
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

710

Manuscript received March 5, 2022
Manuscript revised March 20, 2022

https://doi.org/10.22937/IJCSNS.2022.22.3.93

ABMJ: An Ensemble Model for Risk Prediction in Software
Requirements

Mohammad Mahmood Otoom

Department of Computer Science and Information, College of Science in Zulfi, Majmaah University,
Al-Majmaah 11952, Saudi Arabi

Summary
Due to the rising complexity of software projects, it is quite
difficult to predict the risk in software requirements which is the
most profound and essential activity in SDLC. It may lead to the
failure of a software project. Risk prediction in software
requirements is more crucial as it is the start of any software
project. In this study, we propose an ensemble classifier based on
AdaBooostM1 and J48 combinedly named as (ABMJ), for risk
prediction in software requirements. The performance of the
proposed ABMJ is compared with seven diverse ML algorithms
including A1DE, MLP, CSF, J48, NB, RF, and SVM. These ML
models are evaluated on the risk dataset available at Zenodo
repository based on the accuracy, MCC, F-measure, recall, and
precision. The overall analysis shows the best performance of
ABMJ with an accuracy of 97.6285 % and the worst performance
of MLP with an accuracy of 62.0553%. This study's analysis may
be used as a standard for other academic studies, allowing the
outcomes of any proposed approach, framework, or model to be
benchmarked and essentially established.

Keywords
Software Requirements, Risk in Requirements, Machine Learning,
Decision Tree, Random Forest, Support Vector Machine

1. Introduction

Requirement Engineering (RE) is a well-organized and
systematic approach to gathering users’ requirements for a
software system [1]. Lately, we have seen a developing
enthusiasm for software systems that can screen their
condition and, if important, change their requirements to
keep on satisfying their purpose [2]. This specific sort of
software usually comprises a base system liable for the
fundamental functionalities, alongside a part that screens
the base system, examines the data, and afterwards
responds suitably to ensure that the system keeps on
executing its necessary functions. In software development,
RE is considered as the most fundamental stage that is
essentially concerned about the way toward documenting,
eliciting and keeping up the stakeholders' requirements [3].
Regularly, meeting and making sure about stakeholders'
centre requirements is one of the main causes behind
delivering a decent quality of software system [4].
There is consistently a chance of inexact procedures
during the time spent in the Software Development Life
Cycle (SDLC) which may prompt likely defeat of software

organization or software development. These questionable
procedures are known as software risks. The risks burst
from various risk influences that are established in an
assortment of exercises in the SDLC. If these risks are not
distinguished appropriately, they may get liable for the
disaster of the project [5][6]. These elements should be
separated and moderated to restrict the software cost and
schedule by risk estimations in the SDLC's underlying
phases. Because requirement collection is the first part of
SDLC, forecasting risks at this stage may boost software
productivity and quality while decreasing the likelihood of
project disasters [4][5][7].
The risks fundamentally affect software requirements.
They end up being the justification for harm to the
stakeholders or software. Therefore, risks have to be
predicted earlier in SDLC to improve the chances of
success of the projects. Because risk assessment at this
point will be more advantageous and will increase the
software's productivity. When risks are appropriately
handled, it also helps to reduce the likelihood of software
project failure. Frequent solutions for the prediction of
software risk at different phases in SDLC are available up
till, whereas infrequent methods are available to predict
risks in the software requirements phase in the literature
[5][8]. A Risk prediction model encompasses classification
methods that are projected to envisage risks on the
Software Requirement Specifications (SRS) of the project.
Keeping the aforesaid issue in mind identified with risk
prediction at the starting phase of software, researchers
evaluated and developed various models using several
classification techniques. However, sorting any extensive
range planning to offer the convenience of these
techniques is difficult. Completely, it was established that,
despite certain differences in the experiments, no single
model outperforms other techniques slantingly on varied
data.
This work, on the other hand, introduced an ensemble
model ABMJ for risk prediction in software requirements.
The suggested model is compared to seven ML techniques:
Multilayer Perceptron (MLP), Average One Dependency
Estimator (A1DE), Cost-Sensitive Decision Forest (CSF),
Naive Bayes (NB), J48 Decision Tree (J48), Support
Vector Machine (SVM), and Random Forest (RF). The
experimental results of each approach are compared to one
another. Matthew's correlation coefficient (MCC),
precision (Pr), recall (Re), F-measure (FM), and accuracy

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

711

(ACC) are used as assessment tools to evaluate each
technique.
The major contributions of this research are as follow:
We proposed an ensemble model for risk prediction in
software requirements based on AdaBoostM1 and J48.
We compare the proposed model with seven ML
techniques (A1DE, MLP, CSF, J48, NB, RF, and SVM)
for risk prediction in software requirements.
We conduct a series of experiments on the risk prediction
dataset available on the Zenodo repository.
To provide insight into the experimental results, evaluation
is carried out using Pr, Re, FM, MCC, and Acc.
Hereinafter, Section 2 details the research methodology,
and Section 3 presents the research framework. Whereas,
Section 4 details the analysis and discussion of the results,
and Section 5 concluded the study.

