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Summary 
This work attempts to develop a computationally fast protein 
disorder prediction model that has a high sensitivity and stable 
MCC (Matthews Correlation Coefficient) score, when compared 
to similar predictors. Further, this work focuses on these goals to 
ensure a very low number of false negative predictions by the 
presented model. However, with this focus on sensitivity, the 
model may produce an increased amount of false positive 
predictions. For that, it is important to monitor the MCC score and 
make sure to keep it relatively high as well. Accordingly, this 
confirms the efficiency of the presented model. The obtained 
results recommend the use of model developed for disordered 
protein prediction.  
Keywords: Amino Acids, data mining, disordered proteins, 
machine learning, protein sequences 

1. Introduction 

Understanding protein structures is essential for many 
fields of research including bioengineering and drug design. 
Protein sequences are composed of Amino Acids that are 
arranged in a linear order and joined together by a peptide 
bond. There are 20 unique types of Amino Acids that can 
be arranged in any order to form protein sequences [1]. The 
arrangement of these Amino Acids dictates many different 
attributes of the protein, including hydrophobicity, polarity 
and structure. These attributes of Amino Acids may vary by 
region of the protein sequence. This allows for each region 
to have either a fixed structure, such as helix, coil, or sheet, 
or no structure at all [2]. This structure determines the 
protein’s biological function. In some cases, it is found that 
an entire protein sequence can have no structure and is 
referred to as being fully disordered. Predicting fully 
disordered proteins has become an area of research interest. 
For that, this work focuses on the prediction of fully 
disordered proteins using machine learning techniques.  

This work attempts to develop a computationally fast 
protein disorder prediction model that has a high sensitivity 
and stable MCC (Matthews Correlation Coefficient) score 
[3], when compared to similar predictors. Further, this work 
focuses on these goals to ensure a very low number of false 
negative predictions by the presented model. However, with 
this focus on sensitivity, the model may produce an 
increased amount of false positive predictions. For that, it is 
important to monitor the MCC score and make sure to keep 

it relatively high as well. This will confirm the efficiency of 
the presented model.  

The remained of the paper is structured as follows. 
Section 2, presents the general methodology to predict 
protein disorder, including the feature engineering stage. 
Further, the prediction system is presented in Section 3. The 
application on a real-world data to verify the results is 
presented in Section 4. The conclusions and remarks are 
drawn in Section 5. 

 

2. Methodology and Feature Engineering 

The Data Mining and Knowledge Discovery (DMKD) 
approach is adopted for the prediction of protein disorder 
problem. Figure 1 presents the general layout of the 
followed methodology. The data considered to illustrate the 
methodology includes 247 protein sequences, with 24 fully 
disordered proteins and 223 structured proteins. 

For fully disordered protein prediction, seven kinds of 
features are collected which are calculated based on the 
Amino Acid sequence of each individual protein. These 
features can be categorized in structural and 
physicochemical features that were obtained from the 
PROFEAT website [4]. The structural and physicochemical 
features considered are: 

 
 
1) Amino acid composition 
2) Dipeptide composition 
3) Autocorrelation descriptors 
4) Composition, Transition and Distribution 
5) Quasi-sequence-order Descriptors 
6) Amphiphilic pseudo-amino acid composition 
7) Total Amino Acid properties (TAAP) 
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Fig. 1 The general layout of the followed methodology. 

 

Using these features, 1080 numerical features are 
obtained. In the first process, combinations of these features 
are used, by selecting the top attributes selected among each 
of the categories listed above. Numerous feature selection 
methods are applied and different number of features are 
selected at each run. Although this process requires much 
time on working with these combinations of features, 
acceptable results were not obtained. However, the best 
results were obtained using the SVMAttribut evaluator and 
Ranker search method [5] and considering 5-fold cross 
validation and applying different data mining algorithms 
shown in Table 1. 

It can be seen in Table 1 that the MCC of the models 
based on these features are not consistent. These unpleasant 
results encourage to alter the properties considered. For that, 
each individual property was analyzed. Consequently, it 
was observed that utilizing features based on Amino Acid 
Indices present the top results and are promising to utilize. 
In the listed properties the seventh feature “Total Amino 
Acid properties (TAAP)” uses the Amino Acid Indices to 
compute these particular features of Amino Acid sequences 
[6]. From this, 484 features were obtained using Amino 
Acid Indices, however, this is considered a large number of 
features and needs to be decreased to a lesser number. 

Several feature selection methods such as Gain Ratio, 
Info Gain, Costly Gain Ratio and Costly info Gain, which 
are based on competing the entropy, were run to choose 
the best features among the 484 features. 

In order to determine how many features should be 
selected from the 484 features, a search was conducted and 
the MCC scores for training and test datasets compared.  
The initial search was performed for number of features in 
(10, 15, 20, 25, 30) and then the search was further refined 
to add granularity around 20 ±4.  The search resulted in the 
following results, shown in Figure 2. 

