
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

261

Manuscript received April 5, 2022
Manuscript revised April 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.4.33

OAPR-HOML’1: Optimal automated program repair approach

based on hybrid improved grasshopper optimization and
opposition learning based artificial neural network

T.MAMATHA1, B. RAMA SUBBA REDDY2, C SHOBA BINDU3

1Research Scholar, Dept. of CSE, JNTUA University, Anantapuramu, AP, INDIA
mamathat7@gmail.com

2Professor & HOD, Dept. of CSE, SV College of Engineering, Tirupati, INDIA
rsreddyphd@gmail.com

3Professor , Dept. of CSE , JNTUA University, Anantapuramu, AP, INDIA
shobabindhu@gmail.com

Abstract
Over the last decade, the scientific community has been actively
developing technologies for automated software bug fixes called
Automated Program Repair (APR). Several APR techniques have
recently been proposed to effectively address multiple classroom
programming errors. However, little attention has been paid to
the advances in effective APR techniques for software bugs that
are widely occurring during the software life cycle maintenance
phase. To further enhance the concept of software testing and
debugging, we recommend an optimized automated software
repair approach based on hybrid technology (OAPR-HOML’1).
The first contribution of the proposed OAPR-HOML’1 technique
is to introduce an improved grasshopper optimization (IGO)
algorithm for fault location identification in the given test
projects. Then, we illustrate an opposition learning based
artificial neural network (OL-ANN) technique to select AST
node-level transformation schemas to create the sketches which
provide automated program repair for those faulty projects.
Finally, the OAPR-HOML’1 is evaluated using Defects4J
benchmark and the performance is compared with the modern
technologies number of bugs fixed, accuracy, precession, recall
and F-measure.
Keywords:
Fault location identification, AST node-level transforms, software
testing, automatic program repair, grasshopper optimization.

1. Introduction

With the wider use of software, there are
concerns about the functionality and performance of
the software. To ensure more reliability, the program
constantly checks for bugs and errors. On the other
hand, it is almost impossible to create error-free
software without considering scientific and ethical
development methods. Software Reliability
Development Process Over the last 30 years, several
software reliability development models have been

proposed to determine the course of development. [1].
SRGM can be very useful in that it helps
management make important decisions such as
checking resource allocation and changing software
publishing time. Software testing is a very popular
method used to improve software quality. Software
testing combines two modes of reliability and
provides simple and practical automated testing and
writing test with high cost / performance ratios.
Therefore, software testing is widely used in the
software industry [2] [3]. Because software testing is
based on the software process model, this does not
guarantee that all software vulnerabilities will be
fixed. Therefore, one issue that requires special
attention is the reliability of the software obtained
after testing. However, the purpose of software
testing in the software reliability development
process is not clear. It supports the latest software
reliability testing by examining the quantitative link
between software testing and software reliability [4].
Software testing methods have traditionally been
divided into white and black box tests. The white box
test can be used when the tester has access to internal
data structures and instructions, while the black box
test does not indicate knowledge of internal
performance [5] [6].

Software testing is an important tool to ensure
software quality. There are functional testing, data
flow testing, limit value testing, random testing and
many other software tests. During software testing,
trial cases are selected and the software is tested [7].
Defects are detected and removed one by one, which
improves the reliability of the test program. However,

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

262

the purpose of routine software testing for the
reliability of given software is not clear [8]. One
reason for this is that software testing not only
confirms the existence of software vulnerabilities, but
also the ability to confirm the absence of software
vulnerabilities. In principle, the number of software
errors remaining in the program is unknown. Another
reason is the ambiguous reliability of the software
between the process profile, the test profile, and the
working profile [9]. Debugging is the process of
detecting and removing software code errors (also
known as "errors") that cause crashes.
Troubleshooting is the use of bugs and errors to
prevent software or system crashes. Configuration is
difficult when different subsystems or modules are
tightly connected, as any modification of one module
can cause errors in another. Sometimes a debugging
program will take longer than the code [10][11].
Incorrect debugging models improve the
performance of the software but reduce the user
expectation as the prediction speed can be fixed or
gradually reduced [12]. Such an assumption is not
always correct; as it will increase over time until an
input error enters the test process. Troubleshooting
was not initially familiar with the operation and use
of the software. After removing the errors, they can
read the program and introduce new errors [13][14].
However, after learning the error correction program
and removing many simple errors, it rarely makes
new errors. Therefore, the performance of the error
rate increases over time and does not decrease [16].
If experienced software programs have found bugs,
they can be found and removed. Each debugging
method is a new process that does not take into
account debugging errors. Therefore, it is necessary
to eliminate errors to understand the settings of the
newly released software. Enriches knowledge about
malicious programs and programs and features and
uses such knowledge to prevent new bugs [17]. For
example, the test phase creates trial cases that allow
the system to test whether it meets the initial
requirements. If the system is modified later, for
example, the initial tests may be repeated to see if
there are any initial requirements to improve its
performance [18] [19]. Therefore, the knowledge
gained at the meeting should be carefully compared
to the actual and expected outcomes of some of the
sub-issues that contribute to the rest of the program
or program development cycle. Unfortunately, the
answer is that this very useful information is usually

ignored after a bug fix session. Therefore, we can
conclude that software development will allow you to
spend more than 50% of your time doing things that
do not meet the basic life cycle principle [20].
Our contributions: An optimal automated program
repair approach is proposed using hybrid techniques
(OAPR-HOML’1). The main contributions of
proposed OAPR-HOML’1 technique are list as
follows:

 An improved grasshopper optimization (IGO)
algorithm is used for fault location
identification in the given test projects.

 Opposition learning based artificial neural
network (OL-ANN) technique is used to
select AST node-level transformation
schemas to create the sketches which provide
automated program repair for those faulty
projects.

 Finally, OAPR-HOML’1 is evaluated using
Defects4J benchmark and the performance is
compared with the existing state-of-art
techniques in terms of number of bugs fixed,
accuracy, precession, recall and F-measure.

The rest of the paper is organized as follows: Sect. 2
describes the recent works related to APR techniques.
Sect. 3 provides the problem methodology and
system model of proposed OAPR-HOML’1
technique. Sect. 4 gives the working function of
proposed OAPR-HOML’1 technique with the proper
mathematical analysis. Then, the simulation results
of proposed and existing techniques are discussed in
Sect. 5. Finally, the paper concludes in Sect. 6.

2. Related works

Li et al., [21] the reliability model of the test
coverage software indicates not only the incomplete
error change but also the environmental uncertainty
based on the persistent toxic process. Normally, the
program is tested in a specific control environment,
but developers can use it in working conditions
unknown to different users. