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Abstract

The study presents a new method for solving initial value
problems (IVPs) for ordinary differential equations (ODEs). The
study successfully satisfied Butcher conditions and got a Jacobian
matrix: aii, an, as, al, A Jax, a3, as, A and then applying
modified Newton, to find out the unknown vector A; from iterative
equation y; =y;+0; .The diagonal-implicit Range-Kutta,
method submitted by this study solves the problem arising from
application of an implicit multistage for linear or nonlinear
algebra problems.The results achieved by using these parameters
via Visual studio C++, compared to the ordinary differential
equations that have an exact solution are more than impressive and
get a shouted result, for example while comparing the exact
solution of an ordinary differential equation with our numerical
solution for the same problem, we get an approximation error
9.9873D-05. Therefore, with great confidence we can use this
method with problems that need numerical solution.
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1. INTRODUCTION

It seems clearly that many areas of engineering and
scientific analysis require methods for solving set of initial
value problem of ordinary differential equations (ODEs).

At first scalar (ODEs) need to be considered A y(x) =
dx

f(x,y) with initial condition given by y(x,) = y, where
f(x,y) indicates any explicit functionality between the
dependent variable y and independent variable x,
X, represent specific value of x and y mentioned initial
value of y(x) at x = x,
This in general called initial value problem (IVP) for
ordinary differential equations (ODEs)[16] Implicit
methods for solving stiff problems, force researcher to solve
nonlinear system[17] of algebraic equations.
Some of them have tried to improve the implementing
of .R.K method to take advantage of their good stability;
others have tried to improve the stability properties of
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Linear Multistep Methods [1] by present a survey of
implicit Rung-Kutta methods [2].

Recently  some  researcher  investigate  the
implementation of multistep multistage [3] methods on
parallel computer [4].

The study presented in this paper satisfied Bucher array
condition and get our own parameters, the study got a
shouted results comparing to other methods here by we
come across some definitions and theorems needed in
this study

Continuity

A vector function ¢(Xx) is said to be continuous at a point
xo if, given any positive number,we can choose a
positive number dsuch that|| ¢(x) - O(Xo) || < € whenever||
X - X, ||<8 (that is whenever X is an element of open
neighborhood (X, 0 ) .

Convergence

Consider the numerical solution of initial value
problems
[7,8] givenby X < ¥4 =
RO F(Vnsk Ynskot 1 eer s i 1)
Y =F(,Y) Y(a) = xWhere x =
M1.m2 mg 1"
yu=Mh) p=012,.... k-1

is said to be convergence if for all initial value
problems

Satisfying the hypotheses of the mean value theorem
where

MAX]|(y(x)-y)l| >0ash—0 ,0< ng<N

Mean Value Theorem

Where J is a Jacobin matrix of F with respect to Z and
the bar ,indicate that each row of J is evaluated at
different mean value that is F(Z) -F(Z*) = J(C)(Z - Z*).
Where J is a Jacobin matrix of F with respect to Z and
the
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bar indicate that each row of J is evaluated at different
mean value is:
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y =f(x,y) y@) = n.isEuler’srule YN+1 —Yn =
hf(xn yn) = hfy

Fii(6) Fa(&) e Fiu(éy) It is explicit and, being a one- step method, it requires
je) = | FerGma) F22(82) Fam($2) no additional starting values and readily permits a
le (fm) sz(fm) me(fm) change of step-length during computation. It’s low

o Stability

Let us now apply the Runge-Kutta method with R=3 to
the test equation y=Ay then

K1=h*f{x,y)=\y

K2=h*f(x +c2hyy+c2k 1) =A (ythc2 Ay)= A
y(1+hc,A)K 3 =h *f(x +c 3h, y+(c3 -a 32 )kl+a;, k2)

order, makes it of limited practical value.

This is the philosophy behind the method first proposed
by Runge and subsequently developed by Kutta and
Huen. Runge-Kutta method thus reflects the advantages
of one-step methods.