2. The Research Method

This exploration expects to determine the prediction of late
identification of risks in software projects and their impact
on the quality, timetable, and spending plan of the going
through software project. Since the latest risk prediction
models can quantify risks in the forthcoming phases,
normally from the software designing stage or code of the
SDLC, thus, these methodologies can distinguish risks,
however, have restricted capacity in staying away from
these risks from happening [5][9]. Risks in a software
project are triggered via numerous aspects throughout the
SDLC that leads to failure of the software project [8],
[10]–[11]. The biggest reasons for software failure are
technical difficulties, which are the result of fewer
software engineering principles, theories, and procedures.
These vulnerabilities should be addressed as soon as
possible to decrease the possibility of the software project
failing abruptly. The major characteristics of the software
project that will be improved are a general nature, timeline,
and budget of the project by anticipating risks. The risk
forecast model will assist in recognising the risk level of
an instance (software requirements) of another
organisation by using a risk dataset. The project/risk
manager, on the other hand, will aim to alter and control
the entire risk prediction process. The basic notion of risk
prediction using classification approaches has been
presented. This model is comprised of four primary
components, which are represented in Figure 1 and
explored in further detail below:
 Risk Identification
Risk identification is considered the first stage in the risk
prediction model, where the risk/project manager will
separate the requirements generally, and it is conducted
using a "checklist." SRS requirements including risk
threats were marked and examined for further
investigation. When the checklist was completed, It made
a beeline for the next stage [12], [13].
 Risk Analysis

During this step, a classifier uses a risk dataset to analyse
and validate requirements. A1DE, MLP, CSF, J48, NB,
RF, and SVM are evaluated to attain the most suitable
classifier for risk-associated situations [5]. The
classification method is chosen based on its better
precision as compared to other classifiers conversed in the
subsequent section.
 Risk Prioritization
This is the model's output step, when the studied risk is
prioritised, with high likelihood and high effect risks being
moved to the top of the list and low probability and low
impact risks being pushed to the bottom [7].
 Requirement risk Dataset
The risk processes for the software requirements dataset is
accessible on the Zenodo repository datasets1 [14].

Fig. 1 Requirement Risk Prediction Model

3. Proposed Model

The proposed model is based on AdaBoostM1 and J48
(ABMJ). AdaBoost is a meta-algorithm that can be used to
improve the effectiveness of various classifiers. It works
based on the iterative running of a particular base or weak
model on diverse disseminations on training data. After
that, it combined the base learners into a single model. The
working mechanism of the proposed AdaBoostM1 is
illustrated in Figure 2 (A), while Figure 2 (B) and Figure 2
(C) respectively presents the proposed J48 and ensemble
model. We tuned the number of parameters for each
classifier to optimize the performance of the model.

1 https://zenodo.org/record/1209601#.Xpa9mUAzZdg

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

712

Fig. 2 Flowcharts of AdaBoostM1, J48 and Ensemble Model, (A)
AdaBoostM1, (B) J48, (C) Ensemble

Parameters for AdaBoostM1: The batchSize selected for
AdaBoostM1 is 100. The classifier inside AdaBoostM1 is
J48. Number Decimal Places are 2, while the number of
iterations is selected 10. The seed value is 1 and the weight
threshold selected is 100.
Parameters for J48: The seed value and batch size,
number of decimal places are the same for AdaBoostM1
and J48. The confidence factor value is 0.25, while the
minimum number for objective is 2. Total numbers of
folds for J48 are selected 3.

4. The Research Framework

The dataset for risk prediction in software requirements,
includes the features that are associated to the
requirements and risks of the software project. These risks
destructs the success of software development. This
dataset contains 13 attributes and 253 instances with 5
levels of risks identified. The count and weight of each
risk level are presented in Figure 3 while the list of
attributes is presented in Table 1. 10-fold cross validation
is used for data training and testing, which is a standard
criterion [15][16]. The requirements set is utilised as input
to the model in the projected model, and the model outputs
the amount of risk in the requirements. These results will
be used by the project manager or domain expert to easily
prepare and minimise risks sooner. Based on the
requirements, the project manager or domain expert has
the right to delete, add, or change the findings. The
research is separated into three stages: software risk
prediction model, dataset filtration, and model validation.
In the sections that follow, these stages are further
addressed. The proposed study framework is depicted in
Figure 4.

