
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

565

Manuscript received March 5, 2022
Manuscript revised March 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.3.73

The Inclusion of Python as Introductory Computer
Programming in the Preparatory Year of Higher Education:

Modeling for Students’ Perceptions

Wafaa Alsaggaf 1
Department of Information Technology

King Abdulaziz University
Jeddah, Saudi Arabia

waalsaggaf@kau.edu.sa

Samar Alkhuraiji2
Department of Computer Science

King Abdulaziz University
Jeddah, Saudi Arabia

salkhuraiji@kau.edu.sa

Hanan Baaqeel3
Department of Statistics

King Abdulaziz University
Jeddah, Saudi Arabia
hbaageel@kau.edu.sa

Hani Brdesee4
Department of Computer Information Technology

King Abdulaziz University
Jeddah, Saudi Arabia
hbrdesee@kau.edu.sa

Abstract:
Programming is one of the most important subjects that can
logically assist with analytical thinking and finding solutions to
problems. This, in turn, allows students at the undergraduate level
to im-prove their critical thinking in line with the level of study at
that stage. It is well known that ac-quiring programming skills is
not easy, especially for novice programmers. This study aimed to
study, for the first time, the inclusion of the Python programming
language in the preparatory year for one of the largest univers0ities
in Saudi Arabia. The main objective of this study was to investigate
the factors that may affect the process of learning computer
programming, and the factors that may help predict the level of
students’ knowledge of programming skills. For the purpose of this
research, an exploratory questionnaire was designed and
distributed to the first batch of students for this course, and was
analyzed using several statistical methods. This study presents the
results by discussing the factors that may affect the process of
learning programming, the most important of which were the
difference in the prior knowledge of programming at the general
education stage, the looping concept, and problem-solving skills.
Laboratory assignments and recorded lectures were found to be
among the most important factors that may help to predict a high
level of performance for students. We intend to implement some of
the proposed solutions from this study and compare them with
subsequent studies at a future stage.
Keywords: Python; data analysis; introductory programming;
computer programming education; higher education; preparatory
year; novice programmers

I. INTRODUCTION

Learning computer programming is one of the essential
requirements for higher education. Many studies have proven
that learning programming is difficult and com-plex, and that
students, especially beginners, face many challenges in
solving programming problems [1], [2]. Despite the
existence of many studies finding solutions to these problems,
they still exist, as can be seen in the research by Medeiros [3].

Due to this prior knowledge of the challenges of learning
programming, including a programming subject for the first
time in any study program is important, and worthy of study
and investigation, especially in a context in which there is
little research aimed at studying the background knowledge
and the relationship between public education and higher
education. Accordingly, the main objective of this research is
to study the inclusion of a programming subject in the
preparatory year for one of the largest universities in the
Kingdom of Saudi Arabia. Moreover, as this preparatory year
has a significant impact on the academic and professional
future of students, as described in detail in Brdesee and
Alsaggaf [4], it reinforces the importance of this study.

King Abdulaziz University has integrated many
educational improvements and innovative systems that were
designed using the latest programming languages, data-bases,
and software for their excellence [5]–[9]. Furthermore,
providing quality innovative, interactive education services
to university students provides a gateway to the university’s
digital educational offerings through their portals [10]–[14].
The university has been ranked first in the Middle East and
within the top 200 universities globally, which is a good
reason to select such a university in which to conduct this
research. Therefore, this research aims to investigate the
factors that may affect the process of learning computer
programming for the target group in this study, and looks at
the aspects that help predict the level of student knowledge
of programming skills in a leading university.

The rest of this paper is organized as follows. Section 2
presents some background information for the context of this
study. Section 3 describes the literature review, and Section
4 details the materials and methods, including course
structure, course preparation, teaching and learning strategies,
and the survey used to obtain the data. Section 5 presents and
analyzes the results of the research objectives. A discussion

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

566

of the results obtained by the survey is provided in Section 6.
Conclusions and future work are outlined in Section 7 (see
Fig. 1).

II. BACKGROUND

At the beginning of each academic year, universities face
a huge demand from students for admission and social and
administrative pressures in organizing the ad-mission process,
which sometimes results in students not being accepted into
the college that is appropriate for their abilities and skills.
This may be because the students do not have enough
information about the college and its subjects, and possible
future careers. There is a difference between secondary
school and university academic styles. Thus, the preparatory
year paves the way for the transition between the stages of
secondary school and university. In the preparatory year,
students study full-time in the morning hours and must attend
daily according to the academic schedule that is registered to
them. The duration of the preparatory year is one academic
year divided into two semesters. Throughout this year,
students study all subjects in the first and second academic
semesters.

A. Preparatory Year Objectives

Creating a preparatory year at university has many
advantages, which can be summarized as follows:

 Rationalizing admission by directing students to the
appropriate college based on their abilities and skills,
then based on their desires and choices.

 Standardization of admission to university.

 Introducing students to the subjects available at the
university and the nature of study there.

 Introducing students to university bylaws and
regulations.

 Providing students with the necessary skills and
knowledge in English and computer usage, and
developing learning, research, and communication
skills.

 Allowing students to discover their scientific
capabilities in a university environment

B. General Framework for the Preparatory Year

According to the Deanship of Admission and
Registration at King Abdulaziz University, the preparatory
year consists of: (1) the health colleges track; (2) the science
colleges track; and (3) the administrative and human sciences
colleges track. After completing all the preparatory year
subjects, students are enrolled in colleges ap-propriate to
their desires, paths, and abilities compared with each other,
according to the vacancies and achievements [15].

Fig. 1. Research methodology and stages.

A committee for the preparatory year submits its
recommendations to the University Council and approves the
tracks and number of students that can be accepted yearly. It
also monitors and supervises the preparatory year in general.
After that, the Deanship of Admission and Registration
makes admission available on the electronic portal. Students
are accepted according to the conditions prepared and
announced in the admission guide, which is published
annually. The admission guide explains all the programs
available in the colleges after the successful completion of
the preparatory year.

C. The Programming Subject of Python, the Beginning and
Importance

Prior to 2020, students studied an introductory computer
skills course that included the basics of information
technology and operating systems, and basic office programs.
However, the university found that the course was too
irrelevant to the scientific tracks and did not adequately
establish students’ knowledge. Therefore, the university’s
specialized committees included a new subject with
programming skills and Python programming language
problem-solving.

The main objective of this course is to teach the students
the basics of constructing algorithms and programming
languages. According to Computer Skills Unit, at the end of
this course, students are expected to have learned the basic
skills of algorithmic problem-solving, a systematic approach
to defining problems and creating a number of solutions, and
basic programming skills, which include syntax, commands,
variables, selection statements, loops, functions, etc. [16].

On its webpage, the college of Computer Science and IT,
the subject provider, argues that “by completion of the course
the students should be able to:

1. Construct algorithms for solving simple problems.
2. Write a programming code that implements

algorithms for solving simple problems.
3. Analyze and explain the behavior of simple

programs involving the fundamental programming
constructs.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

567

4. Identify and describe uses of Python built-in data
types and functions.

5. Write programs that use Python built-in data types
and functions.

6. Apply appropriate conditional and iteration
constructs for a given programming task.

7. Write and modify short programs that use standard
conditional structures.

8. Write programs that use standard iterative control
structure.

9. Write programs that use functions.
10. Trace the execution of a variety of code segments

and write summaries of their computations.
11. Identify common coding errors and apply

strategies for avoiding such errors.
12. Apply a variety of strategies to the testing and

debugging of simple programs.
13. Use an appropriate IDE (Integrated Development

Environment) to create, compile and run a program
developed by the selected programming language.”

III. LITERATURE REVIEW

Regarding the significance of acquiring programming
and computational thinking in higher education, Agbo et al.
[17] investigated the literature on programming education,
specifically computational thinking in higher education.
While this paper investigates the perception of students and
instructors on developing an introductory programming
course for the preparatory year in King Abdulaziz University,
Saudi Arabia, this section tackles a review of the literature on
the topic, covering several points. Agbo et al. claim that
computational thinking has boomed in several contexts,
especially in the developed world. The researchers’ view is
that, although most educators use the course design approach
for this type of education in higher education institutions, the
computational thinking approach is recommended for
computer programming learning for beginners in higher
institutions. It boosts the cognitive abilities of students and
bridges the gap between those students who have
programming back-grounds and those who do not.

Meanwhile, Medeiros et al. [3] performed a systematic
literature review to better understand the issues and problems
relevant to introductory programming. The study concludes
that students need previous problem-solving skills and
mathematical knowledge to learn introductory programming.
In contrast, the study adds that novice students need
motivation and engagement, and teachers need the
appropriate tools and methods to succeed in this task. The
study shows that a clarification of problem-solving is
required and recommends more communication between
primary and higher educational institutions.

In this context, Shein [18] argues that learning how to
code in Python is essential for any learner since it is one of
the main introductory programming languages. Mastering
Python facilitates the transfer of programming concepts to
other languages. Koulouri et al. [19] tackle how

programming language selection, problem-solving training,
and formative assessment may affect the learning process.
The study finds that using Python as a simple programming
language facilitates the learning process. Furthermore,
Babbitt et al. [20] argue that, since computing is essential to
other disciplines, all students need to have an introductory
course in computer science to attain the required basic
understanding of it. The study concludes that an introductory
computer science course is a component that is deemed
valuable and necessary for every student, recommending that
such a course should be compulsory in any higher education
program.

The literature on the topic has also focused on the skills
needed to learn programming. Figueiredo and García-
Peñalvo [21] investigated the strategies for teaching and
learning programming in university education. The
researchers maintain that teachers and students need
dedication and motivation, as the study seeks to improve
students’ achievements in programming courses. The study
suggests building a dynamic learning model that performs
constant analysis of students’ work throughout the course,
therefore offering students more training and insight. Feaster
et al. [22] investigated adapting CS (Computer Science)
Unplugged materials, a set of active learning activities, to
teach CS principles without having computers in class. The
CS Unplugged pro-gram experiment resulted in failure. This
experiment used a quasi-experimental control group for one
semester, repeated for another two semesters. The program
failed to change students’ attitudes towards CS or learning
the content as expected from a statistical perspective.