These results show that the initial decision to select 20 
features, which was chosen somewhat arbitrarily, is actually 
a solid choice given the input feature-set and provides solid 
training and test MCCs without overfitting. The final 20 
features indices from AAIndex1 are as follows (ordered by 
their rank): 
 

1- Feature 67 
2- Feature 191 
3- Feature 211 
4- Feature 279 
5- Feature 128 
6- Feature 192 
7- Feature 241 
8- Feature 354 
9- Feature 149 

 

Table 1: Initial results during the data preparation step in the DMKD process 
Total # 
features 

Feature selection 
method 

# selected 
features 

Dataset 
Naïve 
Bayes 

Logistic 
Simple 
logistic 

SMO 
Threshold 

selector 

1080 SVMAttributeEval 
Ranker Search 

50 
Training 0.589 0.705 0.558 0.718 0.726 

Test 0.116 0.154 0.144 0.144 0.105 

1080 SVMAttributeEval 
Ranker Search 

35 
Training 0.608 0.695 0.623 0.800 0.660 

Test 0.125 0.235 0.269 0.217 0.230 

2800 SVMAttributeEval 
Ranker Search 

50 
Training 0.615 0.569 0.612 0.749 0.424 

Test 0.288 0.136 0.136 0.122 0.156 

 
10- Feature 193 
11- Feature 242 
12- Feature 393 

13- Feature 170 
14- Feature 194 
15- Feature 248 

Generate 
features

Perform 
feature 
selection

Adjust model 
parameters

Finish

acceptable
Not

acceptable

Not

acceptable

acceptable

Test 
model

Evaluate 
model 
on 

training
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16- Feature 434 
17- Feature 184 
18- Feature 210 
19- Feature 278 
20- Feature 477 

3. Prediction System 

Numerous classifiers for such problems exist, due to 
the effectiveness of SVM [7] in many applications, the 
SVM is utilized to differentiate fully disordered proteins. 
The protein disorder prediction system is shown in Figure 
3. Also, choosing the SVM as having a high likelihood of 
being a successful classifier is for the following reasons: 

 
1- Support Vector Machines were used in 28% of the 

18 competing classification methods; 
2- SVM provide very good accuracy particularly 

against continuous features such as ours;  
3- SVM are simple and will provide an optimal 

classifier for the chosen features once the 
parameters are tuned; 

4- The procedure of [8] was adopted to achieve solid 
SVM classification.  

 
A key step to classification with SVM is to scale the 

input data in order to keep features with higher overall 
numeric values from “swamping” those features with lower 
overall numeric values.  For that, all features are scaled to 
the range [0,1].  Also, it is also important to keep this vector 
of scaling constants consistent between the training and test 
datasets.  This will result in the training data set being scaled 
to the range [0,1], but the test datasets to slightly lower or 
higher values if the test data feature values fall outside the 
range for the same feature in the training dataset. In order to 
satisfy this, the LibSVMsvm-scale tool was utilized. 

The second step is to choose the Radial Basis Function 
kernel for LibSVM [9].  This is a good first-step kernel 
because it allows for features to be mapped into a nonlinear 
feature space (but is not required), and can approximate the 
sigmoid kernel through different hyperparameter selection. 

The RBF kernel takes two input hyperparameters: C 
and γ.  Adequate values of these hyperparameters cannot 
usually be predetermined and generally a grid search 
method is used to test various values of both and observe 
classification results.  It is important to use cross-validation 
in this step, in order to avoid hyperparameter selection 

which overfits the training data.  It is generally suggested 
that good ranges for C and γ are as follows: C in (2-5, 2-3, 
… 215) and γ in (2-15, 2-13, … 25).  Operating against our 
selected training data, with 5-fold cross validation, and 
plotting the resulting MCC, the obtained surface is given in 
Fig.  

One can see from Fig.  that the choice of C and γ has a 
huge effect on the outcome. Furthermore, some refinement 
around the ridge of peak MCCs may reveal a location of a 
global maximum MCC. 

After four rounds of hyperparameter refinement, the 5-
fold cross training MCC was maximized (and no longer 
improving) at a value of 0.307.  

This was associated with:  
 

C = 22.732 = 6.643760193, 
 γ = 2-8.286 = 0.003203800 
 

With these parameters the model was re-trained over 
the entire training dataset (no cross-validation) and marked 
as the final model. The final model was subsequently 
applied to a properly-scaled version of the test dataset.  This 
model produced an MCC of 0.328 on the test dataset. 

4. Experimental Results 

The PROFEAT website [4] was utilized to generate 
attributes from the Amino Acid Indices, 484 features were 
obtained, which is considered to be a large number of 
features. After applying the feature selection algorithms 
(Table 2) on the Amino Acid Indices features and choosing 
the 20 best ranked features. Several classifiers were applied,  
 

 

 

Fig. 2 Search for optimal number of features to select . 

Table 2: Results for the feature selection algorithms 

Base dataset 
# of features 

selected 
Feature select algorithm Best unturned MCC 

484 20 GainRatio 0.297 0.330 
484 20 InfoGain 0.297 0.322 
484 20 Costly GainRatio 0.283 0.302 
484 20 Costly InfoGain 0.256 0.304 
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Fig. 3 The protein disorder prediction system. 