Table 1: List of Attributes with Distinct and Types
S.

No.
Name Distinct Type

1 Requirements 292 Categorical

2 Project Category (PC) 4 Categorical

3 Requirement Category
(RC)

10 Categorical

4 Risk Target Category
(RTC)

22 Categorical

5 Probability 81 Numeric

6 The magnitude of Risk
(MR)

7 Categorical

7 Impact 5 Categorical

8 Dimension of Risk (DR) 13 Categorical

9 Affecting No of Modules
(ANoM)

9 Numeric

10 Fixing Duration (Days) 12 Numeric

11 Fix Cost (% of Project) 10 Numeric

12 Priority 293 Numeric

13 Risk Level (RL) 5 Categorical

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

713

Fig. 3 Count and Weight of each Level (Class)

Fig. 4 Research Framework

4.1 Model Evaluation and Comparison

A model is proposed based on AdaBoostM1 and J48 for
risk prediction in software requirements. The outcomes of
the proposed ABMJ are compared with seven different
ML techniques including Cost-Sensitive Decision Forest
(CSF), Naïve Bayes (NB), Multilayer Perceptron (MLP),
J48 Decision Tree (J48), Average One Dependency
Estimator (A1DE), Random Forest (RF), and Support
Vector Machine (SVM). The 10-fold cross-validation
mechanism is used for data training and testing. Overall
models are evaluated using precision (Pr), recall (Re), F-
measure (FM), Matthew’s correlation coefficient (MCC),
and accuracy (Acc). All these assessment measures can be

calculated using the following equations where δ presents
the true positive predictions, β presents the false positive
prediction, α presents the true negative and µ presents the
false-negative predictions.
Precision: It is the total of positive forecasts divided by the
sum of positive class values projected. It can be calculated
as:

𝑃𝑟 ൌ ஔ

ஔାஒ
 (1)

Recall: It is demarcated as the proportion of true positive
units with high estimation to the sum of positive modules.
It can be found as:

𝑅𝑒 ൌ
ஔ

ஔାµ
 (2)

F-Measure: It is also known as F1-Score. F1-score carries
the balance between precision and recall. It can be
assessed as:

𝐹𝑀 ൌ
ଶ ∗ ௉௥ ∗ ோ௘

௉௥ ା ோ௘
 (3)

MCC: It is a correlation coefficient measured using all four
values in the CM. This can be found as:

𝑀𝐶𝐶 ൌ
ሺ஑∗ஔሻିሺµ∗ஒሻ

ඥሺஒାஔሻሺµାஔሻሺ஑ାஒሻሺ஑ାµሻ
 (4)

Accuracy: It is the opinions to that how much the
prediction is accurate. It can be calculated as:

𝐴𝑐𝑐 ൌ ஔା஑

ஔା஑ାஒାµ
 (5)

4.2 Employed Techniques

ML methods are now widely used in a number of sectors
to extract valuable information from massive volumes of
data. ML applications are employed in a range of real-
world scenarios, including cyber-security, bio-informatics,
social network community recognition, and enhancing
development processes to build high-quality software
systems [17]. The subsections that follow provide a quick
overview of the ML approaches used in this study.

A. Average One Dependency Estimator

It is a probabilistic model that is commonly used for
classification challenges. It thrives in colossally precise
categorization by being an average of a tiny space of many
NB-like models with lesser disinterest promises than NB
[18].

B. Multilayer Perceptron

The most important modules of a neural network (NN) are
an input layer, at least one hidden layer, and an output
layer [19][20]. When data is given as the input layer for a
NN, the network neurons begin deviousness in the
succeeding layer until an output value is produced at each
of the output neurons [21][22].

C. Cost-Sensitive Decision Forest

As an optional component of the extract used by the C4.5
decision tree, CSF executes a cost-sensitive extract, which
cuts the tree if the reliable sum of misclassification for
future minutes does not expand considerably as a result of

28

135

75

45

16
28.0

135.0

75.0

45.0

16.0

0

20

40

60

80

100

120

140

160

Lavel 1 Level 2 Lavel 2 Level 3 Lavel 3

1 2 3 4 5

Count Weight

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

714

the extract. Furthermore, unlike the Cost-Sensitive
Decision Tree (CS-T), the CSF contains a tree that must
evolve entirely before being retrieved [23][24].

D. J48 Decision Tree

The J48 decision tree is a more advanced variant of the
C4.5 decision tree. This strategy employs divide-and-
conquer tactics. To make a tree, it executes the clipping
procedure. J48 is a company-wide approach for entropy or
information-gathering activities [25][26].