Novice CS students in higher education encounter several
difficulties and mis-conceptions. Qian and Lehman [23]
maintain that one of the teacher competencies in introductory
programming courses is identifying and addressing students’
misconceptions. The study investigates the difficulties that
students encounter and the tools needed to address them, and
finds that students reveal several misconceptions and other
issues regarding syntax, concepts, and strategies due to their
unfamiliarity with syntax, natural language, math, and
strategies, among others. The study recommends conducting
further research on CS education to address students’
conceptions and misconceptions by integrating theories of
conceptual change. The study also suggests the development
of instructor pedagogical content knowledge (PCK).
Pattanaphanchai [24] investigated using the flipped-
classroom approach in introductory courses for CS
programming in higher education in Thailand. The study
aimed at measuring novice students’ achievements based on
their performance in a coding test and an examination. The
study compared the scores of students who were taught using
a flipped-classroom approach with the scores of students in a
traditional classroom, and found that the students had a
positive perception of the flipped-classroom approach, with
the in-class activities boosting the students’ understanding.
The study also found that the students in the flipped
classroom achieved better in their exams than the traditional
students. Troya et al. [25] applied the flipped-classroom

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

568

approach for under-graduates in computer laboratory
sessions. The study argues that one of the issues encountered
in the laboratory sessions is that 14–50% of the laboratory
time is wasted on giving technical instructions, and if a
student misses one laboratory session, they may face
difficulties catching up again. The study found that using the
flipped-laboratory approach addresses these problems and
improves performance and motivation. Teachers also face
several challenges in teaching introductory CS courses. A
study performed by Qiyan et al. [26] found that a good CS
teacher needs to know the common student misconceptions
about CS. The study investigated CS teachers’ understanding
of student misconceptions. The study conducted a survey to
assess the perceptions of teachers regarding students’
misconceptions. The study found that teaching degrees and
extra training give teachers more confidence in addressing
student misconceptions.

One of the methods for teaching and/or learning
introductory programming is watching recorded videos.
Nørmark [27] claims that most students perceive depending
on video resources in teaching programming as attractive, a
finding based on two questionnaires. The study argues that
the very positive student response to short video lectures is
the study’s most important finding. The researcher maintains
that such videos must be considered carefully relative to the
course content and workload, while some theoretical topics
may be best taught using traditional methods. The study also
recommends short videos rather than long ones. More
recently, Picardo et al. [28] maintain that lecture recording is
a valuable resource for students, especially after the shift to
online modes, for several reasons, including the spread of the
COVID-19 pan-demic, enabling students to access course
content. This shines a light on the need to understand how
students deal with course content in recording formats. The
study probed how students cope with lecture recording and
how far this affects their aca-demic performance. The
researchers found a positive correlation between recording
views and final scores, although a small percentage of
students engaged in binge-watching, which is an
unproductive activity that must be discouraged.

The literature also tackles the curriculum of introductory
programming from different perspectives. Malik [29] argues
that programming needs special skills, which is a challenge
to students, as they have to learn problem-solving strategies
and programming language semantics and syntax, among
other skills. The study compared the used learning approach
for introductory programming courses with the six categories
of Bloom’s taxonomy. The study found that the practical
teaching/learning approach addresses the six categories, but
half of the students’ learning outcomes were still un-der the
Not Good Enough category. Figueiredo and García-Peñalvo
[30] discuss skills building in introductory programming
courses, claiming that building skills in introductory
programming is a universal problem. The study suggests
building a profile for student competencies so that each
student has the chance to improve specific skills through
training. The study describes a system that suggests exercises

and automatic assessments to construct a profile for each
student. Allan et al. [31] note that the number of students
majoring in CS has decreased, despite the increasing job
opportunities for this industry, due to several factors,
including curriculum revisions and introducing
computational thinking into disciplines other than CS. The
study discusses integrating computing into disciplines in the
high school curriculum and the importance of raising
students’ awareness of CS as a rewarding field of study.
Luxton-Reilly et al. [32] state that the literature on
introductory programming is growing, and therefore the
researchers are exploring the CS trends from the past and the
possible future approaches.

IV. MATERIALS AND METHODS

The computer programming and problem-solving course
provides an introductory structured programming course for
novice students in their preparatory year at King Abdulaziz
University. It is provided by the Computer Skill Unit/Faculty
of Computing Science and Information Technology (FCIT).
The main objectives are programming knowledge concepts
followed by program writing skills, and the course is pre-
pared by a team specializing in program teaching from the
FCIT. The team focuses on choosing topics that do not have
the technical difficulty that will be encountered in
programming computer science courses, and they assume
that all students do not have proficiency in these areas. The
course team introduces students to the core concepts of
programming, which may be very new to many students.
They ensure that students can understand all the concepts of
algorithms and the characteristics of programming using
Python, and are able complete all the assignments without
any difficulty. The course team looked at different textbooks
until they decided on one book that covered all the desired
concepts, “Introduction to Programming Using Python.”.
The course curriculum focuses on mastering the basic
problem-solving skills and programming concepts.

A. Course Structure

 Introduction and fundamental concepts of computers
and programming.

 The conceptual model: flowcharts and pseudo code.

 Variables, expressions, and statements, including
input, processing, and output.

 Data and data structures.

 Conditional decision structures and Boolean logic.

 Repetition structures.

 Functions and return values.

B. Course Preparation

The course was prepared by a professional team of
different instructors from the FCIT college. The course
content materials are explained in PowerPoint slides
covering all the course learning objectives (CLOs), defined
in Section 2.3. The course curriculum for all lectures is taught

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

569

over 16 weeks. In addition, 84 recorded videos were prepared
on YouTube hosted by a professional lecturer from the FCIT
college. The instructor ex-plains all the PowerPoint slide
lectures. Furthermore, 18 videos were recorded ex-plaining
the laboratory materials. All the prepared course materials
were uploaded onto the Blackboard Learning Management
System, which is available to all students. The course team
also designed an instructor manual for each lecture and an
instructor manual for the laboratory. The instructor manual
provides detailed information about all the materials and
concepts to be covered for each lecture during each week. It
explains to the instructor the exercises given as examples and
the exercises that should be discussed with the students
during the classes. The laboratory instructors provide in-
formation about the objectives of the laboratory sessions and
what current laboratory learning outcomes should be covered
during the sessions. Moreover, the laboratory instructors
explain all the activities that should be carried out during the
session, and the activities that can be given to the students as
practice activities. All these preparations are made to ensure
all the course sessions are provided with the same materials
and concepts to cover the course learning outcomes.

C. Teaching and Learning Strategies

The course currently includes 3 lectures of 150-min
duration and a 90-min laboratory session per week. All the
lectures and laboratory sessions are given in computer
laboratories, and the entire number of classes during the
semester is 42 with 13 laboratory sessions. The course is
offered in 51 sections. All the instructors and laboratory
instructors follow the course manuals for the lectures and
laboratory sessions.

D. Methods
To answer the research question and address the five

objectives of this research, a quantitative method was used.
Researchers using quantitative methods collect data using
large samples to create principles that can be generalized to
the wider population by focusing on certain behaviors that
can be easily assessed [33]. Our research used a survey as a
quantitative instrument to produce quantitative data that was
capable of statistical analysis. The survey questions aimed to
investigate students’ perceptions of the inclusion of the
Python course in the preparatory year. At the end of the
semester, the survey was widely distributed to all students
enrolled in the Python course (1485 students), of which 1361
were returned, making it a response rate of 92%, which is
relatively high and can be considered to be representative of
the population [34]. We designed our survey in five sections.
The first section required information about the type of
school the students came from (public school, private school,
or international school) and the weighted ratio of their high
school result. The second section considered the level of
knowledge the students had before and after the course. In
the third section, students were asked to rank the difficulty of
the main topics included in the course, which were:
programming basic concepts, mathematical functions,
selections, loops, and functions. The fourth section was

composed of questions designed to gather data on the level
of difficulty of the four main components, which were:
lecture content, practical laboratory content, problem-solving
practices, and coding with Python. The fifth section included
two questions: how much do you rely on recorded lectures?
and to what extent do you benefit from laboratory
applications in understanding the material? Those two
questions were based on a five-point Likert scale: “high-5 to
low-1”. The last section included open-ended questions, with
two questions asking respondents to list some of the best
things they liked and the most difficult things they faced in
the course.

V. RESULTS

To answer the two main questions in this research, we
present the results by di-viding them into five objectives, as
follows:

 Objective 1: compare the knowledge before and after
attending the course.

 Objective 2: compare the students’ programming
skills before and after attending the course between
the three types of schools.

 Objective 3: study the factors that were affected by
the students’ satisfaction with the programming
course after attending the course.

 Objective 4: compare the degree of difficulty of the
subjects in the course.

 Objective 5: compare the degree of difficulty of the
elements in the course.

1) Objective 1
In this study, we aimed to compare the difference

between the students’ programming skills before and after
attending the course. The students’ programming skills
before and after attending the course had a significantly
moderate positive correlation (r(1361) = 0.25, p < 0.01).
Additionally, a Wilcoxon signed-rank test was con-ducted to
determine whether there was a difference in the students’
programming skills before (Mdn = 1) and after (Mdn = 2)
attending the course. The results of that analysis indicated
that there was a significant difference in the students’
programming skills (V = 13,830, p < 0.01). As a result, the
students’ programming skills were found to have improved
after attending the course, and the improvement is shown in
Fig. 2–4.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

570

Fig. 2. Programming knowledge level before attending the course.

Fig. 3. Programming knowledge level after attending the course.

Fig. 4. Comparison between programming knowledge level before and
after attending the course.

2) Objective 2 and 3
A Kruskal–Wallis test showed that the type of school

(public, private, or international) significantly affects
programming skills before attending the course (Mdnpub =
1, Mdnprv = 1, Mdnint = 3, H(2) = 15.68, p < 0.001). Post-
hoc Wilcox signed-ranked tests using a Bonferroni-adjusted
alpha level of 0.017 (0.05/3) were used to compare all pairs
of groups. The programming skills of the students that came
from international schools were higher than those of the
public and private school students (W(Npub = 1069, Nint =

54) = 22,607, p < 0.001, W(Nprv = 238, Nint = 54) = 4632,
p < 0.001); whereas there was no significant difference in
programming skills between the students of public and
private schools (W(Npub = 1069, Nprv = 238) = 135,238, p
= 0.06). However, when a Kruskal–Wallis test was used to
compare the students’ programming skills after attending the
course, the results changed, and we found that there was no
significant difference in the programming skills among the
students from the different schools (Mdnpub = 3, Mdnprv =
3, Mdnint = 3, H(2)= 0.38, p = 0.84; see Fig. 5 and Fig. 6.

Fig. 5. Programming knowledge level before attending the course among
the three different schools.

Fig. 6. Programming knowledge level after attending the course among
the three different schools.

3) Objective 4
Regarding modeling and studying the predictors of the

students’ programming skills, a random forest (RF) classifier
was applied. RF was helpful in classifying and predicting the
level of the students’ programming skills, as well as
investigating the important factors affecting the students’
programming skills.

