
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022 

 

719

Manuscript received March 5, 2022 
Manuscript revised March 20, 2022 
https://doi.org/10.22937/IJCSNS.2022.22.3.94 

 

ucsc-genomic-api: A Python Wrapper of UCSC Genome Browser 
RESTful API 

 Eyad Hamza1, Mazen El-Nabarawy1, Sohaila Abd-Elhamied1, Yasmeen Ahmed1,  
Salma Ahmed1, and Sara El-Metwally2†, 

† Corresponding author:  
1 Medical Informatics Program, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt. 
2 Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt. 

 

Abstract 
UCSC browser has been updated continuously as more data are 
generated and new features and technologies are released. 
Recently, UCSC Genome browser has introduced RESTful API to 
facilitate access the specific genomic regions or data tracks and 
allow the flexibility of querying the data through scripting 
languages. ucsc-genomic-api is a python programmable interface 
based on RESTful API to facilitate the access of UCSC genome 
browser databases, make a data query more simple, human-
understandable, and requiring no prior knowledge of database 
schemas. The user has a dynamic flexibility to query different 
genomic intervals, so the data can be retrieved from specific track 
hub or native assembly results. ucsc-genomic-api is easy to use, 
readable and extendable to add more functionalities, can be 
customized for specific user needs, has no dependencies, and 
compatible with many operating systems. Installation is available 
through standard python tools from https://pypi.org/project/ucsc-
genomic-api/ or using a public repository at : 
https://github.com/Eyadhamza/UCSC-Genomic-REST-Api-
Wrapper 
 
Keywords: 
UCSC genome browser, RESTful API, data retrieval, genomic data 
analysis, python package.  

 
1.  Introduction 
 

UCSC Genome browser is a graphical interface for 
visualizing and annotating genomic data extracted from 
multiple sources of biological databases. UCSC browser 
has been updated continuously as more data are generated 
and new features and technologies are released [1-5]. The 
browser allows the genomic data exploration on different 
scales range from individual bases up to chromosomal level 
along with the annotated information from different species. 
Also, the browser allows the users to create their own 
custom visualization track to visualize their imported data, 
organize it and share it with a research community [6-9]. 

To download a specific genomic region or data track 
stored on the UCSC server, the users need to download the 
complete data set or navigate a specific region through 
Table Browser. The Table Browser is available as a tool to 
use the data directly on the web server while the users can 

initiate the SQL queries to access data tables on their own 
local machines [3,10-12]. The extracted data can also be 
converted into different formats such as BED, wiggle, etc. 
The user can initiate SQL queries to access the data tables 
locally or on the download server [3,10,13]. 

The UCSC genomic browser created resources are not 
flexible to integrate with the most common bioinformatics 
scripting languages like R, Perl, and Python. The UCSC 
genome browser team creates a RESTful API to facilitate 
access the specific genomic regions or data tracks and allow 
the flexibility of querying the data through scripting 
languages. The RESTful API programming interface 
returns the results of different data queries in a JSON format 
that is required to be parsed further in order to extract the 
meaningful attributes and its corresponding values [11]. 

 
2.  Related Work 
 

The public availability of annotated data sets from large 
scale projects such as ENCODE [14] and UCSC genome 
browser has been accelerating the genomic research and 
encourage the research community to analyze their local 
data in the light of previously annotated features [2,4,5,8-
10,15]. The public research community will access the 
public databases as a routine activity and integrate the data 
from different sources in order to start the journey of 
downstream data analysis [16,17].  

UCSC genome database APIs or libraries based on 
scripting language are still limited. Ruby UCSC API is one 
of the introduced libraries for accessing UCSC genome 
database based on Ruby programming language. It utilizes 
the object-relational mapping component in Ruby called 
ActiveRecord 3. The UCSC genomic database is configured 
as a module under a namespace called Bio::Ucsc and each 
table is represented as a class. To retrieve specific data from 
a table, each class has a set of defined methods based on a 
database schema that have a compatible naming convention 
of the ActiveRecord framework methods and allow the easy 
access and manipulation through it. The current limitations 
of this API is its dependency on the table schema to find the 
table associations and the difficulty of tracking the 



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022 
 

 

720

 

databases updates automatically. The API does not support 
other data type formats such as BigWig, BigBed, and Bam 
formats [18].  

