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Summary 
The classification of hyperspectral imagery (HSI) is essential in 
the surface of earth observation. Due to the continuous large 
number of bands, HSI data provide rich information about the 
object of study; however, it suffers from the curse of 
dimensionality. Dimensionality reduction is an essential aspect 
of Machine learning classification. The algorithms based on 
feature extraction can overcome the data dimensionality issue, 
thereby allowing the classifiers to utilize comprehensive models 
to reduce computational costs. This paper assesses and compares 
two HSI classification techniques. The first is based on the Joint 
Spatial-Spectral Stacked Autoencoder (JSSSA) method, the 
second is based on a shallow Artificial Neural Network (SNN), 
and the third is used the SVM model. The performance of the 
JSSSA technique is better than the SNN classification technique 
based on the overall accuracy and Kappa coefficient values. We 
observed that the JSSSA based method surpasses the SNN 
technique with an overall accuracy of 96.13% and Kappa 
coefficient value of 0.95. SNN also achieved a good accuracy of 
92.40% and a Kappa coefficient value of 0.90, and SVM 
achieved an accuracy of 82.87%. The current study suggests that 
both JSSSA and SNN based techniques prove to be efficient 
methods for hyperspectral classification of snow features. This 
work classified the labeled/ground-truth datasets of snow in 
multiple classes. The labeled/ground-truth data can be valuable 
for applying deep neural networks such as CNN, hybrid CNN, 
RNN for glaciology, and snow-related hazard applications. 
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1 Introduction 

Snow slip terrain can produce challenging and very 
dangerous morphologies. Abrupt slopes are perilous from 
avalanches (Snow slip), rockfalls, or debris flows that make 
most areas of interest partially or entirely unreachable. In 
the current scenario, this is the most challenging area of 
research to deal with the accessibility of isolated points (e.g., 
avalanche activity prediction, weather measurement, snow 
summaries, and so on).  Most of the terrains isolate without 
acquiring spatially continuous datasets from satellite remote 

sensing instruments. The application of remote sensing fills 
the information gap in the prevailing ground measurement 
networks and isolated areas. Most research uses the remote 
sensing data (optical satellite imagery) of snow and 
avalanche to evaluate the snow cover. The hyperspectral 
imagery classifications have become the challenging and 
essential approach in the area of remote sensing.  A 
taxonomy of HSI’s has enticed excessive consideration in 
numerous solicitations, for instance, terrestrial analysis and 
resource tracking in the arena of remote recognizing. 
Generally, the compound physiognomies of HSI statistics 
create the precise taxonomy of such statistics perplexing for 
modern machine erudition approaches.  Snow is one of the 
most colorful materials and shows variability in reflectance 
beyond 0.8 µm; fresh snow usually has a high reflectance, 
whereas wet snow reflectance is lower than fresh snow [1]. 
The analysis of different snow types is important for 
glaciological, hydrological, and climatic models. 
Hyperspectral images provide valuable information about 
different types of snow. The reason for hyperspectral 
images being helpful is the detailed spectral information 
acquired by the sensors at different wavelengths 
continuously; it helps properly identify the elements and 
classify them [2], [3]. The classification of hyperspectral 
images can be problematic for various reasons, such as 
spatial resolution, dimensionality issues, and limited data 
for training [4]. 

Various researchers attempted hyperspectral 
classification on public datasets such as Salinas-A, Pavia 
Center, Pavia University, Indian Pines, Kennedy Space 
Center [5-11]. These public datasets come with readily 
available labeled/ground-truth datasets, and on the other 
side, there is no available labeled data for different snow 
classes. In the current investigation, an attempt was made to 
contribute significantly to make snow-labeled data that can 
be used for many AI algorithms for hyperspectral 
classification. 

To deal with the issue of high dimensionality, a couple 
of methods have proved to be effective: feature extraction 
and feature selection [12]. Feature extraction could be 
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achieved using Principal Component Analysis (PCA) or 
Independent Component Analysis [13]. A previous study 
has shown that extracting class-specific features can 
significantly enhance the classification of hyperspectral 
images [14]. The kernel-based approach has also been 
found efficient for hyperspectral image classification [15]. 
The use of multiple attributes such as pixel spectral 
information, pixel texture and shape features, and 
dimensionality reduction has also been fruitful for 
hyperspectral image classification [16]. The traditional 
methods like minimum distance, k-nearest neighbors were 
found to be inefficient to get the in-depth features due to the 
dimensionality issue [17]. Artificial Intelligence (AI) and 
Machine Learning (ML) techniques were more effective for 
hyperspectral image classification [18].  

