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Abstract 
This paper proposes a complexity-reduced 2D memory 
polynomial model (MPM) for the linearization of concurrent dual-
band radio transmitters. The proposed model presents a new 
configuration of a 2D MPM to be used for the modeling and digital 
predistortion (DPD) of power amplifiers (PAs). The presented 
technique alleviates the oversizing issue faced in the conventional 
2D model by separating the highly nonlinear memoryless and 
mildly nonlinear dynamic behaviors, which results in a smaller 
number of coefficients, and therefore, reduced computational 
complexity is achieved. With the measurement setup, the proposed 
model achieved relatively the same performance as the 
conventional formulation while significantly reducing the model 
dimension by about 50%. The experiments were carried out using 
two 5G new radio (NR) signals with a bandwidth of 20 MHz and 
a PAPR of 8 dB each. 
Keywords: Behavioral modeling, digital predistortion, dual-band, 
memory polynomial model, power amplifier 

1. Introduction 

Radio frequency (RF) transmitters’ front-ends play a 
critical role in the operation of the telecommunication link. 
More specifically, the RF power amplifier (PA) has the 
most significant impact on the performance of the overall 
transmitter system. Recent wireless telecommunication 
technologies are more and more employing higher data 
rates to fulfill the requirements of speed, resolution, etc. 
This is achieved by employing high-order constellations 
and more advanced access techniques. As a result, the 
generated signals vary rapidly and have a high peak-to-
average power ratio (PAPR) [1], [2]. Therefore, the PA 
should be backed off from the saturation region, which 
results in low-efficiency operation. To improve the 
efficiency without compromising the linearity performance, 
adopting a linearization technique becomes a necessity. 

The main linearization techniques are feedback, 
feedforward, and digital predistortion (DPD) [1]-[3]. There 
has been a great deal of research recently on the use of the 
DPD linearization technique. DPD consists of including the 
inverse behavioral model of the PA in the transmitter before 
the actual nonlinear component. As a result, the cascade of 
the inverse behavioral model and the PA would be a 
linearized system [2]-[13]. However, when dealing with 
dual-band transmitters, single-band DPDs are not practical 
in this regard due to the neglected cross-modulation effects 

that appear between the two modulated signals, or due to 
that appear between the two modulated signals, or due to 
the important sampling rate requirements for the employed 
digital-to-analog converters (DACs) and analog-to-digital 
converters (ADCs). 

A solution has been introduced in [14] to design a 2D 
DPD for the linearization of concurrent dual-band 
transmitters. This technique consists of designing a 2D 
memory polynomial model (MPM) that enables dealing 
with each band separately [14], [15]. Moreover, the 2D 
MPM enables considering the cross-modulation effects 
between the two signals. In the developed model in [14], 
both modulated signals contribute to predicting the PA’s 
behavior for each band. However, due to the nested 
summations in the mathematical expression of the 2D MPM, 
the number of coefficients increases significantly with the 
increase of the nonlinearity order and/or the memory depth 
of the model. 

In this paper, we propose a new complexity-reduced 2D 
MPM for the linearization of concurrent dual-band 
transmitters. The proposed model consists of a new 
configuration of the 2D MPM that enables to significantly 
reduce the number of coefficients, and therefore, reduced 
complexity and better matrix conditioning are achieved. In 
fact, the proposed model mitigates the oversizing issue of 
the conventional model by dealing with the nonlinearity 
order and memory branches more efficiently, which enables 
achieving the same performance with less complexity. 

This paper is organized as follows. In section II, we 
present an overview of the conventional memory 
polynomial modeling techniques for the single- and dual-
band cases. Section III introduces the proposed complexity-
reduced 2D MPM. In section IV, the measurement setup 
used in this work is described. Section V presents and 
analyses the obtained measurement results. Finally, the 
conclusion is given in section VI. 

2. Principle of the Memory Polynomial Model 

2.1 Single-Band Memory Polynomial Model 
 

The nonlinearity of the PA can be theoretically modeled 
using the well-known memory polynomial model, which is 
formulated as follows 
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𝑦(𝑛) =   𝑎,𝑥(𝑛 − 𝑚)|𝑥(𝑛 − 𝑚)|ିଵ



ୀଵ

ெ

ୀ

(1) 

 
where 𝑥(𝑛)  and 𝑦(𝑛)  are the complex input and output 
baseband waveforms, respectively; 𝐾  is the nonlinearity 
order; 𝑀  is the memory depth; 𝑎,  are the complex 
memory polynomial coefficients. The block diagram of the 
MPM is illustrated in Fig. 1. 
 