For Perl, Genoman [19] library has many interfaces to 
biological databases including UCSC genome browser. 
Cruzdb [16] is a python UCSC genome database API based 
on SQLAlchemy toolkit. CruzDB utilizes an instance of 
UCSC’s MySQL to function properly on a remote data. The 
local mirror and parallelization can improve the 
performance of speeding up the process of data access 
remotely. CruzDB has a dependency on UCSC’s MySQL 
and python SQLAlchemy. It supports Python 2.6 and 2. 7. 
Cruzdb can utilize a small subset of tables using local mirror 
of MySQL or SQLite database. The user can update the 
local copy of the table by adding or removing data and use 
it as the original one. CruzDB speed up the interval query 
operations by reading all the features into a memory and 
creating an interval tree that maps all the genomic features 
into memory and there is always a tradeoff between a time 
to load all the features into memory and time to query the 
tree on memory.  CruzDB utilizes a remote UCSC MySQL 
instance to access the database through repeated SQL 
queries. The query time can be reduced through SQLite, or 
mapping the entire table into memory and representing it as 
a local interval tree to reduce the network overhead.  

The UCSC genome browser RESTful API interface has 
been introduced in 2020 and has the ability to access 
different types of browser data such as: the available public 
hubs, genome assemblies, chromosomes, and genomic 
DNA sequences. The queries initiated by RESTful API 
interface can access the available public hubs or genome 
assemblies or navigate through a specific data track or a 
region in a genome assembly, specific chromosome or DNA 
sequences [11]. Transitioning data access through REST 
APIs make a data query more simple, human-
understandable, requiring no prior knowledge of queried 
database (i.e. in theory database schemas). The returned 
results are well structured in formats like JSON that is better 
to handle data complexity. The results can be quicker 
depend on the request size and the utilization of the 
concurrency concepts. 

The community lacks a user friendly simple scripting 
programming interface based on a RESTful API for 
querying genomic databases. Developing such interface 
will allow downstream data integration and analysis and 
drive the field of biomedical research in many areas related 
to integrative genomics and bioinformatics. 
 
3.  Method 

On UCSC genome browser, there are two types of 
tracks that contain genomic data assemblies and annotations 
files: native tracks hosted by the UCSC server and hub 
tracks located remotely on the user’s machine and can be 
accessed via HTTP request. Track hubs can be displayed on 

the genomes supported by UCSC or your imported 
sequence [20,21]. The track hubs can be public hubs 
registered with UCSC genome browser, customized hubs 
that is created and setup by users, and unlisted and local 
hubs that can be also imported and manipulated by the users. 
When the data is imported from a track hub, only requested 
region is displayed rather than the entire file content. This 
on-demand transition property overcomes the network 
overhead to display the content of large data files, reducing 
the uploading time and increase access speed. 

RESTful API is a quick and easy programmable 
approach for searching and retrieving data from a database. 
The RESTful API queries are simple, human readable and 
understandable, and required no prior knowledge of the 
queried database. The query results will be in a structured 
format (i.e. JSON or XML) that can capture the data 
complexity and optimize its concurrency usage. The 
returned JSON results are in the form of attribute-value 
pairs that are required to be parsed and processed step 
further in order to be more useful, understandable and 
usable (see Fig. 1). Also, most of downstream data cleaning, 
processing, and analysis usually accomplished via one of 
the scripting languages like Python that can also use the 
RESTful API.   

 

 

Fig. 1  Example of returned results by UCSC REST API endpoint 
function /list/publicHubs. 

We implemented our Python package (ucsc-genomic-
api) to query UCSC genomic databases through RESTful 
service. ucsc-genomic-api allows the user to retrieve the 
data from specific track hub or native assembly results. Also, 
it has a dynamic flexibility for querying specific genomic 
regions or intervals. ucsc-genomic-api is a simple package 
that can be easy to use, readable and extendable to add more 
functionalities, and customized for specific user needs. The 
API is a plug-in python module that has no dependencies, 
and is compatible with many operating systems.  