The target variable we aimed to predict was students’
programming skills. “K.A”, is an ordered, categorical
variable indicating the students’ programming skills after
attending the course, with three levels: good (coded 3),
neutral (coded 2), and bad (coded 1). “Weighted.Ratio” is a
continuous variable indicating a weighted ratio of students

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

571

before being registered at university. “K.B” is an ordered,
categorical variable indicating the students’ programming
skills before attending the course, with three levels: good
(coded 3), neutral (coded 2), and bad (coded 1). “Lec.Rec” is
an ordered, categorical variable indicating the satisfaction
level with the recorded lecture videos: high (coded 3),
medium (coded 2), and low (coded 1). “LAB.Ass” is an
ordered, categorical variable indicating the satisfaction level
with laboratory activities: high (coded 3), medium (coded 2),
and low (coded 1).

We trained the random forest with the parameters (ntree
= 1000 trees trained, and mtry = 3 factors chosen for each
iteration).

To address how many of a classifier’s predictions were
correct, and when they were incorrect, we created a confusion
matrix. In the confusion matrices below (Table 1), the rows
represent the actual level of programming skills, and the
columns indicate the predicted levels. The values on the
diagonal show the number of times the RF predicted
correctly; whereas the values on the off-diagonal represent an
incorrect prediction or misclassification of the levels.

TABLE I. CONFUSION MATRIX

 Predicted Level

Actual level

 Bad Neutral Good
Bad 12 8 8
Neutral 9 28 39
Good 24 55 177

There are three levels of students’ programming skills
(bad, neutral, and good); however, they are imbalanced, as
shown in Table 1. As is known, accuracy is not a great
measure of classifier performance when the classes are
imbalanced. Therefore, we need more information to
understand how well the model really performed (see Table
2).

First, we noted in Table 3 and 4 that the accuracy (number
of correct predictions divided by the total number of
predictions) was 60.28% with a 95% confidence interval of
0.5502 and 0.6537, meaning that there is a 95% likelihood
that the true accuracy for this model lies within this range.
The no-information rate is 0.6222. This is the accuracy
achievable by always predicting the majority class label. The
Kappa statistic shows how well our classifiers predictions
matched the actual class labels while controlling for the
accuracy of a random classifier. The Kappa for this model
was 0.1966, which is low.

Moreover, sensitivity, also referred to as the true positive
rate or recall, shows the proportion of the positive class
correctly predicted, and the highest sensitivity was in class 3
(good). However, specificity, also referred to as the true
negative rate, shows the proportion of the negative class
correctly predicted, and the highest specificity was in class 1
(bad). Balanced accuracy essentially takes the average of the
true positive and true negative rates, and achieved 0.60794,

0.56463, and 0.6046 for the bad, neutral and good classes,
respectively.

In Fig. 7, “Mean Decrease Accuracy” represents how
much the model accuracy decreases if we drop that variable,
and “Mean Decrease Gini” is a measure of variable
importance based on the Gini impurity index used for the
calculation of splits in trees. As a result, we discovered the
factors that affected students’ programming skills, in order
from highest to lowest, as follows. The most important factor
predicting the level of the students’ programming skills was
the Weighted Ratio. Next, the important fac-tors were Lab
Ass, Lec.Rec., and then K.B, while a less important factor
was School.Type.

4) Objectives 5 and 6
A Friedman test was carried out to compare the difficulty

level for the five course topics (basic concepts, mathematical
functions, selections, loops and functions). A significant
difference in difficulty level was found between the topics.
Next, for the multiple comparison tests, Nemenyi post-hoc
tests were carried out, and there were significant differences
between them all (p < 0.001). In order, the difficulty level
from the most difficult to the easiest topic was: loops,
functions, selections, mathematical functions, then basic
concepts (see Fig. 8).

TABLE II. FREQUENCY DISTRIBUTION OF STUDENTS’
PROGRAMMING SKILLS

 Bad Neutral Good
Count 159 382 820
Percent% 11.68% 28.07% 60.25%

TABLE III. EVALUATION OF RANDOM FOREST CLASSIFIER: OVERALL
STATISTICS

Accuracy 0.6028
95% CI (0.5502, 0.6537)
No Information Rate 0.6222
Kappa 0.1966

TABLE IV. EVALUATION OF RANDOM FOREST CLASSIFIER:
STATISTICS BY CLASS

 Bad Neutral Good
Sensitivity 0.26667 0.30769 0.7902
Specificity 0.94921 0.82156 0.4191
Balanced Accuracy 0.60794 0.56463 0.6046

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

572

Fig. 7. Important variables.

Fig. 8. The level of difficulty for each element.

In addition, a Friedman test was carried out to compare
the difficulty level for the four course elements (lecture
content, laboratory, problem-solving, and coding). A
significant difference was found between the elements. Next,
for the multiple comparison tests, Nemenyi post-hoc tests
were carried out, and there were significant differences
between them all (p < 0.001). In order, the difficulty level
from the most difficult to the easiest element was problem-
solving, coding, lecture content, and laboratory.

VI. DISCUSSION

We believe that our findings have identified some
interesting traits in the novice programmers who attended our
introductory course. The assessment findings indicate that
the course led to significant increases in the students’
programming skills after attending the course. The learning
objectives attained showed that the students’ programming
skills were significantly improved before and after attending
the course. These findings also show that the students with a
limited knowledge of programming skills also benefited from
attending our course and showed a better performance in their
results at the end of the course. We found statistically
significant differences in performance between students from
different types of schools (public, private and international)
regarding their programming skills before attending the
course. The programming skills of the students who came
from international schools were higher than those of the
students from public and private schools. The compared
results indicated that, after attending the course, there was no
significant difference in the programming skills among the
students from the different schools.