AI can be considered the encompassing umbrella for 
ML, SNN, and DL (Deep Learning). Compared to shallow 
learning methods, the DL technique has the advantage of 
building deep architectures to learn more abstract 
information [19], [20]. The deep architecture consists of 
several layers; these layers execute to extract different 
features from the image and classify them. Autoencoders 
are a family of neural networks appropriate for pattern 
recognition, essential in classification [21]. An 
Autoencoder typically takes in unlabeled data as input and 
tries to reconstruct it as accurately as possible [22]. The 
Autoencoder has one input layer with n units, one hidden 
layer of h units, and one reconstruction layer of n units with 
an activation function f. There are two steps to 
reconstructing the input data: the first is encoding, and the 
second is decoding [17], [23]. 

In this paper, the aim was to study the effectiveness of 
the JSSSA algorithm for hyperspectral image classification 
and compare the performance with SNN. Ultimately, the 
paper focused on: 1) Generating the labeled data for 
different snow classes in Indian Himalayas. 2) Application 
of JSSSA for hyperspectral image classification. 3) To 
assess the high dimension issue, PCA was to reduce them. 
4) Both spatial and spectral properties were utilized to 
classify the data rather than just spectral or spatial 
individually. 5) Finally, a comparison was made between 
the results obtained through JSSSA and SNN. JSSSA was 
used for two tasks: feature extraction and fine-tuning [23]. 
 
2 Literature review  
The conventional unsupervised FE methods are not suitable 
for HSI classification. This paper enhances the 
unsupervised FE approach [24] for HSI classification, 
including the Neighborhood Preserving Embedding 
framework. In experimental works, the proposed FE 
method outperforms the conventional unsupervised 
methods of HSI classification. Moreover, the proposed 

method showed better performance than the deep learning-
based classification of HIS on spectral-spatial features.  

The proposed unsupervised Deep Feature Extraction 
approach [25] produced better performance over the 
existing state-of-the-art algorithms, kernel counterpart 
(kPCA), principal component analysis (PCA) of and some 
aerial classification. This proposed approach has better 
efficiency in learning the representations of data. The 
method applied the single-layer approach of convolution 
network for high resolution and the detailed result of 
neighbor pixels. Moreover, it outperforms in the case of 
single-layer variants and complexity and abstraction level 
features. The proposed approach used the 3-D 
Convolutional Autoencoder(3D-CAE) [26] without any 
training labeling of the samples to extract features in the 
fashion of unsupervised learning. The models applied the 
spatial-spectral feature extraction by the unsupervised to 
extend into the images at the same sensor, producing 
different images to learn the sensor-specific features. As a 
result, under the unsupervised measurement, the model 
learns spatial-spectral features of HSI. The paper showed 
the benchmarks on datasets of hyperspectral images to 
extract spatial-spectral features in case of sensor-specific. 
This model overtook numerous state-of-the-art 
classifications by the deep learning-based Convolutional 
neural networks.  

 

Fig. 1: (a) Map of India. (b) Map of Himachal Pradesh. (c) Lahul and Spiti 
valley in Himachal Himalayas. The location of AVIRIS-NG used in this 
study is shown as a small rectangle. (d)AVIRIS-NG image 1 is used in this 
study. 

A proposed hybrid approach [27] used unsupervised 
learning and supervised learning. In the case of 
unsupervised learning, the knowledge is collected from 

both types of samples, such as unlabeled and labeled 
samples, to normalize the supervised learning. Here, it 
represents two types of branch networks separately to 
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implement clustering and classification on features. The 
shared structure is performed the intra-cluster similarity 
and inter-cluster dissimilarity to embedded into the 
supervised learning procedure to enhance the 
generalization capacity. As a result, using the two widely 
used HSI datasets to show the proposed superior 
performance.  

This paper presents a novel unsupervised feature 
extraction approach [28] to extract deep-level spatial 
structure features for HSI classification. Firstly, the 
authors obtained the deep multilevel spectral-spatial 
features of the hyperspectral image. Secondly, the 
unsupervised autoencoder approach reduces the deep 
spatial features and raw spectral information. The main 
target of fusion is to fulfill the target of self-supervised 
learning to detect the necessary amount of information 
from the input data. In last, the spectral-spatial features 
fused into multiple scales to evaluate the final 
discriminative features. The experimental works have 
shown the effectiveness of the proposed support vector 
machines algorithm and the methods more essential and 
effective of hyperspectral image classification. The 
dataset has fewer training samples with some complexity 
and heterogeneity in remote sensing space.  

