሺ𝑛 െ 𝑚ଷሻ. |𝑢ሺ𝑛 െ 𝑚ଷሻ|

ெయ

௠యୀ଴

ሺ8ሻ

 

and therefore 
 

𝑦ሺ𝑛ሻ ൌ ෍ 𝑎௠భ
. 𝑢ሺ𝑛 െ 𝑚ଵሻ

ெభ

௠భୀ଴

                

       ൅ ෍ 𝑏௠మ
. 𝑢ሺ𝑛ሻ. |𝑢ሺ𝑛 െ 𝑚ଶሻ|

ெమ

௠మୀ଴

                   ൅ ෍ 𝑐௠య
. 𝑢ሺ𝑛 െ 𝑚ଷሻ. |𝑢ሺ𝑛 െ 𝑚ଷሻ|

ெయ

௠యୀ଴

ሺ9ሻ
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where 𝑥ሺ𝑛ሻ and 𝑦ሺ𝑛ሻ are respectively the input and output 
of the model; 𝑢ሺ𝑛ሻ  and 𝐺ሺ|𝑥|ሻ  are the output and the 
complex instantaneous gain of the static nonlinear function, 
respectively; 𝑀ଵ, 𝑀ଶ, and 𝑀ଷ are the memory depths of the 
linear filters; 𝑎௠భ

, 𝑏௠మ
, and 𝑐௠య

 are the filters’ coefficients. 

4. Measurement Setup 

 

Fig. 6. Measurement setup used in this work. 

Fig. 6 presents the evaluation setup of the model 
identification and PA linearization procedure. The main 
components are a data processing unit, a vector signal 
generator (VSG), a power amplification unit with relatively 
strong nonlinear memory effects, an attenuator, and a vector 
signal analyzer (VSA). The waveforms are generated in 
MATLAB then sent to the VSG for modulation and up-
conversion. The power amplification unit boosts the power 
of the RF signal. Then, the amplified signal is attenuated 
and sent to the VSA for down-conversion and digitization. 
After that, gain normalization and time alignment between 
the received and generated data are performed in the 
computer. Finally, the data will be used for model 
identification and DPD. The tests were performed on 5G 
NR waveforms with a bandwidth of 40 MHz and a PAPR 
of 8 dB.  

The linearization principle used for the evaluation of the 
proposed technique is illustrated in Fig. 7. The analog-to-
digital and digital-to-analog converters (DAC and ADC, 
respectively) were designed in MATLAB. Both converters 
are based on delta-sigma modulators (DSMs). In fact, 
DSMs are known for their high performance in terms of 
resolution and noise shaping capability. 

In this evaluation, three DPD systems were designed 
using the proposed-, Hammerstein-, and augmented 
Hammerstein-based configurations. The orders of the FIR  
filters were set to 3 and the static nonlinear functions were 
performed using LUT systems. 

5. Experimental Results 

In this section, we present the obtained results of the 
proposed DPD in comparison with the conventional and 
augmented Hammerstein-based DPDs. 

In order to evaluate the linearization performance, we 
have selected the adjacent channel power ratio (ACPR) and 
alternate channel power ratio (AltCPR) figures of merit to 
measure the spectral regrowth of the evaluated transmitters. 
The ACPR and AltCPR metrics quantify the average 
powers of the adjacent and alternate channels compared to 
the average power of the main channel. These metrics are 
expressed as follows 
 

ACPRሺdBcሻ ൌ 10 logଵ଴ ൬
𝑃௔ௗ௝

𝑃௠௔௜௡
൰ ሺ10ሻ 

 
and 
 

AltCPRሺdBcሻ ൌ 10 logଵ଴ ൬
𝑃௔௟௧

𝑃௠௔௜௡
൰ ሺ11ሻ 

 
where 𝑃௔ௗ௝ and 𝑃௔௟௧ are the average powers in the adjacent 
and alternate channels, respectively, and 𝑃௠௔௜௡  is the 
average power of the main channel. 

Fig. 8 shows the spectra of the proposed DPD compared 
to the ones based on the conventional and augmented 
Hammerstein models. In addition, the error spectra are 
shown in Fig. 9. It can be observed from the graphs in both 
figures that the proposed model outperformed the 
conventional formulations. In fact, it is clear from Fig. 8 that 
the introduced system was able to reduce the spectral 
regrowth the most compared to the other configurations. 
Moreover, from Fig. 9, we can see that the lowest error was 
provided by the proposed formulation. This is explained by 
the inclusion of the cross-terms component in the 
expression, and the consideration of both linear and 
nonlinear memory effects. For PAs with stronger nonlinear 
memory effects, the outperformance would be even greater, 
which confirms the effectiveness of using the introduced 
enhanced version of the model. 

Table 1 summarizes the ACPRs and AltCPRs obtained 
by the evaluated DPDs.  
 

Table 1: Summary of the ACPR and AltCPR values obtained using the 
proposed DPD in comparison with the conventional and augmented 

Hammerstein-based DPDs. 

Architecture 
ACPR (dBc) 
Lower/Upper 

AltCPR (dBc)
Lower/Upper

Without DPD -29.15/29.09 -45.24/-45.34

Hammerstein-based 
DPD 

-44.96/-45.74 -51.33/-51.86

Augmented 
Hammerstein-based 

DPD 
-50.10/-51.13 -55.15/-56.84

Proposed DPD -53.55/-54.52 -57.02/-58.71
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Fig. 7. Principle of the transmitter architecture used for the evaluation of the proposed DPD.

 

Fig. 8. Measured spectra obtained using the proposed DPD in comparison 
with the conventional and augmented Hammerstein-based DPDs. 

 

Fig. 9. Error spectra obtained using the proposed DPD in comparison 
with the conventional and augmented Hammerstein-based DPDs. 

6. Conclusion 

This paper proposed a new PA behavioral model for the 
linearization of nonlinear PAs exhibiting strong nonlinear 
memory effects. The proposed model enjoys the benefits of 
block-based models, and at the same time offers more 
robustness when wideband signals are used. This is 
achieved by the inclusion of the cross-terms component into 
the formulation of the augmented Hammerstein model. A 
comparison of the linearization performance was carried out 
using a commercial PA excited with a 5G NR signal with a 
bandwidth of 40 MHz and a PAPR of 8 dB. The higher 
performance is achieved by means of a larger number of 
parameters, but this increase is justified by the remarkable 
outperformance of the proposed technique in comparison 
with the conventional and augmented Hammerstein-based 
models. 
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