The preparation of students for the university stage is an
important topic to shed light on due to its great impact on the
success of students at the university level, which undoubtedly
affects their future careers. Over time and after many
attempts aimed at harmonizing the outcomes of public and
higher education, there is still a need to codify this process.
Our results proved this when investigating the knowledge of
students from different types of schools regarding software
skills before studying the course. The results showed that the
programming knowledge of the students who graduated from

international schools was higher than for those who
graduated from public and private schools. This difference
may cause difficulties in managing classrooms to de-liver
information to all students equally without resulting in some
students feel bored or others feeling that they are at a lower
level than their classmates. Unifying the learning outcomes
in the general education school stage will make it easier for
university education decision-makers to build stronger
curricula that suit all students and elevate them and their level
of thinking. The good news is that, despite the challenges
faced by the teachers of programming regarding the
difference in the students’ prior programming knowledge, the
students were able to reach a level of knowledge after
studying the course. Furthermore, this was not affected by the
type of school the student graduated from. However, on the
other hand, there may be an educational loss that it was
possible for students who graduated from international
schools to acquire based on their previous knowledge and
reach to know the superiority of their peers from other
schools.

When studying the factors that help predict the level of
students’ knowledge of programming skills, we found that
the percentage of students accepted into university is one of
the most important factors affecting their success. Perhaps
this is normal, as it is related to the nature of students and
their diligence. This is followed by laboratory work, which is
considered the second most important factor affecting the
level of stu-dents’ knowledge of programming skills. This
confirms that programming is a practical and applied subject,
suggesting more laboratory hours as a recommendation from
the outputs of this research for decision-makers at the
university. Recorded lectures were the third most important
factor as they allowed students to listen to the lecture at any
time and in any place before or after the lecture. Continuing
to access the lectures is seen as beneficial, desirable and
recommended. Fortunately, the tribal knowledge of
programming and the type of school were among the minor
influential factors in predicting the level of students’
programming knowledge because of the differences, as
mentioned previously.

One of the objectives of this study was to discern what
content the students may find the most difficult to focus on
in the future, and to re-design the curriculum to suit the needs
of the students. We found that looping is the most difficult
topic to under-stand and apply. This is in agreement with
previous studies that confirmed that looping is a challenge for
students, especially beginners. The course is designed to
include all the basic concepts that students need for
programming, which is one of the most important subjects to
stimulate analysis and problem-solving. However, based on
the results we obtained, it is recommended that the course
content be redistributed to include more hours of looping
instruction, in addition to the development of modern
methods to communicate the ideas more easily, especially for
millennial students. For example, using gamification and
other attractive methods for concepts that students find

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

573

difficult, including converting problem analysis into
programming code.

In addition to discovering the content that students find
most difficult, we studied the most difficult elements that
students face during their studies. We found that problem-
solving is one of the biggest challenges that students find
difficult to practice easily. This is also confirmed by previous
studies. Although problem-solving is included in all
exercises and questions during lectures and in laboratory
sessions, it is still the first and most significant challenge. It
may be worth experimenting to discuss problem-solving in
some parts of the course, especially at the beginning,
regarding real-life issues that are not related to programming.
Discussing this skill in general education outcomes is also
very important. The arrival of students at the university stage
with limited problem-solving skills may have an impact on
their scientific and professional careers.

VII. CONCLUSIONS

This study aimed to examine the factors that may affect
the process of learning computer programming for
preparatory year students in one of the largest universities in
the Kingdom of Saudi Arabia, specifically for the first batch
of students. The aspects that help predict students’
knowledge of programming skills were also investigated. For
the purpose of this research in studying the inclusion of a
computer programming subject for the first time in the
preparatory year, a questionnaire was designed and
distributed to students at the end of the semester. The survey
contained several different sections that were collected and
analyzed using several statistical methods, including a
Wilcoxon signed-rank test, a Kruskal–Wallis test, a random
forest, and a Friedman test. It should be noted that this study
was not concerned with discovering solutions to the problems
and difficulties that students face in learning programming.
Instead, it sought to uncover the factors that may cause
difficulties in learning programming, and the factors that may
help to predict the level of students’ programming knowledge,
especially for preparatory year students. We can confidently
draw some preliminary conclusions regarding the factors that
may affect the process of learning programming for this
group of students, such as a discrepancy in prior
programming knowledge at the general education stage; a
specific time and style of teaching the looping concept, which
students considered to be one of the most difficult concepts
in programming; and the skill of problem-solving, which was
classified as one of the big-gest challenges that students faced
during their studies. On the other hand, laboratory
assignments and recorded lectures were among the most
critical factors that may help to predict a good level for
students in programming.

The results of this research may help decision-makers to
modify or take measures to meet the requirements of students
at this stage, and align the learning outcomes of general
education with higher education. Furthermore, other
exploratory studies were conducted and compared to this
study after making the adjustments and appropriate decisions.

In the future, we intend to search for solutions to the problems
discussed and investigate mechanisms of organization,
teaching, and course design that may assist in attaining
desirable results.

REFERENCES
[1] C. Watson and F. W. B. Li, “Failure rates in introductory

programming revisited,” in Proceedings of the 2014 conference on
Innovation & technology in computer science education, New York,
NY, USA, Jun. 2014, pp. 39–44. doi: 10.1145/2591708.2591749.

[2] J. Bennedsen and M. E. Caspersen, “Failure rates in introductory
programming,” SIGCSE Bull., vol. 39, no. 2, pp. 32–36, Jun. 2007,
doi: 10.1145/1272848.1272879.