The Proposed approach used Deep learning methods 
to hyperspectral unmixing images [29], and deep learning 
obtained excessive feature extraction and better 
performance. Hyperspectral imagery applications play an 
essential role in Hyperspectral unmixing. Multiple 
problems are available in deep learning-based spectral 
unmixing. In the unsupervised autoencoders methods, 
networks are not sufficient to obtain the deep features. The 
Autoencoders have limited prior information; due to this 
problem, this approach used semi-supervised learning to 
improve performance over the unmixing methods. The 
modesl used the deep neural network in the absence of a 
pooling layer. The scale is selected supervised from 
original input data, which is friendly uses nature and 
nurture. Experimental work has shown better performance 
and quantitative results to compare some state-art of 
existing deep learning unmixing approaches.  
 
3 Study Area and Data Sources 
 
The first study area is Manali, Solang, Dhundi, and 
surrounding areas in Himachal Pradesh; see Figure 1.  
Manali (32o 14' N, 77o11' E) is located in Kullu district, 
Himachal Pradesh, in the region of North-western 
Himalaya at an elevation around 2,000 meters above sea 
level (a.s.l.). Dhundi (32o21'N, 77o 7'E) is located at an 
elevation above 2800 m a.s.l. For the second study area, 
we collected data from Patsio glacier, which is situated 
between the geographical coordinates 32o47'40" N; 
77o17'57" E to 32o44'40" N; 77o20'59" E in the district of 
Lahaul-Spiti in the Great Himalayan range. The total 

length of the glacier is around 3.95 km, and the snout of 
the glacier is located at an elevation of about 4850 m.a.s.l 
[30].  

In the current study, the AVIRIS-NG dataset was 
used for classification. AVIRIS-NG has a spatial sample 
distance ranging between 0.3 to 20 m with a spectral range 
from 380 nm to 2510 nm wavelength. It has 5 nm spectral 
sampling [31], [32]. This imaging spectrometer has 224 
spectral channels and a 10 nm wide spectral resolution 
[31]. AVIRIS-NG is better than AVIRIS in terms of 
spectral resolution, lower signal-to-noise ratio, and greater 
accuracy compared to AVIRIS [32]. Three levels of 
products, viz. L0, L1 and L2 were generated from the 
AVIRIS-NG India campaign. The L0 and L1 data 
represent raw data, calibrated and orthorectified radiance, 
respectively, which were generated onboard the aircraft. 
The L2 data represent surface reflectance products in all 
the bands after atmospheric correction. L1 data of site ID 
159 (dedicated for snow and glaciers in Himachal 
Pradesh) was used in the current study, which represents 
calibrated and orthorectified radiance data cubes.  

Four snowfield expeditions were carried out from 
2016 to 2019 during winter months (Jan and Feb) in the 
Indian Himalayas using an ASD field spectrometer. The 
Toikka snow fork was used to collect spectral reflectance 
and snow properties in synchronization with GPS datasets. 
A spectral library was developed for different snow types 
(clean and fresh snow, melting snow, wet snow, dirty 
snow, and snow under shadow), waterbody, and all 
remaining classes under non-snow). MATLAB 2019b was 
used to prepare the labeled dataset for AVIRIS-NG 
images using a developed spectral library. Making this 
labeling data was a labor-intensive process since 
automatic labelers may fail to understand the class label 
due to several issues such as absorption, scattering, and 
neighborhood effects with special emphasis on snow. 
Spatial, spectral, and physical properties were carefully 
considered with the help of domain experts during the 
whole image labeling process. Data visualization 
techniques were used to identify further and remove 
overlapping classes. The Spectral reflectance graphs for 
clean snow, wet snow, dirty snow, waterbody, melting 
snow, snow under the shadow, and non-snow are 
illustrated in Figure 2.  
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Figure 2: Spectral reflectance graphs for clean snow, wet snow, dirty 
snow, water body, melting snow, snow under 

4 Methodology 

4.1 Data Pre-processing 

Pre-processing of data is one of the major tasks when 
working with hyperspectral imagery. Initially, the 
correction of images to remove noisy bands and zero 
bands (band 6) in the image took place. Spectral 
resampling was performed to compare between spectra of 
AVIRIS NG and ASD spectra. Spectral resampling is also 
useful for improving the signal-to-noise ratio, which 
reduces spectral resolution during spectral resampling. 
The application of local de-stripping methods was applied 
in the next step. Here, striped values were replaced by the 
average of the nearest pixel values. To correct the 
atmosphere influencing factors, the FLAASH module of 
ENVI software was used. Water vapor absorption bands 
194 - 218 (1,343 to 1,463 nm) and 286 - 320 (1,803 to 
1,974 nm) were removed. AVIRIS-NG image, which 
originally had 425 bands, was reduced to 364 after the 
removal of zero bands and water vapor absorption bands. 
The methodology followed in this study is illustrated 
using a flowchart (Fig. 3). The details of snow and ice 
cover classes are provided (Table 1).  
 

Table 1: Snow and ice cover classes and numbers of pixels in the 
AVIRIS-NG dataset 

Class Total No. of samples 
Clean snow 200 
Melting snow 446 
Wet snow 353 
Dirty snow 93 
Snow under shadow 830 
Non-snow 1651 
Waterbody 77 

 
 

Fig. 3: Flowchart of the methodology used for JSSSA and SNN 
Classification 

Various research split the dataset randomly into 
training, testing, and validation [17], [33-36] however; the 
split data ratio plays an important role in assessing the 
model's validation. K-fold cross-validation is one of the 
good techniques used for data splitting to avoid overfitting 
and better generalization of the model. To decide the k in 
k fold validation, it depends on the size we choose for our 
test set (e.g. if the testing dataset is 10% or 20% then k 
value will be 10 or 5 respectively).  In the current 
investigation, we used 5-fold cross-validation. First, the 
total 3650 samples were shuffled randomly and then 
divided into 5 groups or 5 folds (730 samples each for 
each fold). The first fold is treated as a validation set, and 
the method is fit on the remaining 4 folds.  The model was 
then iteratively trained and validated on these different 
sets. There were 7 output classes (clean snow, melting 
snow, wet snow, dirty snow, snow under shadow, non-
snow, and water body). 

 
4.2 Joint Spatial-Spectral Stacked Autoencoder Based 
Classification 
An attempt was made in the present investigation to use 
the JSSSA similar to [17] with some modifications. The 
modifications were based on the data splitting technique 
and choice of the activation function. This algorithm first 
initialized the image parameters as region size, image 
width, and height (737, 559 pixels) followed by PCA (Fig. 
4). Then flattening of the array was done based on exp 
2n*1 (where n was the number of principal components). 
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Figure 4: Schematic representation of the spectral and spatial classification of AVIRIS NG data set used in this study. Here Autoencoder with several 
hidden layers ranging from 1 to 5 was used for feature extraction, and logistic regression was applied for the final classification of output feature classes 

under observation. 

 

In the next step, concatenation and scaling were 
performed for matrix M. Then, the image was normalized 
onto unit interval. After it, the procedure of JSSSA was 
performed with its parameters. To carry out analysis using 
DNN, five architectures with hidden layers ranging from 
1 to 5 were considered for analysis. The Rectified Linear 
Unit (ReLU) activation function overcomes the vanishing 
gradient problem, allowing models to learn faster, perform 
better, and recommended activation functions for deep 
neural networks. ReLU is a nonlinear activation function 
that returns the same value provided as input if the value 
is greater than 0 (linear behavior); it gives 0 if the provided 
value is less than 0 (nonlinear behavior); see Eq. (1). The 
ReLU layer does not change the size of its input. 

fሺ𝑥ሻ ൌ ቄ
𝑥, 𝑥 ൒ 0
0, 𝑥 ൏ 0               (1)                                      

Selecting the number of hidden layers and the number of 
neurons in hidden layers is a crucial challenge in neural 
networks. Results were assessed based on the kappa 
coefficient values (Fig. 5). For all five architectures, the 
algorithm was run with epochs ranging from 100 to 3200 
to compute the reconstruction and loss for each epoch. The 
optimal kappa coefficient value concludes that 4-layer 
architecture with 100, 100, 50, and 25 neurons in the four 
layers respectively performed better than other 
architectures with a kappa coefficient value of 0.946. This 
maximum Kappa coefficient value for 4-layer architecture 
remained constant at 0.946 (~ 0.95) after 2700 epochs (Fig. 
6.). The initialization of the logistic regression layer was 
performed by setting the number of input and output 
neurons followed by probability computation and 

assignment of the back-propagation algorithm and 
learning rate.  

 
Figure 5: Comparative study of kappa index value concerning the 

number of layers in the JSSSA. 

Figure 6: Kappa Index values for JSSSA with 4-layer's architecture 
with 100 and 100, 50 and 25 neurons in the 4 layers respectively and 

epochs ranging from 100 to 3200 
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4.3 Shallow Neural Network Based Classification  
To implement SNN for AVIRIS-NG classification, an 
Adaptive Moment Estimation (ADAM) optimization 
algorithm was applied. Data was divided using 5-fold 
cross-validation The k-fold validation assists in choosing 
the number of neurons in each hidden layer. 2 hidden layer 
networks were selected with 70 and 35 neurons based on 
the lowest average testing error over the 5 attempts of 
candidate dimensionalities using 4 folds as training and 
the 5th one as testing data. SNN was trained based on 3650 
samples, and the training iterations was set to 2,000. There 
were 364 input bands were used as input nodes which 
target 7 nodes for 7 snow output classes.  A learning rate 
of 0.002 was found significant with the ADAM optimizer.   

    
4.4 SVM Classification 
 
The primary purpose of SVM is classification, but it is 
also used for regression statements. A class in support 
vectors has the maximum distance from the hyperplane. 
The distance margin defines as the distance between 
different support vector classes.  The sum of D+ and D- 
calculate as distance margin, where D-, hyperplane has the 
shortest distance from the closest negative point and D+, 
hyperplane has the shortest distance from the closest 
positive point. The main aim of SVM is to find the 
maximum distance margin, which gives the optimal 
hyperplane. The optimal hyperplane always gives 
excellent classification. In the case of non-linear, which 
produces low and no distance margin, SVM showed 
misclassification. In that scenario, SVM used the kernel 
functions to convert the non-linear data into 2D or 3D 
dimension arrays. The kernel functions convert the minor 
dimensional feature space into high dimensional feature 
space. 
 

5 Accuracy Assessment 
To measure the competence and compare the results of 
different techniques, several measurement coefficients 
like the Kappa coefficient, overall accuracy (OA) and 
average accuracy (AA) were assessed [39]. Average's 
accuracy is the ratio of the number of properly classified 
pixels to the number of reference pixels for the similar 
class. Overall accuracy is the total number of correctly 
classified pixels divided by the classes total number of 
ground pixels. The average's accuracy measurements are 
also associated with omission and commission errors [40]. 
The kappa coefficient calculates the agreement between 
correctly classified pixels' values and ground truth pixels' 
values. Kappa coefficient (K) is given as equation 2 [41]. 
ே ∑ ௑೔೔

ೝ
೔సభ ି∑ ሺ௫೔శ

ೝ
೔సభ ሻሺ௫శ೔ሻ

ேమି∑ ሺ௫೔శ
ೝ
೔సభ ሻሺ௫శ೔ሻ

                                        (2) 

Where N is the number of observations, 𝑋௜௜is the number 
of observations in row i and column i (the major diagonal 
in the confusion matrix), 𝑥௜ା and 𝑥ା௜ are the marginal 
totals of row r and column i, respectively, and r is the 
number of rows in the matrix. 

6. Results and Discussions 

The implemented JSSSA extracts more abstract and 
uniform features that are believed to have higher 
classification accuracy than traditional shallow classifiers 
[17], [23]. Classification results from JSSSA and SNN 
techniques were obtained where the classes are clean 
snow (clean and fresh snow), melting snow, wet snow, 
dirty snow, snow under the shadow, waterbody, and 
remaining all other classes were under non-snow (Figure 
7). The overall accuracy of classification was 96.13%, 
92.40%, and 82.87% for JSSSA, SNN, and SVM 
respectively (Table 2, 3 and 4).

Table 2: Confusion matrix and accuracies for JSSSA classification 
Confusion Matrix Clean snow Melting snow Wet snow Dirty Snow Snow under shadow Non-Snow Water 

body 
Row total 

Clean snow 50 0 0 0 0 0 0 50 

Melting snow 0 88 0 2 2 0 0 92 

Wet snow 0 6 74 0 0 0 0 80 

Dirty Snow 0 0 0 15 2 0 0 17 

Snow under shadow 0 0 2 2 150 4 0 158 

Non-Snow 0 3 1 0 4 330 0 338 

Waterbody 0 0 0 1 0 0 14 15 

Column total 50 97 77 20 158 334 14 750 

Agreement/accuracy 100 90.72 96.10 75.00 94.94 98.80 100  

Omission Error 0.00 9.28 3.90 15.00 5.06 1.20 0.00  

Commission Error 0.00 4.35 7.50 11.76 5.06 2.37 6.67  

Overall Accuracy 96.13 

Kappa coefficient 0.95 
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The image classification for some classes isn't 
satisfactory, e.g.  dirty snow class shows only 75% 
accuracy using JSSSA and the same class shows only 48% 
accuracy using SNN. On the other hand, clean snow 
classification for both techniques JSSSA and SNN are 
100% accurate. This is because albedo ranges around 0.98 
for clean/fresh snow but 0.3 for dirty snow in the visible 
wavelengths [42]. Melting snow has accuracy around 90% 
and 87% in JSSSA and SNN classification, respectively. 
The classification of water bodies is also good for both 
JSSSA and SNN methods, and the rest other classes have 

accuracies equal to or more than 90%. The Kappa 
coefficient values were 0.95 and 0.90 for JSSSA and SNN 
classification. Based on overall accuracy and Kappa 
values, the JSSSA technique proves to be more efficient 
than the SNN method. The main issue with the JSSSA 
technique is the requirement of high-end computing in 
terms of GPUs (Graphics Processing Unit) or a cluster of 
GPUs for good computing speed. On the other hand, SNN 
can effectively work on contemporary CPUs (Central 
Processing Units). 

 
Table 3: Confusion matrix and accuracies for SNN classification. 

Confusion Matrix  Clean snow Melting snow Wet snow Dirty Snow Snow under shadow Non-Snow Water 
body 

Row 
total

Clean snow 50 0 0 0 0 0 0 50

Melting snow 0 85 2 2 3 0 0 92

Wet snow 0 5 72 2 0 1 0 80

Dirty Snow 0 1 0 13 2 1 0 17

Snow under shadow 0 2 2 5 140 9 0 158

Non-Snow 0 3 6 4 4 321 0 338

Waterbody 0 0 0 1 2 0 12 15

Column total 50 96 82 27 151 332 12 750

Agreement/accuracy 100 87.63 93.51 48.15 92.72 96.69 100 

Omission Error 0 11.46 12.20 51.85 7.28 3.31 0 

Commission Error 0 7.61 10.00 23.53 11.39 5.03 20 

Overall Accuracy 92.4

Kappa coefficient 0.90

Table 4: Confusion matrix and accuracies for SVM classification. 
Confusion Matrix  Clean 

snow  
Melting 
snow  

Wet 
snow 

Dirty Snow Snow under 
shadow  

Non-Snow  Water 
body 

Row total 

Clean snow  40  0  7  0  0  3  0  50  

Melting snow  0  80  5  2  3  2  0  92  

Wet snow  1  5  62  2  5  1  4  80  

Dirty Snow  4  1  0  9  2  1  0  17  

Snow under shadow  0  3  2  1  128  16  8  158  

Non-Snow  5  3  6  4  4  316  0  338  

Waterbody  0  0  0  1  2  2  10  15  

Column total  50  92  82  19  144  341  22  750  

Agreement/accuracy  90  87.63  77.5 52.94  81.01  93.49  66.67    

Omission Error  80.00  86.96  75.61 47.37  88.89  92.67  45.45    

Commission Error  10  11.73  15.98 38.98  18.52  9.65  28.93    

Overall Accuracy of SVM   82.87  

Kappa coefficient  0.81  
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Figure 7 Original image of the study area, classified images (b) JSSSA, (c) SNN, and (d) SVM. 
 

6 Conclusions 

In this study, an attempt was made to generate the labeled 
data for different types of snow classes and assess the 
performance of JSSSA and SNN techniques on an 
airborne hyperspectral image of AVIRIS-NG. It was 
observed that the JSSSA based technique outperforms the 
SNN technique with an overall accuracy of 96.13% and 
Kappa coefficient value of 0.95. SNN also achieved a 
promising accuracy of 92.40% and a Kappa value of 0.90. 
Both JSSSA and SNN techniques have shown 100% 
accuracy for clean snow and water bodies. The reason for 
better classification of clean snow is related to high albedo 
which makes it separable from other classes in the visible 

region. The current study suggests that both JSSSA based 
technique and SNN prove to be an efficient method for 
hyperspectral classification of snow features. The future 
scope of the present research is to extend the ground truth 
data and apply other deep neural architectures such as 
CNN, hybrid CNN, RNN, etc., in the context of the 
Himalayas. 
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