E. Naïve Bayes

The term “naive” references preventive individuality
amongst features. The “naive” assumption losses
calculation complexity to a simple growth of probabilities.
That's for the intention that it is the simplest method within
classification models. As an influence of this sincerity, it
can promptly indenture with an informational index with
profuse facilities [27][28].

F. Random Forest

This approach classifies all trees in the forest by preparing
the anticipation of the tree structure, which is then
analysed using the same diffusion and random vector
values [28][24].

G. Support Vector Machine

It is a supervised learning approach with applications in
categorization, pattern recognition, and bio-photonics [30].
It was created with binary classification in mind, but it
may be used to a wide range of classification [31]. In
binary classification, the main idea of SVM is to define a
line across classes of data in order to use the distance
between data points sitting next to it as a criterion. If the
data is linearly inseparable, mathematical functions are
employed to transform it to a higher-dimensional space,
where it may be divided linearly [32][33].

5. Analysis and Discussion on Exam Results

This study focuses on seven diverse ML classification
techniques for the prediction of risk in software
requirements. The techniques are evaluated on a dataset
taken from the Zenodo repository using multiple
assessment measures. All the aforementioned techniques
are modeled based on some parameters. The common
parameters in all techniques are batch size = 100, number
decimal place = 2, and random seed value =1. Some
parameters that are different for individual techniques are:
AIDE used frequency limit = 1, and weight =1.0.
MLP used hidden layer =3, learning rate = 0.3, momentum
= 0.2, and training time = 500.
CSF used confidence =0.25, cost goodness = 0.2,
minRectLeaf = 10, numTrees = 60, and separation = 0.3.
J48 used confidence = 0.25, minNumObj = 2, and
numFolds = 3.

NB used only the common tuning parameters that are batch
size and number decimal place.

Table 2: Confusion Matrix Value Achieved through each Technique

Technique Class a b c D e

A1DE

Level 5 = a 13 0 0 0 1

Level 2 = b 1 106 3 2 1

Level 3 = c 2 4 55 0 2

Level 1 = d 0 1 1 23 0

Level 4 = e 2 1 3 1 31

MLP

Level 5 = a 0 0 11 0 3

Level 2 = b 0 98 15 0 0

Level 3 = c 0 11 52 0 0

Level 1 = d 0 24 0 1 0

Level 4 = e 0 0 32 0 6

CSF

Level 5 = a 7 1 0 0 6

Level 2 = b 0 112 1 0 0

Level 3 = c 0 15 47 0 1

Level 1 = d 0 24 0 1 0

Level 4 = e 0 3 6 0 29

J48

Level 5 = a 14 0 0 0 0

Level 2 = b 0 111 2 0 0

Level 3 = c 0 0 61 0 2

Level 1 = d 0 1 0 24 0

Level 4 = e 1 0 2 0 35

NB

Level 5 = a 12 0 0 0 2

Level 2 = b 0 100 9 4 0

Level 3 = c 0 1 60 0 2

Level 1 = d 0 1 0 24 0

Level 4 = e 2 0 2 0 34

RF

Level 5 = a 1 1 1 0 11

Level 2 = b 0 112 1 0 0

Level 3 = c 0 1 61 0 1

Level 1 = d 0 17 1 6 1

Level 4 = e 0 1 8 0 29

SVM

Level 5 = a 5 0 1 0 8

Level 2 = b 0 100 10 3 0

Level 3 = c 0 13 44 0 6

Level 1 = d 0 14 0 11 0

Level 4 = e 5 0 11 0 22

ABMJ

Level 5 = a 14 0 0 0 0

Level 2 = b 0 111 2 0 0

Level 3 = c 0 0 61 0 2

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

715

Level 1 = d 0 1 0 24 0

Level 4 = e 1 0 0 0 37

RF used bagSizePercent = 100, numExcecutionSlots = 1,
and numIterations = 100.
SVM used epsilon = 1.0E-12, kernel = polyKernel, and
toleranceParameter = 0.001.
All of the aforementioned metrics are generated using a
confusion matrix (CM) to analyse the outcome. Table 2
presents the CM for each approach. First, the true positive
rate (TPR) and false positive rate (FPR) are computed.
Figure 5 depicts the TPR and FPR outcomes of each
approach. The study reveals that suggested ABMJ
performs best with a TPR of 0.976 and MLP performs
worst with a TPR of 0.621.