Traditionally Runge-Kutta methods are all explicit,
although recently implicit Runge- Kutta methods [2]

III. Development of Single Step of Runge-kutta

=A[(y H(c3 -a32) hiy +a 32 hiy(1+ Ahc 2)] Formulas
_ V)

Ay(I¥hhe 3+ ¢ 2232 hAY5 For xe[xo, b] is said to be a one- step method if yn:1 the
Hence ¢( X i, y,h)=b [K 1+b2K 2+ b 3K 3 approximation to y(Xs+1) is obtained by use of an

algorithm of the form

~Al(b 1+b2+ b3+ B 2C 2 +b3C3 b2 02232 Yiew = I +ho N, Yysiih)
A?h?] That is yn+1 is completely determined in terms of x n, yn
Then we obtain and h. The Taylor’s algorithm of order n is a one-step

method because

Vet -Yo=Ah[(b1+b2+b3)+ hA(b2 C2 +b3 C3 )+ b2 c 2 h Ry
a'32%2112]%1 yi+1:yi+h(yi+ﬁ %+---+T3’i )
Leth=ha Now we express the method in another way by the

_ ) following formula y, = =y + Yo, wik;
yn+1 /yn=[1+(b 1+b2+b 3) h+h2 (b2 C 2+b 3C 3 )+ iv1 - i
b2c2a32h?] Where wi are weighting coefficients to determined r is
We can then define the three-stage Runge-Kutta method a number of f(x, y) substitutions and k ; satisfying the
to be absolutely stable on the interval (a, b) if 1, satisfies explicit sequence.
| r;|< 1 whenever h e(a,b) [3].
Iv. Derivation of Second-Order R.K Method

The concept of convergence and stability [14] are
concerned with the limiting process as h — 0. In
practice with finite number of steps, we are concerned
with the size of errors

A numerical method is said to be a stable if its region
of absolute stability contain the whole of the left hand
plane Re h <0.[6]

Matrix Direct product

Let A =[a] be an SxS matrix and Let B be an MxM
matrix then the direct product of Aijand B denoted by
A®B is an MSxMS matrix defined by

We have

Yny1 = Yn + W1k1 + W2k2

K; = hf(xn yn)

K, = hf(xn + ¢ hyyn+az kq)

And from Taylor series expansion
Ynt+1)=fCn »Yn) +hE@n 2 Vn) +

An equivalent form is

1.1
Ynsr = yy TN HRAG L+ 5 6D

a;;:B a;»;B a;sB
A®B = az:B az;B azsB And since we have
[T K, = hf(x,
aslB a52]3 assB ! ( " yn)

2. PREVIOUS STUDY

1 1

Then we can expand them in Taylor series by
Yo+1 = Yo Twihf, +wH fE'(xn +chy, +

axn h f(Xn'Yn)]
Vn+1 = Yo T+ (w; + wz)hf, + w,H 2 (axC,fyx +
dz1 W3 ff y)

II. RUNGE-KUTTA METHODS

The easiest method for numerical Solution [9,15] of
the initial value problem [2]
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Comparing 2.1.5 and 2.2. 4 they will be identical if r
1 w, =1
witwz=1,w26 =5 i=1
1 i1
w2 lz1 = 5 C, = Zaij 1= 1 1=2,.....,r

=1
Then we will have
2 1 methods
Vi1 =J’n+ §k1+ gkz yn+1 = yn+ [K1+4K2 +K3]

K; = hf(xn yn) Ky = h*f(n + hyn—K 4 2K;)

3
K, = hfGxn + = hyyn+

2 2

1
YH+1=YH+Ek1+Ek2 K3=h*f(Xn+h'yn_K1+2Kz)
Ki = hf(xn YH)

Ki =h*f(x )
K, = hf(xn + hoyn+ ky) ' "o

These lead us to the following well known 3 stage

Ky :h*f(xn:yn) K, = h*f(Xn+% h.yn+ %kl)

3 1
5 k1) Yn+1 = YN +g[k1+ 4k, + 2 ks3]
K1=h*f(xn,yn)K2=h*f(xn+ %h,ynékl)

y‘l‘l.+1 = yn +§[2k1+ 3k2+ 4‘k3]

Third-Order R.K Method derivation & it’s stability
K, =hf(x, + hyy, + k)K, = hf(x, +

C, h oy, + a5 ky) K; = hf(xn +c, hyn +
azy ky +aszy ko)K i = hf(xn + ¢;h, y,, +

i taijk

When r = 1 then only k; is needed and 1 yields Euler’s
formula

Let r = 3 then we need to determine (Eight parameters)
wi ,W2,W3,¢2,c3,a31,a32,a2l.