[3] R. P. Medeiros, G. L. Ramalho, and T. P. Falcão, “A Systematic
Literature Review on Teaching and Learning Introductory
Programming in Higher Education,” IEEE Transactions on Education,
vol. 62, no. 2, pp. 77–90, May 2019, doi: 10.1109/TE.2018.2864133.

[4] H. Brdesee and W. Alsaggaf, “Is There a Real Need for the
Preparatory Years in Higher Education? An Educational Data
Analysis for College and Future Career Readiness,” Social Sciences,
vol. 10, no. 10, Art. no. 10, Oct. 2021, doi: 10.3390/socsci10100396.

[5] A. Assiri, A. Almalais, H. Brdesee, and H. Baaqeel, “Towards an
Innovative Educational Knowledge Model for Intelligent Academic
Advising,” International Transaction Journal of Engineering,
Management, & Applied Sciences & Technologies, p. 12A11B: 113,
2021, doi: 10.14456/ITJEMAST.2021.212.

[6] H. Brdesee, “A Divergent View of the Impact of Digital
Transformation on Academic Organizational and Spending
Efficiency: A Review and Analytical Study on a University E-
Service,” Sustainability, vol. 13, no. 13, Art. no. 13, Jan. 2021, doi:
10.3390/su13137048.

[7] A. Assiri, A. AL-Malaise, and H. Brdesee, “From Traditional to
Intelligent Academic Advising: A Systematic Literature Review of e-
Academic Advising,” International Journal of Advanced Computer
Science and Applications, vol. 11, Jan. 2020, doi:
10.14569/IJACSA.2020.0110467.

[8] H. Brdesee, “Outstanding Development in Student E-services: A Case
Study of the Electronic Standardized Letters of Recommendation (E-
SLOR),” ICERI2019 Proceedings, pp. 1095–1102, 2019.

[9] H. Brdesee, “A mixed method analysis of the online information
course withdrawal system,” Behaviour & Information Technology,
vol. 37, no. 10–11, pp. 1037–1054, Nov. 2018, doi:
10.1080/0144929X.2018.1495764.

[10] H. S. Brdesee, “An Online Verification System of Students and
Graduates Documents and Certificates: A Developed Strategy That
Prevents Fraud Qualifications,” IJSEUS, vol. 10, no. 2, pp. 1–18, Apr.
2019, doi: 10.4018/IJSEUS.2019040101.

[11] H. Brdesee, A. Madbouly, A. Y. Noaman, and A. H. Ragab, “A
Comprehensive Data Mining Framework Used To Extract Academic
Advising Knowledge From Social Media Data,” INTED2017
Proceedings, pp. 7691–7700, 2017.

[12] W. Alsaggaf, K. Asad, N. Algrigri, F. Alsaedi, and H. Brdesee, “An
Electronic Students Attendance System Using Indoor Positioning and
Mobile Apps Technologies,” INTED2017 Proceedings, pp. 7781–
7788, 2017.

[13] A. Y. Noaman, A. Madbouly, H. Brdesee, and F. Fouad, “Assessing
the Electronic Academic Advising Success: An Evaluation Study of
Advisors Satisfaction in Higher Education,” INTED2017 Proceedings,
pp. 7701–7709, 2017.

[14] H. Brdesee and W. Alsaggaf, “Academic Advising and Social Media:
A Case Study on the Twitter Account of the Deanship and
Registration of King Abdulaziz University,” presented at the the
Conference of Academic Advising in Higher Education of the Gulf
Cooperation Council States: Reality and Hope, 253–267, 2015.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

574

[15] “Deanship of Admission and Registration—Preparatory Year
(kau.edu.sa).” https://admission.kau.edu.sa/Pages-260921.aspx
(accessed Jan. 08, 2022).

[16] Computer Skills Unit, “Aboutcpit110ar (kau.edu.sa).”
https://csu.kau.edu.sa/pages-aboutcpit110ar.aspx (accessed Jan. 08,
2022).

[17] F. J. Agbo, S. S. Oyelere, J. Suhonen, and S. Adewumi, “A Systematic
Review of Computational Thinking Approach for Programming
Education in Higher Education Institutions,” in Proceedings of the
19th Koli Calling International Conference on Computing Education
Research, New York, NY, USA, Nov. 2019, pp. 1–10. doi:
10.1145/3364510.3364521.

[18] E. Shein, “Python for beginners,” Commun. ACM, vol. 58, no. 3, pp.
19–21, Feb. 2015, doi: 10.1145/2716560

[19] T. Koulouri, S. Lauria, and R. D. Macredie, “Teaching Introductory
Programming: A Quantitative Evaluation of Different Approaches,”
ACM Trans. Comput. Educ., vol. 14, no. 4, p. 26:1-26:28, Dec. 2015,
doi: 10.1145/2662412.

[20] T. Babbitt, C. Schooler, and K. King, “Punch Cards to Python: A Case
Study of a CS0 Core Course,” in Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, New York,
NY, USA, Feb. 2019, pp. 811–817. doi: 10.1145/3287324.3287491.

[21] J. Figueiredo and F. J. García-Peñalvo, “Building Skills in
Introductory Programming,” in Proceedings of the Sixth International
Conference on Technological Ecosystems for Enhancing
Multiculturality, New York, NY, USA, Oct. 2018, pp. 46–50. doi:
10.1145/3284179.3284190.