Fig. 5 TPR and FPR Analysis of ML Techniques

The Acc of individual technique is evaluated using
equation number 5. The Acc analyses are presented in
Figure 6. These analyses show the best performance of
proposed model with the accuracy of 97.6285%, and the
worst performance of MLP with the accuracy of 62.0553%,
while Figure 7 presents the percentage difference (PD)
between ABMJ and all the rest of the employed techniques.
PD is calculated as:

𝑃𝐷 ൌ ቆ
௡ଵି௡ଶ
೙భశ೙మ

మ

ቇ ∗ 100 (6)

Where n1 represents the value of ABMJ while n2
represents the value of other techniques. The illustration
shows a minimal difference between ABMJ and J48 is
0.814%, however, there is very less difference between the
comparison of NB and A1DE with ABMJ that is 7.128%
of NB and 8% of A1DE with ABMJ. As discussed above,
the outcomes of MLP are worst in our case, the difference
between ABMJ and MLP is 44.555%.

Fig. 6 Accuracy Analyses through Individual Technique

Fig. 7 Percentage Difference between ABMJ and other Employed
Techniques

The outcome achieved through Pr, Re, FM, and MCC is
present in Table 3. This table also illustrates the best
performance of ABMJ compared with other employed
techniques on the mentioned measures. In the last row of
this table, under the value of Pr, FM, and MCC there is a
“?” symbol instead of value achieved through MLP. This
is due to the “0” value present in the CM. As we know that
“0” cannot be divided by any value, so instead of that we

A1DE MLP CSF J48 NB RF SVM ABMJ

FPR 0.034 0.19 0.151 0.01 0.026 0.087 0.127 0.007

TPR 0.901 0.621 0.775 0.968 0.909 0.826 0.719 0.976

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Accuracy

ABMJ 97.6285

J48 96.8379

NB 90.9091

A1DE 90.1186

RF 82.6087

CSF 77.4704

SVM 71.9368

MLP 62.0553

0
10
20
30
40
50
60
70
80
90

100

Percentage Difference

ABMJ with J48 0.814

ABMJ with NB 7.128

ABMJ with A1DE 8

ABMJ with RF 16.667

ABMJ with CSF 23.025

ABMJ with SVM 30.303

ABMJ with MLP 44.555

0

5

10

15

20

25

30

35

40

45

50

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

716

put “?” in the field. To strengthen over-analysis, we also
have calculated the Receiver Operating Characteristic
Area (ROCA) and Precision-Recall Area (PRCA)
presented in Figure 8. The overall analyses through each
measure present the better performance of proposed ABMJ
for the prediction of risk in software requirements.

Table 3. Pr, Re, FM and MCC Analyses via each Employed Technique
Technique Precision Recall FM MCC

ABMJ 0.977 0.976 0.976 0.968

J48 0.969 0.968 0.968 0.958

NB 0.915 0.909 0.91 0.876

A1DE 0.904 0.901 0.902 0.866

RF 0.848 0.826 0.788 0.757

CSF 0.815 0.775 0.736 0.668

SVM 0.715 0.719 0.71 0.606

MLP ? 0.621 ? ?

Fig. 8 ROCA and PRCA Analysis through each Employed Technique

5.1 Discussion

A software project is more likely to fail if it does not
satisfy the client's budget, needs, or timeline, and the
product's quality suffers as a result. As a result, a product
should be built within budget and schedule constraints to
reduce work and the likelihood of failure. The late risk
forecasting has a greater impact on project failure.

5.1.1 Why the performance of proposed model is
better then other employed models?

Ensemble techniques in statistics and ML combine many
learning algorithms to achieve greater prediction
performance than each of the constituent learning
algorithms alone [34]. Adaptive Boosting is a Boosting

approach used in ML as an Ensemble Method. The
weights are re-allocated to each instance, with larger
weights applied to improperly classified instances [35].
AdaBoost trains several classifiers at the same time. Each
classifier is trained on examples that were more complex
for the previous classifier. To that purpose, each instance
is allocated a weight, and if an instance proves difficult to
categorise, its weight rises [36]. Because the input
parameters are not jointly optimised, Adaboost is less
prone to overfitting. Adaboost can increase the accuracy of
weak classifiers. Moreover, J48 demands less work for
data preparation during pre-processing than other
algorithms. It does not need data standardisation or scaling.
Missing values in the data have no significant impact on
the process of developing a decision tree [37]. The J48
(C4.8) decision tree technique is a sophisticated decision
tree approach that works well on huge datasets [9], [16]. In
our situation, the dataset is similarly enormous, with a
large amount of data. These are the basic reasons that the
proposed model performs as compare to other employed
models.

5.1.2 Model Preparation

A risk prediction model is proposed, validated, and
evaluated to compare and test the results of appropriate
classifiers among ABMJ, J48, NB, A1DE, RF, CSF, SVM,
and MLP classifiers, and the results show that ABMJ is
the best appropriate classifier in the environment related to
software risk prediction in the software requirements.