y="fx,y)=f 1

Vn+1 = Yn +th fn + Ehz( I:x + fyf) + Ehz( I:xx

+ 2f fuy + F2£,, + £, + F(£))
Then expanding the term 1 in Taylor series in the same
manner of the
=h f(xn+c2h,yn+a31 k1 +a32ke)
yn+1 =yn+ wlK1 + w2K2 +w3K3
Yn+1 = Yo twihfn +w2hfn +w2h2 (c2fx +
a21ffy) + w2 hfn +h*(c2 fx +a21 ffy) +
w3 hfn +w3h?
= (c3fx + a31ffya32 ffy) + w3h3 (c2fxx +
c3(a31 +a32)f2 fXy + ya31 +a32) 2 fy 2ffy +

a32(c3fx + a21ffy)fy)
wl +w2+w3 =1

1 1 1
The 7 axwat 3 (asi +an)2ws =3
1 1

c2w2 +c3w3 =

N| =

ap ax] W3=g , am C3W3 =g In general we observed
that the parameters and due to the above analysis will

always lead to the following identities

Ko=h*xn+ L hy,+ 1 k)
2 2
3 3

K; :h*(xn+zh, Yoty ko)

This last set of parameters gives the modified Euler
algorithm (the modified Euler is the special case of
second - order Rung- Kutta method

Shows the computation for Runge-Kutta fourth- order
method

Implicit Runge-Kutta Methods

The general form for implicit Rung- Kutta method [13]
Y, = yn +h X5 agf(x, + ¢hY)

Yot1 = yn th Zf:l bif(x, +ch Y)

We have the Butcher array

1@t =01y an an azar

R _
2i=1@2i = C2| ay1 ax a3 an

R —
Zi=Ria2i ~ Cr gy Ay Ag3 Ay,

Yowi=1c=-3a;

Commutation of r.k fourth-order is a further advance in
efficiency in what we can refer as a group of methods
due to German Mathematicians Runge-Kutta. The
fourth-order Runge-Kutta methods(as shown below) are
widely used in computer solutions to ordinary
differential equations [10] [11,12]

Yn+1 =y, + [Ki+ 2K, +2K3+Ka]
Ki =h=* f(XnYn)
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1 1 S P .
Ky = h*f(xn + = hoyn+ = kp) which implies that a1 1= ap2 =a33 =A this leaves us with

7 unknown parameters in Butcher array, namely ai3,
1 1

alp,a23, azl,asi ,a32,in addition to A
K; = h*f(xp + E h, yn +Ek2)

We may represent the method in term of A [the method

Ky = h*f(xn + hyyn + k) parameter] and this leaves us with 6 unknown in six
equations sketched above.
The general form for implicit Rung- Kutta method [13] Having obtained the six Unknown family of 3 stages
Y, =y, +h Z;L 1aij f(x, + ¢hY)) method is actually defined then we should have to
investigate the methods parameter in line with the error
Yot1 = yn +h T bif(x, +cih YY) estimate
To explain that equations researchers need to use famous letal1=a22 =a33 =) then equations
array called Butcher array with which one can justify the biA+ byai, + bza;; = bi(1—cq) (1)
parameters required for implicit and/or explicit Rung - bjaj, + by A + biay; = b,(1—c3) )

Kutta method due to the following conditions

b;(1—c3) A3)

1
b1C11+ szzalz + b3C3al3 =§b1(1_ C12)(4)

[Cl] A@Q) = Xj=1aij¢ =6
1
%

[C2] B = Ekibicl =1 fork<g¢ :
1=ck Y
[C3] D) = Xf=1b1cfay =bl(1k 2! bicia;; + bycyAd + bzczasz =35 2( c2) (5)
1
for j=1,2,3.....r and k<=( bicia,, + bycya,, + bycg A = §b3(1 - C%) (6)

K is positive integer and Cisan integration parameter Equation 1&4 can be solved for a21 ,a31(in terms of 1)

Then using C1 for s=3 and K=1,2 similarly ai2,a32 can be obtained from eq. 2&5 finally

Yi=1@1i =G ain a2 aiai equation 3&6 will yield a13,a23

Subtract 1 from 4

b1 A(1—c1)+ bzaz1(11 —c2)+ bzaz1(1—
.................................................... C3) = bl(l—Cl)[l— E(1_ Cl)]

R —
2i=102i = C2[ ap; ax a3ay

b2az21(1 = c2) =b1(1 — Cl)[%_ %Cl)] - b1 A(1 -
c1)

bzaz1(1 —c2) = b1(1 — c1)[5— 5c1) 4]

R j—
2i=RiA2i = CR  ay, Ay A A,

YEibi=1 b b byby s
a1 bl(l_C1)[E_ FC1- l]

b2(1-c2)
Then by substation we get

(16—\/5),1_ (4-v6) 1 1(4-V6) Al
ap] — —26 \ o 33750
- (16+\/E)(1_(4+\/3))
36 10

Yy LY Yooy,
AR I xieh |7
‘ _ @Ve _ (4+v®) -1
b= step size 17 T C2 7 T10 3 —
b = (16—v6) b = (16+v6) _1
Where Ki= f(Xn , K)y1,y2,¥3.Xn Xn+1 ,¥n L 36 2 36 37 9

st — (16—v6)(6+V6)[(6+v6)—20 A]
- (6+v6)(16—V6)*20
3. STUDY METHODOLOGY ar1 - (90+10V6)[6+V6—20 A]
- (90-10v6)*20
(29+10v6)[6+V6—20 4]

(90-10vV6)*20

h=step size

Our methodology is to satisfy a 3 stages method of a1 =

order 5 with the same diagonal elements equal to A
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(42+13V6 —1164—24V6 A)

a1 =

25%20
(42+13V6 —1164—24V6 1)
100
To find a,, substitute 421 in equation 1
b i+ b, (42+13v6 —1161—24V6 1)

100
b;(1—cy)
[bl(l—c D=byi+ by

a1 =

+ bza;3 =

(42+13V6 -1164—24V6 1)
100

a;3 = b
b2 A(1 —c2) +bi1a12(1 —c1) + b3az2(1 —

3) =b2(1—c2)[1— (1 + c2)]

[(1s+\/_)/1 (4*1-(\)/_))[; ;(4;(\)/_) l]
a1z = Us—o)(;_G=¥s)
36

10

1—

_ [(16+V6)(6—V6)[6—V6—204 |

A2 T T (164v8)(6-v6)20

by (—az3 [29_2—65\/—6]) + bzaz; + bzA=b3(1—

c 3)then after substitute the value of b1, b2 ,b3 ,cithe
_ [29-6vE)l6—VE-2021]

a1z 20%25
[+2-13V6-116 142461 |
Az < 100

Equation 2&5 can be solved for a2 a32 Subtract5 from 2
to find a32 substitute a12 in equation 1 p, 1 +
[42-13v6-1161+24V6 1]
+ b3az3 - bz(l —-cC 2)

1 100
b331(1 C3) + b1313(1 Cl) + bZaZS(
badns (17 ¢p) ]

€)= b3(1—cy)[1—3 (1+C3) =

b1(1 c1)

then after substitute the value of by , by, b3 ,c2,then

Equations 3&6 can be solved for a13 a23 by Subtract 6
from3

_ [0-10v6] B [29-6v6 ]
413 T T2 0006 A1z | 928 55
. o [6V6-4]  _
since c3 =1 then After substitution a3 —3g— = o

_ A, 36
23 T 9 " [6v6—4]

[3V6+2]
azz T —A* 55
And since
_ [29-6VE |
A3 T —d237 325
25

23 ~ —13 G9-6v0)

29—6v6
bl(_a23 [ 25 ]) + bZaZZ =+ b3ﬂ = b3(1 —c 3)
[6vE-4]  _
423 T 36 9
. 36
az; — 5 * &vo=a]
_ [3\/3+ 2]
423 77 5= And since
[29-6V6 | ~ ]
a3 — —azs Tthen Ay = — A%
(4—/6)
BimeLi =6 =0 |2 al2 al3
(4+6)
Z{:?:l ali = ¢ = - w0l ; o
Zl rRi2i=c3=1 a3l - i
i i = = a6-v6) (16++/6) .
=1bi =12 = b === by =3
our values for the parameters aj1,ai2,......... as;3
ZR ali =c¢ —M 1 [97_33\/6] [—2+3\/3]
- ST 10 12 300 300
_(4+V8) [07+33V6] —
ez =y 1 300 3 300
. [11+6vE] [11-6V6] .
Zf:Ri ali=c;=1 - ° +
. (16—6) (164+v6) )
Labi=1b =2 by =202 by = g

e  Study algorithm and code
VIII. Call A sample differential equation "dy/dx = (x -

IX. Finds value of y for a given x using step size h

initial value yo at Xo.

e call Runge-Kutta(xo, y, x, h));

e  Count number of iterations
using step size or step height h Iterate for n

number of iterations

e  Apply Runge Kutta Formulas to find next value

of 'y Update next value of y
e  Update next value of x
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4
Reset H, N, Xold, EPS

call Asample (0D E)
|
CallRUNGEKUTT

H,N,Xold,Yold

Print out results

e >

Fig 1 Algorithm flow chart

Jacobian Functions

e  Study Code
Call A sample differential equation "dy/dx = (x -

Finds value of y for a given x using step size h,initial value
Yo at Xo.

call rungeKutta(x0, y, x, h)); Count number of iterations
using step size or step height h Iterate for n number of
iterations

Apply Runge Kutta Formulas to find next value of y Update
next value of y

Update next value of x

// C++ program to implement Runge

// Kutta method #include <iostream>

/I A sample differential equation

// "dy/dx = (x - y)/2"

float dydx(float x, float y)

{

return (X - y)/2;

}
float rungeKutta(float x0, float y0,float x, float h)

{

int n = (int)((x - x0) / h); float k1, k2, k3, k4,

float y = y0;

// Tterate for n number of iterations for (inti=1;i<=n; i++)

{

k1 = h*dy/dx(x0, y);

k2 = h*dy/dx(x0 + 0.5*%h, y + 0.5*%k1); k3 = h*dy/dx(x0 +
0.5%h, y + 0.5%k2); k4 = h*dy/dx(x0 + h, y + k3);

y =y +(1.0/6.0)*(k1 + 2*k2 + 2*k3 + k4).

// Update next value of x x0 =x0 + h;

}

return y;

int main()

floatx0=0,y=1,x=2,h=0.2;
Float x0 = 0, y = 1, x = 2, h = 0.2; printf("y(x)
= %f" rungeKutta(x0, y, X, h)); return 0;

}

Float x0 =0,y =1,x=2,h=0.2; float k1, k2, k3, k4,
float y = y0;

printf("\nThe value of y at x is : %f", rungeKutta(x0, y, x,
h)); return 0;

Finds value of y for a given x using step size h with initial
value y0 at x0.

Call rungeKutta(float x0, float y0, float x, float h)

// Count number of iterations using step size h ; int n =
(int)((x - x0) / h);

Iterate for number of iterations

15

for (int i=1; i<=n; i++)

/I Apply Runge Kutta Formulas to find next value of y

k1 = h*dy/dx(x0, y);

k2 = h*dy/dx(x0 + 0.5*h, y + 0.5*k1); k3 = h*dy/dx(x0 +
0.5%*h, y + 0.5*k2); k4 = h*dy/dx(x0 + h, y + k3);

// Update next value of y

y =y +(1.0/6.0)*(k1 + 2*k2 + 2*k3 + k4).

// Update next value of x x0 =x0 + h;

return y;

4. RESULTS DISCUSIONS

The implementation of implicit Runge-Kutta (I.R.K)
methods for initial value problem (I.V.P) for ordinary
differential equations (O.D.E), was our concern in this
study. By testing our diagonal implicit R.K methods for
series problems see TABLE I-IV, some of them have a
known exact solution with which accuracy of the method
was tested, our method very efficient and successfully
solved these problems in term of run time error. It is
Notice that the implicit Runge-Kutta method is much
more accurate to solve problems that has no exact
solution. As confidentially, we can say Runge-Kutta is
much more accurate than other methods it observed that
the accuracy of the(I.R.K)approximation that compare
the approximation to the exact solution. as shown below.

5. CONCLUSION AND FUTURE STUDIES

Our diagonal Implicit Runge-Kutta methods for 2 & 3
stages requires less time, steps and function evaluations
compared to other methods, so we recommend generating
parameters for 4th and 5th stages so as to solve more initial
value problems for O.D.E.
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TABLE1

FOR THE****#xxsxxxxxx*SOLUTION OF
F=-Y+SIN(X),DIRKT3T TOL= 1.00000D-02
H = 1.000000000000000E-004***