There are six primary classes in the ucsc-genomic-api 
package: Hub, Genome, Track, TrackSchema, 
Chromosome, and Sequence (Table 1). The defined classes 
allow retrieving data from different sources such as public 
hubs, genome assemblies hosted by UCSC server, specific 
assembly track or track hubs. The retrieved data could be a 
list of public hubs, data tracks, genome assemblies hosted 
by UCSC server, genomes, chromosomes, DNA sequences, 
and a specific data track content (see Fig. 2). 



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022 
 

 

721

 
 
Table 1: The mapping of endpoint functions from UCSC 
REST API to the created classes of ucsc-genomic-api 
python package. 
 

UCSC REST API Endpoint 
functions 

ucsc-genomic-api 
classes 

/list/publicHubs Hubs 

/list/ucscGenomes 
/list/hubGenomes 

Genomes 

/list/tracks 
/getData/track 

Track 

/list/chromosomes Chromosome 

/list/schema TrackSchema  

/getData/sequence Sequence  

 
 

 

Fig. 2  The six primary classes of ucsc-genomic-api package. 

Each class has a set of attributes that can be accessed via 
a dot (.) notation and has a set of primary methods: get(), 
find(), findBy(), and exists() that have different parameters 
according to its corresponding class. 

• get(): returns a list of objects from a specific class such 
as listing the available hubs in the case of using the function 
with Hub class.   

• find(): searches for an object by a specified name such 
as finding a hub with a name 'ALFA Hub' in the case of 
using the function with Hub class.   

• findBy(): searches for an object by a defined attribute 
such as finding a hub whose attribute hubName equals 
ALFA Hub in the case of using the function with Hub class.   

• exists(): checks if an object exists such as checking 
'ALFA Hub' exists or not in the case of using the function 
with Hub class. 

The previous methods will return their results as python 
objects or it will throw a not found exception. Also, they are 
all available with our defined set of classes that target the 
public hubs, genomes hosted by UCSC server, genomes 
from specific assembly track or data hub, data tracks, 
chromosomes, DNA sequences.   

 
Table 2: Parameters that are utilized by the endpoint 
functions from UCSC REST API and consequently utilized 
by the methods of ucsc-genomic-api python package. 
 

Parameter 
  

Meaning 

hubUrl The URL of assembly/track hub. 

genome The reference genome name located on the 
genome assemblies hosted by UCSC genome 
browser or assembly/track hub.  

track The data track name in the genome assemblies 
hosted by UCSC genome browser or 
assembly/track hub. 

chrom The chromosome name of a specific DNA 
sequence or data track.  

start The starting position of data retrieval task from 
a specific DNA sequence or data track. 

end The ending position of data retrieval task from 
a specific DNA sequence or data track. 

maxItemsOutput Set a limit on the maximum number of outputs. 

trackLeavesOnly Disable displaying the track container 
information and only display the tracks 
information.   

 

4.  Use Case 

Biological data plays a key role in any bioinformatics 
analysis pipeline. The downstream analysis steps will be 
determined according to the data availability and its related 
features/attributes. There are two basic steps in any 
bioinformatics data analysis pipeline: retrieving data from 
genomic sources such as UCSC genome browser and 
coding/designing your own algorithm/data analysis pipeline 
in order to apply some computations, infer insights and 
draw some conclusions about the retrieved data.     

ucsc-genomic-api package targets the data retrieval 
task, making it simpler and faster without initiating a dozen 
of get requests through the RESTful API. This will help the 
bioinformaticians to focus on the data processing tasks 
rather than focusing on the details of querying the data using 
its related features and defined attributes in JSON format 
and parsing it accordingly. Also, most of the downstream 
data analysis tasks and algorithms rely on one of the 
scripting languages, so the Python programming language 
is used to implement ucsc-genomic-api package in order to 
facilitate data manipulation and integration. 



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022 
 

 

722

 

One use case example is retrieving the assembly named 
‘wuhCor1’ of SARS-CoV-2, its corresponding tracks, 
download the data or get a portion of it based on some 
specified coordinates, all of these queries tasks represent a 
starting step towards many bioinformatics data analysis 
tasks related to comparative genomics [22]. The following 
lines of code will display how the data retrieval tasks can be 
accomplished in a simple, fast, and easy methods using 
ucsc-genomic-api package.  