5.1.3 Model Evaluation

We compared J48, NB, A1DE, RF, CSF, SVM, and MLP
classifiers with ABMJ and found that the proposed ABMJ
classifier is the most optimal for the prediction of risk in
software requirements.

5.2 Threats to Validity

The above sections present the better performance of the
proposed model (ABMJ) but there are some threats to the
validity of these analyses. These threats to validities are
divided into three categories these are:
Internal Validity: This study's investigation is based on a
variety of well-known evaluation measures that have
previously been used in other studies. A risk is that the
renewal of some other or the most recent standards as a
replacement for employed norms may reduce the acquired
results. Furthermore, the procedures used in this
investigation can be replaced with some new techniques
that can be hybridised with one another and provide better
results than the previously used methods.
External Validity: Our hypothesis was evaluated using a
dataset from the Zenodo archive,
https://zenodo.org/record/1209601#.Xpa9mUAzZdg. A
threat to validity may emerge if we link the extended
methodologies with other data obtained from other
software development firms using studies, etc., or if we
replace this dataset with another dataset, which may alter

ABM
J

J48 NB A1DE RF CSF SVM MLP

ROCA 0.991 0.985 0.98 0.983 0.992 0.981 0.887 0.828

PRCA 0.977 0.951 0.941 0.947 0.962 0.947 0.649 0.598

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

717

the results when calculating the error rates. Similarly,
extended approaches may be unable of providing
improved projections in outcomes when using several
datasets.
Construct Validity: Various ML approaches are
benchmarked with proposed ABMJ based on a few
performance assessment metrics. The techniques
combined in this study are in the centre point of their
reformist highlights over numerous procedures used by
scholars in previous years. However, there is a risk that if
we add any other new approaches, these new techniques
may exhaust the expanded techniques. It is also
encouraging that using the most up-to-date performance
evaluation metrics produces better results that can
outperform the existing findings.

Conclusion

Risk prediction in software requirements is an active
research subject with growing research community
engagement. The goal of this research is to present a
methodology for risk prediction in software requirements
using a requirements risk dataset. The proposed model is
benchmarked with seven different ML techniques to find a
better solution for risk prediction in software requirements.
The analysis evaluated through Pr, Re, FM, MCC, and
accuracy shows the better performance of ABMJ with the
accuracy of 97.6285 % and the worst performance of MLP
with the accuracy of 62.0553%. This study's
comprehensive results can be utilised as a guideline for
other researches. Any confirmation that a new approach,
model, or framework improves prediction may be
benchmarked and confirmed. Class imbalance issues
should be committed to the databases for future
development. To enhance accuracy, feature selection and
ensemble learning techniques should be researched.
Furthermore, this research may be utilised to identify the
optimal classifier for developing and deploying a model
for risk prediction in software requirements.

Acknowledgments

The authors would like to thank the Deanship of Scientific
Research at Majmaah University for supporting this work
under project number No. R-2022-65

References
[1] M. Yaseen, A. Mustapha, and N. Ibrahim, “An approach

for managing large-sized software requirements during
prioritization,” 2018 IEEE Conf. Open Syst. ICOS 2018,
pp. 98–103, 2019, doi: 10.1109/ICOS.2018.8632806.

[2] B. B. Duarte, A. L. De Castro Leal, R. D. A. Falbo, G.
Guizzardi, R. S. S. Guizzardi, and V. E. Silva Souza,
“Ontological foundations for software requirements with a
focus on requirements at runtime,” Appl. Ontol., vol. 13,
no. 2, pp. 73–105, 2018, doi: 10.3233/AO-180197.

[3] F. Hujainah, R. B. A. Bakar, M. A. Abdulgabber, and K. Z.
Zamli, “Software Requirements Prioritisation: A
Systematic Literature Review on Significance,
Stakeholders, Techniques and Challenges,” IEEE Access,
vol. 6, pp. 71497–71523, 2018, doi:
10.1109/ACCESS.2018.2881755.

[4] I. M. Keshta, M. Niazi, and M. Alshayeb, “Towards the
implementation of requirements management specific
practices (SP 1.1 and SP 1.2) for small- And medium-sized
software development organisations,” IET Softw., vol. 14,
no. 3, pp. 308–317, 2020, doi: 10.1049/iet-sen.2019.0180.

[5] Z. S. Shaukat, R. Naseem, and M. Zubair, “A dataset for
software requirements risk prediction,” Proc. - 21st IEEE
Int. Conf. Comput. Sci. Eng. CSE 2018, pp. 112–118, 2018,
doi: 10.1109/CSE.2018.00022.