H X YN YTRUE  ERROR ERROR%
1.00D-04 1.0D-04 9.9991D-019.9990D-011.1113D-051.1114D-

03
1.00D-04 2.0D-04 9.9982D-019.9980D-012.2223D-052.2227D-
03
1.00D-04 3.0D-04 9.9973D-019.9970D-013.3329D-053.3339D-
03
1.00D-04 4.0D-04 9.9964D-019.9960D-014.4433D-054.4450D-
03
1.00D-04 5.0D-04 9.9956D-019.9950D-015.5533D-055.5560D-
03
1.00D-04 6.0D-04 9.9947D-019.9940D-016.6630D-056.6670D-
03
1.00D-04 7.0D-04 9.9938D-019.9930D-017.7723D-057.7778D-
03
1.00D-04 8.0D-04 9.9929D-019.9920D-018.8814D-058.8885D-
03
1.00D-04 9.0D-04 9.9920D-019.9910D-019.9901D-059.9991D-
03

TABLEII
SOLUTION OF F1=-1/Y1,F2=1/Y2,DIRK3SS AT
TOL= 1.00000D-02

H = 1.000000000000000E-004***

X Y(1) YTI ERROR Y(2) YT2 ERROR
1.0D-04 1.0001D+00 1.0001D+00 1.1116D-059.9991D-019.9990D-011.1106D-05

2.0D-04 1.0002D+00 1.0002D+00 2.2240D-059.9982D-019.9980D-012.2200D-05
3.0D-04 1.0003D+00 1.0003D+00 3.3373D-059.9973D-019.9970D-013.3283D-05
4.0D-04 1.0004D+00 1.0004D+00 4.4515D-059.9964D-019.9960D-014.4355D-05
5.0D-04 1.0004D+00 1.0005D+00 5.5665D-059.9956D-019.9950D-015.5415D-05
6.0D-04 1.0005D+00 1.0006D+00 6.6825D-059.9947D-019.9940D-016.6465D-05
7.0D-04 1.0006D+00 1.0007D+00 7.7993D-059.9938D-019.9930D-017.7503D-05
8.0D-04 1.0007D+00 1.0008D+00 8.9170D-059.9929D-019.9920D-018.8530D-05
9.0D-04 1.0008D+00 1.0009D+00 1.0036D-049.9920D-019.9910D-019.9546D-05

TABLE III
FOR THE*#***xxxxxx*****SOLUTION OF
F=-200*(Y (1) - (10- (10+X)*DEXP(-X)))
D1D2SM, TOL=1.00000D-02

H = 1.000000000000000E-004***
X YN YTRUE ERROR  ERROR%
0.0D+001.0000D+011 .0000D+010.0000D+000 . 0000D+00

1.0D-018.6114D-018.6114D-011.5987D-141.5987D-12
2.0D-011.6489D+001.6489D+002.3565D-142 .3565D-12
3.0D-012.3696D+002.3696D+004 .7228D-144 .7228D-12
4.0D-013.0287D+003.0287D+005.7038D-145.7038D-12
5.0D-013.6314D+003.6314D+006.0778D-146.0778D-12
6.0D-014.1826D+004 .1826D+006.1582D-146.1582D-12
7.0D-014.6865D+004 .6865D+006 . 1593D-146.1593D-12
8.0D-015.1472D+005.1472D+006 .0912D-146 .1593D-12
9.0D-015.5684D+005 .5684D+005 .9335D-146 .1593D-12
1.0D+005 .9533D+005.9533D+005.7438D-146.1593D-12

1.0D+005.9533D+005 .9533D+005.7438D-146.1593D-12

TABLE IV
FOR THE********kk*****xSOL UTION OF
F=-200*(Y(1)-(10-(10+X)*DEXP(-X)))
D1D2SM, TOL=1.00000D-02
H = 1.000000000000000E-004%***

X YN YTRUE ERROR ERROR%
0.0D+00 1.0000D+011.0000D+010.0000D+000.0000D+00
1.0D-018.6114D-018.6114D-011.5987D-141.5987D-12
2.0D-011.6489D+001.6489D+002.3565D-142.3565D-12

3.0D-012.3696D+002.3696D+004.7228D-144.7228D-12
4.
5.
6.

0D-01 3.0287D+003.0287D+005.7038D-145.7038D-12
0D-01 3.6314D+003.6314D+006.0778D-146.0778D-12
0D-014.1826D+004.1826D+006.1582D-146.1582D-12
7.0D-014.6865D+004.6865D+006.1593D-146.1593D-12
8.0D-015.1472D+005.1472D+006.0912D-146.1593D-12
9.0D-015.5684D+005.5684D+005.9335D-146.1593D-12
1.0D+005.9533D+005.9533D+005.7438D-146.1593D-12
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