 

Fig. 1.  Block diagram of the memory polynomial model. 

The nonlinear behavior of the PA generates distortions 
that cause spectral regrowth at the transmitter’s output, and 
linearization techniques, such as DPD, are therefore needed. 
The inverse model can be determined based on expression 
(1) in order to compensate for the nonidealities of the 
nonlinear device. 

The nonlinear behavior of the PA is more noticeable 
when dealing with two signals, in which the carrier 
frequencies are separated by Δ𝜔  and transmitted 
simultaneously. In this case, using a single DPD system 
requires processing the whole bandwidth of the signal 
captured at the output of the PA. The main limitation of this 
approach is the sampling rate requirements of the ADCs. In 
addition, using two independent DPDs with the 
conventional MPM for compensation of distortions in each 
frequency band is not appropriate since the cross-
modulation effect is not considered in this approach. 

. 
 
2.2 Dual-Band Memory Polynomial Model 
 

 

Fig. 2.  Block diagram of the 2D MPM. 

A two-input model has been introduced in [14] to deal 
with concurrent dual-band transmitters. In this model, the 
PA is modeled using two input signals, which are captured 

and digitized separately. This technique takes into 
consideration the effect of the cross-modulation between 
the two signals and enables processing each band 
independently, which improves the accuracy and reduces 
the sampling rate requirement. The 2D MPM reads as 
follows 
 

𝑦ଵ(𝑛) =    𝑎,,
(ଵ)

𝑥ଵ(𝑛 − 𝑚)



ୀ



ୀ

ெିଵ

ୀ

              ×  |𝑥ଵ(𝑛 − 𝑚)|ି|𝑥ଶ(𝑛 − 𝑚)| (2)

 

 

𝑦ଶ(𝑛) =    𝑎,,
(ଶ)

𝑥ଶ(𝑛 − 𝑚)



ୀ



ୀ

ெିଵ

ୀ

              ×  |𝑥ଶ(𝑛 − 𝑚)|ି|𝑥ଵ(𝑛 − 𝑚)| (3)

 

 
where 𝑥ଵ(𝑛)  and 𝑥ଶ(𝑛)  are the complex baseband 
envelopes of the RF input signals at the upper and lower 
signal bands, respectively; 𝑦ଵ(𝑛)  and 𝑦ଶ(𝑛)  are the 
captured complex baseband envelopes at the same bands; 

𝑎,,
(ଵ) , and 𝑎,,

(ଶ)  are the model coefficients; 𝐾 and 𝑀 are 
the nonlinearity order and the memory depth, respectively. 

Expressions (2) and (3) can be represented in a more 
general form as follows 
 

𝑦ଵ,ଶ(𝑛) =    𝑎,,
(ଵ,ଶ)

𝐸(ଵ,ଶ)൫𝑥ଵ(𝑛 − 𝑚), 𝑥ଶ(𝑛 − 𝑚)൯



ୀ



ୀ

ெିଵ

ୀ

(4) 

 
The block diagram of the conventional 2D MPM is 

shown in Fig. 2 using expression (4). 
 
2.3 Limitations of the conventional 2D model 
 

As it can be noticed by observing the expressions (2) and 
(3), the number of coefficients increases rapidly with the 
increase of the order and/or the memory branches due to the 
existence of the nested summations in the model, leading to 
a higher computational complexity for the digital 
processing. Furthermore, the conventional model assumes 
that the nonlinearity order of the static part is equal to the 
nonlinearity order of the dynamic part. This leads to an 
over-dimensioned model as the number of coefficients 
would be more than needed, which causes numerical 
stability issues due to the ill-conditioning of the observation 
matrix. 

3. Proposed Complexity-Reduced 2D Model 

The proposed configuration is based on decoupling the 
contribution of the static and dynamic behaviors of the PA. 
This configuration consists of identifying the highly 
nonlinear static and mildly nonlinear dynamic behaviors of 
the PA separately. Then, the outputs are added to build the 
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estimated signal. The parallel 2D model is expressed as 
follows 
 

𝑦ଵ(𝑛) =   𝑎,
(ଵ)

𝑥ଵ(𝑛)|𝑥ଵ(𝑛)|ି|𝑥ଶ(𝑛)|



ୀ

ೞ

ୀ

                                

+    𝑏,,
(ଵ)

𝑥ଵ(𝑛 − 𝑚)|𝑥ଵ(𝑛 − 𝑚)|ି|𝑥ଶ(𝑛 − 𝑚)|



ୀ



ୀ

ெିଵ

ୀ

 (5)

 

 

𝑦ଶ(𝑛) =   𝑎,
(ଶ)

𝑥ଶ(𝑛)|𝑥ଶ(𝑛)|ି|𝑥ଵ(𝑛)|



ୀ

ೞ

ୀ

                         

+    𝑏,,
(ଶ)

𝑥ଶ(𝑛 − 𝑚)  |𝑥ଶ(𝑛 − 𝑚)|ି|𝑥ଵ(𝑛 − 𝑚)|



ୀ



ୀ

ெିଵ

ୀ

(6)

 

 
where 𝐾௦ and 𝐾ௗ are the model nonlinearity orders for the 
highly nonlinear static and mildly nonlinear dynamic parts, 

respectively; 𝑎,
(ଵ,ଶ)  and 𝑏,,

(ଵ,ଶ)  are the corresponding 
complex coefficients. 

Expressions (6) and (7) can be reformulated as 
 

𝑦ଵ(𝑛) =   𝑎,
(ଵ,ଶ)

𝐸(ଵ,ଶ)൫𝑥ଵ(𝑛), 𝑥ଶ(𝑛)൯



ୀ

ೞ

ୀ

                                      

              +    𝑏,,
(ଵ,ଶ)

𝐹(ଵ,ଶ)൫𝑥ଵ(𝑛 − 𝑚), 𝑥ଶ(𝑛 − 𝑚)൯



ୀ



ୀ

ெିଵ

ୀ

       (7)

 

 
Therefore, the corresponding block diagram of the 

proposed model would be as represented in Fig. 3. 
 

 

Fig. 3.  Block diagram of the proposed model. 

The separation between the highly nonlinear static 
behavior and mildly nonlinear dynamic behavior solves the 
complexity issues related to the conventional 2D model and 
gives better modeling distribution. Therefore, the high 
nonlinearity order 𝐾௦ is applied only once, whereas 𝐾ௗ will 
be the one applied equally for all the memory branches. The 
new configuration reduces significantly the number of 
coefficients, and therefore, reduced complexity and 
improved observation matrix properties are achieved.  

4. Measurement Setup 

 

Fig. 4.  Principle of the DPD linearization technique used in this work. 

Fig. 4 shows the DPD linearization principle used in this 
work. The system uses two transmission channels for the 
lower and upper frequency bands, respectively. Each 
channel has its own predistorter, which is based on the 
proposed model. After being pre-distorted, the digital signal 
of each channel passes through a digital-to-analog converter 
(DAC) and then up-converted to a specific carrier frequency. 
After that, the resulted RF signals are combined to be 
boosted by the PA. To estimate the DPD coefficients, a 
portion of the amplified signal is attenuated and fed back to 
the digital processor after being separated, down-converted, 
and then digitized. The digital processor unit calculates the 
DPD parameters and updates the main predistorter. 

 
 

 

Fig. 5.  Measurement setup used in this work. 

The measurement setup used for the evaluation of the 
proposed modeling technique is described in Fig. 5. First, a 
computer running MATLAB generates two 5G NR signals 
with a bandwidth of 20 MHz and a PAPR of 8 dB each. The 
generated complex waveforms are then sent to two vector 
signal generators (VSGs), where the signals are modulated 
and up-converted. The resulted RF signals are combined by 
an RF combiner and then fed to the power amplification unit. 
For forward and inverse modeling, the amplified RF signals 
are captured separately using two band-pass filters centered 
at 𝜔ଵ and 𝜔ଶ. These signals are then down-converted and 
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digitized by a vector signal analyzer (VSA), to be sent to the 
computer to perform gain normalization and time alignment 
between the received and input data. In the case of DPD, the 
normalized output signal is used as model input, and the 
input signal is used as output to achieve the inverse 
modeling. Finally, the estimated coefficients of each 
module are copied to the predistorter. The DACs and ADCs 
were designed in MATLAB using delta-sigma modulators 
(DSMs). 

5. Measurement Results 

The performance assessments were done to evaluate the 
proposed technique from modeling and linearization points 
of view. 

For the forward modeling performance, we used the 
number of coefficients to determine the complexity of the 
model and the normalized mean square error (NMSE) to 
measure the accuracy of modeling. The NMSE is 
commonly used for the evaluation of PAs' behavioral 
models. This metric can be calculated using the following 
expression 
 

NMSE = 10 logଵ ቆ
∑ |𝑦௦௨ௗ(𝑙) − 𝑦௦௧௧ௗ(𝑙)|ଶ

ୀଵ

∑ |𝑦௦௨ௗ(𝑙)|ଶ
ୀଵ

ቇ (8) 

 
where 𝑦௦௨ௗ(𝑙)  is the measured output of the PA; 
𝑦௦௧௧ௗ(𝑙) is the estimated output of the model; 𝐿 is the length 
of the time domain waveforms.  

First, Fig. 6 shows how the number of coefficients 
significantly increases with the increase of the nonlinearity 
order, which can cause stability issues, especially for PAs 
with high nonlinearity orders or memory depth.  

 

 

Fig. 6.  Number of coefficients in function of the nonlinearity order for 
different memory depth values. 

In order to measure the forward modeling performance, 
Table 1 summarizes the NMSE and the number of 
coefficients of the introduced model compared to the 
conventional 2D MPM. The proposed model was able to 
achieve an NMSE close to the one of the conventional 2D 
MPM with a reduced number of coefficients to about 50%. 
These results prove that the proposed configuration 
significantly reduces the complexity of the system while 
maintaining the accuracy of modeling. 

 
Table 1.  Forward modeling results of the conventional and proposed 2D 

models 

Model NMSE 
Number of 
coefficients 

Conventional 2D MPM -43.14 273 

Proposed 2D MPM -43.02 136 

 

 
(a) 

 

 
(b) 

Fig. 7. Output spectra of the conventional and proposed DPDs. (a) Lower 
band. (b) Upper band. 
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Table 2.  Summary of the ACPR and AltCPR of the conventional and proposed 2D DPDs for the lower frequency band 

DPD 
ACPR (dBc) AltCPR (dBc) 

Lower band Upper band Lower band Upper band 

Without DPD -28.86/-29.15 -28.91/-29.12 -45.20/-45.45 -44.86/-45.04 

Conventional 2D DPD -50.91/-51.35 -50.47/-51.49 -55.59/-56.26 -54.94/-57.07 

Proposed 2D DPD -50.01/-50.45 -49.78/-50.38 -55.23/-55.43 -54.67/-56.42 

 
Regarding the linearization performance, we used the 

adjacent channel power ratio (ACPR) and alternate channel 
power ratio (AltCPR) metrics to measure the spectral 
regrowth of the designed DPDs. The ACPR and AltCPR are 
the comparisons between the average powers of the 
adjacent and alternate channels, and the average power of 
the amplified channel. These metrics are defined as 
 

ACPR(dBc) = 10 logଵ ൬
𝑃ௗ

𝑃
൰ (9) 

and 

AltCPR(dBc) = 10 logଵ ൬
𝑃௧

𝑃
൰ (10) 

 
where 𝑃ௗ  and 𝑃௧  are the powers of the adjacent and 
alternate channels, respectively, and 𝑃  is the power of 
the main channel. 

The obtained spectra for the lower and upper frequency 
bands are reported in Fig. 7. It can be observed that the 
proposed and conventional systems were able to 
enormously reduce the spectral regrowth caused by the PA 
nonlinearity. Furthermore, both DPD systems have 
provided close performances. This is confirmed in Table 2 
which summarizes the ACPRs and AltCPRs of the 
evaluated DPDs. These results prove that the proposed 
configuration outperforms the conventional 2D DPD 
technique while significantly reducing the complexity of the 
system. 

6. Conclusion 

This paper proposes a new configuration of a 2D MPM that 
reduces the complexity of modeling while achieving the 
same performance. In fact, the proposed model solves the 
oversizing issue of the conventional 2D MPM. The 
introduced configuration significantly reduces the number 
of coefficients, and therefore, reduced hardware complexity 
and enhanced stability are achieved. The technique consists 
of separating the highly nonlinear static behavior from the 
mildly nonlinear behavior, which leads to a better 
coefficients distribution without oversizing problems. The 
presented model was evaluated and compared to the 
conventional 2D MPM using a commercial PA. The 
obtained results have shown reduced complexity of the 
proposed technique with close modeling and linearization 
performances. 
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