[22] Y. Feaster, L. Segars, S. K. Wahba, and J. O. Hallstrom, “Teaching
CS unplugged in the high school (with limited success),” in
Proceedings of the 16th annual joint conference on Innovation and
technology in computer science education, New York, NY, USA, Jun.
2011, pp. 248–252. doi: 10.1145/1999747.1999817.

[23] Y. Qian and J. Lehman, “Students’ Misconceptions and
Other Difficulties in Introductory Programming: A Literature Review,”
ACM Trans. Comput. Educ., vol. 18, no. 1, p. 1:1-1:24, Oct. 2017, doi:
10.1145/3077618.

[24] Prince of Songkla University and J. Pattanaphanchai, “An
Investigation of Students’ Learning Achievement and Perception
using Flipped Classroom in an Introductory Programming course: A
Case Study of Thailand Higher Education,” JUTLP, vol. 16, no. 5, pp.
36–53, Dec. 2019, doi: 10.53761/1.16.5.4.

[25] J. Troya, J. A. Parejo, S. Segura, A. Gámez-Díaz, A. E. Márquez-
Chamorro, and A. del-Río-Ortega, “Flipping Laboratory Sessions in
a Computer Science Course: An Experience Report,” IEEE
Transactions on Education, vol. 64, no. 2, pp. 139–146, May 2021,
doi: 10.1109/TE.2020.3016593.

[26] Y. Qian, S. Hambrusch, A. Yadav, S. Gretter, and Y. Li, “Teachers’
Perceptions of Student Misconceptions in Introductory Programming,”
Journal of Educational Computing Research, vol. 58, no. 2, pp. 364–
397, Apr. 2020, doi: 10.1177/0735633119845413.

[27] K. Nørmark, “Using Short Videos in an Introductory Programming
Course: International conference on E-Learning,” in International
Conference on E-learning, La Laguna, Spain, Sep. 2014, pp. 254–260.

[28] V. Picardo, P. Denny, and A. Luxton-Reilly, “Lecture Recordings,
Viewing Habits, and Performance in an Introductory Programming
Course,” in Australasian Computing Education Conference, New
York, NY, USA, Feb. 2021, pp. 73–79. doi:
10.1145/3441636.3442307.

[29] S. I. Malik, “Assessing the Teaching and Learning Process of an
Introductory Programming Course With Bloom’s Taxonomy and
Assurance of Learning (AOL),” IJICTE, vol. 15, no. 2, pp. 130–145,
Apr. 2019, doi: 10.4018/IJICTE.2019040108.

[30] J. Figueiredo and F. J. García-Peñalvo, “Teaching and learning
strategies of programming for university courses,” in Proceedings of
the Seventh International Conference on Technological Ecosystems
for Enhancing Multiculturality, New York, NY, USA, Oct. 2019, pp.
1020–1027. doi: 10.1145/3362789.3362926.

[31] V. Allan, V. Barr, D. Brylow, and S. Hambrusch, “Computational
thinking in high school courses,” in Proceedings of the 41st ACM
technical symposium on Computer science education, New York, NY,
USA, Mar. 2010, pp. 390–391. doi: 10.1145/1734263.1734395.

[32] A. Luxton-Reilly et al., “Introductory programming: a systematic
literature review,” in Proceedings Companion of the 23rd Annual
ACM Conference on Innovation and Technology in Computer Science
Education, New York, NY, USA, Jul. 2018, pp. 55–106. doi:
10.1145/3293881.3295779.

[33] A. Sloane-Seale, “Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches,” Can. J. Univ. Contin. Educ., vol. 35,
2009.

[34] A. Bryman, E. Bell, A. Mills, and A. Yue, “Business research
strategies,” Bus. Res. Methods, pp. 226–238, 2007.

Wafaa Alsaggaf is an Assistant Professor at the Faculty of
Computing and Information Technology in King Abdul
Aziz University, Jeddah, Saudi Arabia. She holds a PhD in
Computer Science from RMIT University, Australia. Her
research interests are in the areas of mobile and ubiquitous
learning, educational technologies, computer science
education, and machine learning.

Hanan Mohamed Baaqeel is an Assistant Professor in
Statistics, Statistics Department, Faculty of Sciences, King
Abdulaziz University (KAU), Jeddah, Saudi Arabia. She
received her Ph.D. degree in Statistics from the University
of Nottingham, UK. Her research encompasses Theoretical
and Applied Statistics, Applied Multivariate Analysis,
Random Graph Models, and Statistical Network Analysis.

Hani Brdesee is an Associate Professor in Information
Systems (IS), Electronic Business and E-trends, and
associated with the Computer and Information Technology
Department, Faculty of Applied Studies, King Abdulaziz
University (KAU), Jeddah, Saudi Arabia. He received his
Ph.D. degree in Information Systems from RMIT University,
Australia. He is a Vice-dean of the Deanship of Admission
and registration, KAU, and as a General Supervisor of the
University Academic Departments Heads Forum (HSAD).

Samar Alkhuraiji is an Assistant Professor of Computer
Science at King Abdulaziz University (KAU)/ Faculty of
Computing and Information Technology. She holds a Ph.D.
in Computer -Science from the University of Manchester,
the United Kingdom. She did her master’s degree in
software engineering from the Florida Institute of
Technology, Melbourne, Florida, United States. My interest
in Adaptivity in e-learning system based on students'
behavior, Applied intelligent learning system, Smart
Learning Environments, Virtual Reality, machine learning
and imagining processing. She is Deputy Director of
Computer Skill unit for the preparatory year at KAU.

.