Table 3: Results obtained by the presented model and other alternatives 

Predictor 
Training dataset Test dataset 
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CSpritzLONG 0.413 91.1 37.5 96.9 9 7 216 15 0.575 92.7 42.9 99.1 12 2 217 16 
CSpritzSHORT 0.147 89.9 8.3 98.7 2 3 220 22 0.310 89.9 10.7 100.0 3 0 219 25 

DISOPRED 
-

0.030 
89.5 0.0 99.1 0 2 221 24 0.253 89.5 7.1 100.0 2 0 219 26 

Disprot&FPR_Espritz 0.388 89.1 45.8 93.7 11 14 209 13 0.425 90.3 35.7 97.3 10 6 213 18 
Disprot&SW_Espritz 0.510 87.0 79.2 87.9 19 27 196 5 0.620 90.3 82.1 91.3 23 19 200 5 

IUPredLONG 0.213 90.7 8.3 99.6 2 1 222 22 0.253 89.5 7.1 100.0 2 0 219 26 
MD 0.374 90.7 33.3 96.9 8 7 216 16 0.440 91.1 25.0 99.5 7 1 218 21 

MFDp 0.434 91.1 41.7 96.4 10 8 215 14 0.476 91.5 28.6 99.5 8 1 218 20 
PONDR-FIT 0.174 90.3 8.3 99.1 2 2 221 22 0.359 90.3 14.3 100.0 4 0 219 24 

Ucon 0.194 90.7 4.2 100.0 1 0 223 23 0.253 89.5 7.1 100.0 2 0 219 26 
x-ray&FPR_Espritz 0.174 90.3 8.3 99.1 2 2 221 22 0.359 90.3 14.3 100.0 4 0 219 24 
x-ray&SW_Espritz 0.303 91.1 16.7 99.1 4 2 221 20 0.441 91.1 21.4 100.0 6 0 219 22 

Min -0.03  0.253  
Avg. 0.275 90.13 24.3 97.21 5.8 6.3 216 18 0.397 90.5 24.6 98.89 6.9 2.4 216 21 
Max 0.510 91.10 79.2 100.0 19 27 223 24 0.620 92.7 82.1 100.0 23 19 219 26 

Presented Model 0.307 79.4 62.5 81.2 15 42 181 9 0.328 81.4 57.1 84.5 16 34 185 12 
Percentile 55% 0% 95% 0% 95% 0% 0% 96% 31% 0% 94% 0% 94% 0% 0% 6% 

 
 

 
 

Fig. 4 Training MCC for selecting optimal parameters C and G for 
LibSVM 

 

such as SMO, J4.5 and BayesNet using those features and 
 managed sometimes to gain high MCC scores for the 
training set, but this was not the case for the test set. It was 
observed that there was a significant drop of MCC score for 

the test set. In that case, the probability of the randomness 
of the selected features and the capabilities of the selected 
classifier was considered. For that, it was essential to 
analyze the features and it was assumed that they were 
efficient as they were ranked as the first 20. Also, it was 
noticed that the features were continuous values. As the 
values of the 20 selected features were continuous, it was 
appropriate to use a classifier that is capable of handling 
continuous values. For that, the SVM classifier was chosen, 
which is efficient handling continuous values, to build the 
prediction model. It can be noticed, the stability between the 
values of the MCC for the training set and the test set 
indicates that the selected features were not random. 
Moreover, the MCCs for the test sets were better than the 
train sets. This encouraged to continue the process with 
those features. 

Table 3 presents the results obtained using the 20 
features selected and LibSVM algorithm with the optimal 
parameters obtained; and the results given by alternative 
models already existing. Also, it summarizes the results of 
applying the SVM classifier on the 20 Amino Acids Indices 
features. The number of selected features was considered to 
be a reasonable number and could predict sequences of 
Amino Acids rapidly, which proves that model is efficient. 
The achieved MCC after using the SVM classifier was 
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0.307 for the training set and 0.328 for the test set. 
According to the achieved MCC results, consistency is 
evident with a ±0.015 stability ratio. Also, achieving a 
significant consistent sensitivity rate, which we 
successfully obtained and was 95% on the training set and 
94% on the test set was considered. 

5. Conclusions 

The work presented in this paper adopted a systematic 
DMKD process for the prediction of protein disorders. 
During the process, it was necessary to go back to previous 
steps of the DMKD process several times, to reach to the 
desired goal. It was necessary to repeat data preparation, 
data mining and analysis steps iteratively throughout the 
work. Following the procedure led to achieve substantially 
adequate results. The final accepted model achieved most 
of the objectives of the work. The presented model was 
capable of classifying fully disordered proteins from the 
structured proteins. MCC values for training and test sets 
are reasonably high and consistent. It should be noted here 
that MCC for training and test data were close which 
describes the stability of the model. As MCC does not vary 
for training and test data sets, model is expected to perform 
equally efficiently on any other data set or in other words 
the model is highly reliable. 

Though the MCC values obtained by the presented 
model were not relatively high, however, they are 
considered reasonably high. One important point to note 
here is that, the model is able to predict disordered proteins 
and structured proteins in almost equally efficient way 
(specificity and sensitivity values are high). The obtained 
results recommend the use of model developed for 
disordered protein prediction. 
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