[6] G. Viswanathan and P. Jayagopal, “MODELS FOR FOG
AND EDGE COMPUTING INFRASTRUCTURES A
Threat Categorization of Risk ‑ Based approach for
analyzing Security Threats early phase in SDLC,” Arab. J.
Sci. Eng., no. 0123456789, 2021, doi: 10.1007/s13369-
021-05602-x.

[7] B. Khan, R. Naseem, M. Binsawad, M. Khan, and A.
Ahmad, “Software cost estimation using flower pollination
algorithm,” J. Internet Technol., vol. 21, no. 5, pp. 1243–
1251, 2020, doi: 10.3966/160792642020092105002.

[8] J. Dhlamini, I. Nhamu, and A. Kaihepa, ʺIntelligent

risk management tools for software development,ʺ in

Proceedings of the 2009 Annual Conference of the

Southern African Computer Lecturersʹ Association,

pp. 33‐40, 2009, doi: 10.1145/1562741.1562745
[9] R. Naseem et al., “Investigating Tree Family Machine

Learning Techniques for a Predictive System to Unveil
Software Defects,” Complexity, vol. 2020, pp. 1–21, 2020,
doi: 10.1155/2020/6688075.

[10] V. Bijalwan, V. Kumar, P. Kumari, and J. Pascual, “KNN
based machine learning approach for text and document
mining,” Int. J. Database Theory Appl., vol. 7, no. 1, pp.
61–70, 2014, doi: 10.14257/ijdta.2014.7.1.06.

[11] B. W. Boehm, “Software risk management: Principles and
practices,” Softw. Manag. Seventh Ed., no. January, pp.
365–374, 2007, doi: 10.1109/9780470049167.ch11.

[12] A. Gupte, S. Joshi, P. Gadgul, and A. Kadam,
“Comparative Study of Classification Algorithms used in
Sentiment Analysis,” Int. J. Comput. Sci. Inf. Technol., vol.
5, no. 5, pp. 6261–6264, 2014.

[13] J. Oxenstierna, “Predicting house prices using Ensemble
Learning with Cluster Aggregations,” Examensarbete 15
hp, vol. IT 17 091, no. December, pp. 1–42, 2017, [Online].
Available: https://uu.diva-
portal.org/smash/get/diva2:1188674/FULLTEXT01.pdf.

[14] H. Hijazi, S. Alqrainy, H. Muaidi, and T. Khdour,
“Identifying causality relation between software projects
risk factors,” Int. J. Softw. Eng. its Appl., vol. 8, no. 2, pp.
51–58, 2014, doi: 10.14257/ijseia.2014.8.2.06.

[15] B. Khan, R. Naseem, F. Muhammad, G. Abbas, and S. Kim,
“An empirical evaluation of machine learning techniques
for chronic kidney disease prophecy,” IEEE Access, vol. 8,
pp. 55012–55022, 2020, doi:
10.1109/ACCESS.2020.2981689.

[16] B. Khan et al., “Software Defect Prediction for Healthcare
Big Data: An Empirical Evaluation of Machine Learning
Techniques,” J. Healthc. Eng., vol. 2021, 2021, doi:
10.1155/2021/8899263.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022

718

[17] D. L. Miholca, G. Czibula, and I. G. Czibula, “A novel
approach for software defect prediction through
hybridizing gradual relational association rules with
artificial neural networks,” Inf. Sci. (Ny)., vol. 441, pp.
152–170, 2018, doi: 10.1016/j.ins.2018.02.027.

[18] S. Picek, A. Heuser, and S. Guilley, “Template attack
versus Bayes classifierPicek, S., Heuser, A., & Guilley, S.
(2017). Template attack versus Bayes classifier. Journal of
Cryptographic Engineering, 7(4), 343–351.
https://doi.org/10.1007/s13389-017-0172-7,” J. Cryptogr.
Eng., vol. 7, no. 4, pp. 343–351, 2017, doi:
10.1007/s13389-017-0172-7.

[19] K. A. Otunaiya and G. Muhammad, “Performance of
Datamining Techniques in the Prediction of Chronic
Kidney Disease,” Comput. Sci. Inf. Technol., vol. 7, no. 2,
pp. 48–53, 2019, doi: 10.13189/csit.2019.070203.

[20] S. Chatterjee, N. Dey, F. Shi, A. S. Ashour, S. J. Fong, and
S. Sen, “Clinical application of modified bag-of-features
coupled with hybrid neural-based classifier in dengue fever
classification using gene expression data,” Med. Biol. Eng.
Comput., vol. 56, no. 4, pp. 709–720, 2018, doi:
10.1007/s11517-017-1722-y.

[21] E. A. AL-Dreabi, M. M. Otoom, B. Salah, Z. M.
Hawamdeh, and M. Alshraideh, "Automated Detection of
Breast Cancer Using Artificial Neural Networks and Fuzzy
Logic," International Journal of Sciences: Basic and
Applied Research (IJSBAR), vol. 35, 2017.

[22] A. B. Nassif, D. Ho, and L. F. Capretz, “Towards an early
software estimation using log-linear regression and a
multilayer perceptron model,” J. Syst. Softw., vol. 86, no. 1,
pp. 144–160, 2013, doi: 10.1016/j.jss.2012.07.050.

[23] M. J. Siers and M. Z. Islam, “Cost sensitive decision forest
and voting for software defect prediction,” Lect. Notes
Comput. Sci. (including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), vol. 8862, pp. 929–936, 2014,
doi: 10.1007/978-3-319-13560-1.

[33] M. M. Otoom, M. Jemmali, Y. Qawqzeh, K. N. SA, and F.
Al Fay, "Comparative Analysis of Different Machine
Learning Models for Estimating the Population Growth
Rate in Data-Limited Area," IJCSNS, vol. 19, p. 96, 2019.

[25] N. Nahar and F. Ara, “Liver Disease Prediction by Using
Different Decision Tree Techniques,” Int. J. Data Min.
Knowl. Manag. Process, vol. 8, no. 2, pp. 01–09, 2018, doi:
10.5121/ijdkp.2018.8201.

[26] K. Shaukat Dar and S. M. Ulya Azmeen, “Dengue Fever
Prediction: A Data Mining Problem,” J. Data Mining
Genomics Proteomics, vol. 06, no. 03, 2015, doi:
10.4172/2153-0602.1000181.

[27] B. T. Pham, “A Novel Classifier Based on Composite
Hyper-cubes on Iterated Random Projections for
Assessment of Landslide Susceptibility,” J. Geol. Soc.
India, vol. 91, no. 3, pp. 355–362, 2018, doi:
10.1007/s12594-018-0862-5.

[28] A. Iqbal et al., “Performance analysis of machine learning
techniques on software defect prediction using NASA
datasets,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5, pp.
300–308, 2019, doi: 10.14569/ijacsa.2019.0100538.

[29] H. Jin, S. Kim, and J. Kim, “Decision factors on effective
liver patient data prediction,” Int. J. Bio-Science Bio-
Technology, vol. 6, no. 4, pp. 167–178, 2014, doi:
10.14257/ijbsbt.2014.6.4.16.

[30] A. Alsaeedi and M. Z. Khan, “Software Defect Prediction
Using Supervised Machine Learning and Ensemble
Techniques : A Comparative Study,” pp. 85–100, 2019, doi:
10.4236/jsea.2019.125007.

[31] S. Khan, R. Ullah, A. Khan, N. Wahab, M. Bilal, and M.
Ahmed, “Analysis of dengue infection based on Raman
spectroscopy and support vector machine (SVM),” Biomed.
Opt. Express, vol. 7, no. 6, p. 2249, 2016, doi:
10.1364/boe.7.002249.

[32] C. Davi et al., “Severe Dengue Prognosis Using Human
Genome Data and Machine Learning,” IEEE Trans.
Biomed. Eng., vol. 66, no. 10, pp. 2861–2868, 2019, doi:
10.1109/tbme.2019.2897285.

[33] M. M. Otoom, "Comparing the Performance of 17 Machine
Learning Models in Predicting Human Population Growth
of Countries," IJCSNS, vol. 21, p. 220, 202

[34] P. Vaitkevicius and V. Marcinkevicius, “Comparison of
Classification Algorithms for Detection of Phishing
Websites,” Inform., vol. 31, no. 1, pp. 143–160, 2020, doi:
10.15388/20-INFOR404.

[35] U. R. Acharya et al., “An integrated index for identification
of fatty liver disease using radon transform and discrete
cosine transform features in ultrasound images,” Inf.
Fusion, vol. 31, pp. 43–53, 2016, doi:
10.1016/j.inffus.2015.12.007.

[36] T. C. F. Yip et al., “Laboratory parameter-based machine
learning model for excluding non-alcoholic fatty liver
disease (NAFLD) in the general population,” Aliment.
Pharmacol. Ther., vol. 46, no. 4, pp. 447–456, 2017, doi:
10.1111/apt.14172.

[37] R. Naseem et al., “Performance Assessment of
Classification Algorithms on Early Detection of Liver
Syndrome,” J. Healthc. Eng., vol. 2020, 2020, doi:
10.1155/2020/6680002.