The ucsc-genomic-api package can be installed using a 
standard Python pip command: 

 
               pip install ucsc-genomic-api 
 
To retrieve the assembly named ‘wuhCor1’ from UCSC 

genome browser databases, and access its corresponding 
tracks and sequence, the classes Genome and Sequence are 
imported from ucsc.api package: 

 
from ucsc.api import Genome, Sequence 
 
Then the find method of Genome class can be used to 

find the assembly named 'wuhCor1':  
 
genome = Genome.find('wuhCor1') 
 
The returned results will be a python object that can be 

manipulated further to explore its corresponding attributes 
such as name, organism, etc. or list all of the available 
object attributes via __dict__ attribute.  

The tracks associated with the queried assembly can be 
accessed by genome.tracks and each track is an object with 
a set of defined attributes that can be listed via __dict__ 
attribute. If a specific track is required and its name (i.e. 
microdel) is known, the method findTrack can be used to 
query it and explore its attributes: 

 
track = genome.findTrack('microdel') 
 
Also, the track can be queried using some of its defined 

attributes (i.e. shortLabel) via a method called findTrackBy: 
 

track= genome.findTrackBy('shortLabel','Microdeletions') 
 

To access the data corresponding to a specific track 
along with its associated attributes, a method getTrackData 
is used:  
trackFragments =  
                         track.getTrackData(genome='wuhCor1')  
 

The track data could be retrieved further based on 
chromosome name (i.e. 'NC_045512v2') or other defined 
parameters listed in Table 2: 
chrFrag = track.getTrackData (genome='wuhCor1',   
                                                 chrom='NC_045512v2')               

                                 
The data can be downloaded for an offline processing 

via a method downloadData: 
 

track.downloadData(genome='wuhCor1',  
                                  chrom='NC_045512v2') 

 
The portion of chromosome sequence can be queried 

based on a specific coordinates provided to the get method 
of class Sequence: 

 
sequence = Sequence.get(genome= 'wuhCor1',chrom= 
'NC_045512v2',start=4321,end=5678) 
 

The bases of requested region can be printed/accessed 
using the attribute dna of the created sequence object: 
sequence.dna 

 
The user guide of ucsc-genomic-api package contain 

examples of using the package classes/methods in different 
scenarios that target the public hubs, genomes hosted by 
UCSC server, genomes from specific assembly track or data 
hub, data tracks, chromosomes, DNA sequences. The user 
guide can be located in the package public repository at: 
https://github.com/Eyadhamza/UCSC-Genomic-REST-
Api-Wrapper 
 
 
5.  Conclusion 

UCSC genome browser provides a set of programmable 
interfaces to facilitate the access of different hub data tracks 
and native genome assemblies. RESTful API is one of the 
recently introduced interfaces in order to make a query 
simpler and easy to handle the data complexity and 
concurrency usage. The query results will be in a structured 
JSON format that is required to be parsed and processed 
step further in order to have a meaningful information and 
clear insights. ucsc-genomic-api package allows querying 
the data from public hubs, genomes hosted by UCSC server, 
genomes from specific assembly track or data hub, data 
tracks, chromosomes, DNA sequences, making the data 
retrieval task simpler and faster without initiating a dozen 
of get requests through the RESTful API. Accordingly, 
most of downstream data analysis pipelines using our 
package will focus on data processing and computational 
approaches rather than data retrieval, parsing and 
reformatting in order to make it readable and 
understandable. Python programming language is used to 
implement the ucsc-genomic-api package in order to 
facilitate data manipulation and integration in any existing 
data analysis frameworks. This will open the opportunity to 
apply powerful computational techniques such as machine 
and deep learning on the retrieved data and its defined 
attributes to draw new conclusions and meaningful insights.    



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.3, March 2022 
 

 

723

References 

[1] M. E. Mangan, J. M. Williams, R. M. Kuhn, et al., "The         
UCSC genome browser: what every molecular biologist 
should know," Current protocols in molecular biology, vol. 
Chapter 19, pp. Unit19.9-Unit19.9, 2009. 

[2] R. M. Kuhn, D. Haussler, and W. J. Kent, "The UCSC 
genome browser and associated tools," Briefings in 
Bioinformatics, vol. 14, pp. 144-161, 2012. 

[3] W. J. Kent, C. W. Sugnet, T. S. Furey, et al., "The human 
genome browser at UCSC," Genome research, vol. 12, pp. 
996-1006, 2002. 

[4] P. A. Fujita, B. Rhead, A. S. Zweig, et al., "The UCSC 
genome browser database: update 2011," Nucleic Acids 
Research, vol. 39, pp. D876-D882, 2010. 

[5] B. Rhead, D. Karolchik, R. M. Kuhn, et al., "The UCSC 
genome browser database: update 2010," Nucleic Acids 
Research, vol. 38, pp. D613-D619, 2010. 

[6] R. Buels, E. Yao, C. M. Diesh, et al., "JBrowse: a dynamic 
web platform for genome visualization and analysis," 
Genome Biology, vol. 17, p. 66, 2016/04/12 2016. 

[7] J. Stalker, B. Gibbins, P. Meidl, et al., "The Ensembl Web 
site: mechanics of a genome browser," Genome research, vol. 
14, pp. 951-955, 2004. 

[8] T. R. Dreszer, D. Karolchik, A. S. Zweig, et al., "The UCSC 
Genome Browser database: extensions and updates 2011," 
Nucleic Acids Research, vol. 40, pp. D918-D923, 2012. 

[9] R. M. Kuhn, D. Karolchik, A. S. Zweig, et al., "The UCSC 
genome browser database: update 2009," Nucleic Acids 
Research, vol. 37, pp. D755-D761, 2009. 

[10] J. Navarro Gonzalez, A. S. Zweig, M. L. Speir, et al., "The 
UCSC Genome Browser database: 2021 update," Nucleic 
Acids Res, vol. 49, pp. D1046-D1057, Jan 8 2021. 

[11] C. M. Lee, G. P. Barber, J. Casper, et al., "UCSC Genome 
Browser enters 20th year," Nucleic Acids Res, vol. 48, pp. 
D756-D761, Jan 8 2020. 

[12] J. Casper, A. S. Zweig, C. Villarreal, et al., "The UCSC  
Genome Browser database: 2018 update," Nucleic Acids 
Research, vol. 46, pp. D762-D769, 2018. 

[13] M. Haeussler, A. S. Zweig, C. Tyner, et al., "The UCSC 
Genome Browser database: 2019 update," Nucleic Acids 
Research, vol. 47, pp. D853-D858, 2018. 

[14] I. Dunham, A. Kundaje, S. F. Aldred, et al., "An integrated 
encyclopedia of DNA elements in the human genome," 
Nature, vol. 489, pp. 57-74, 2012/09/01 2012. 

[15] C. Tyner, G. P. Barber, J. Casper, et al., "The UCSC Genome 
Browser database: 2017 update," Nucleic Acids Research, 
vol. 45, pp. D626-D634, 2017. 

[16] B. S. Pedersen, I. V. Yang, and S. De, "CruzDB: software for 
annotation of genomic intervals with UCSC genome-browser 
database," Bioinformatics (Oxford, England), vol. 29, pp. 
3003-3006, 2013. 

[17] D. Karolchik, G. P. Barber, J. Casper, et al., "The UCSC 
Genome Browser database: 2014 update," Nucleic Acids 
Research, vol. 42, pp. D764-D770, 2014. 

[18] H. Mishima, J. Aerts, T. Katayama, et al., "The Ruby UCSC 
API: accessing the UCSC genome database using Ruby," 
BMC Bioinformatics, vol. 13, p. 240, 2012/09/21 2012. 

[19] https://mybiosoftware.com/genoman-library-accessing-
manipulating-genome-annotation-data.html. Accessed 
on:June 26, 2021.[Online].Available: 
https://mybiosoftware.com/genoman-library-accessing-
manipulating-genome-annotation-data.html  

[20] D. Karolchik, A. S. Hinrichs, T. S. Furey, et al., "The UCSC 
Table Browser data retrieval tool," Nucleic Acids Research, 
vol. 32, pp. D493-D496, 2004. 

[21] B. J. Raney, T. R. Dreszer, G. P. Barber, et al., "Track data 
hubs enable visualization of user-defined genome-wide 
annotations on the UCSC Genome Browser," Bioinformatics, 
vol. 30, pp. 1003-1005, 2013. 

[22] J. D. Fernandes, A. S. Hinrichs, H. Clawson, et al., "The 
UCSC SARS-CoV-2 genome browser," Nature genetics, vol. 
52, pp. 991-998, 2020.

 


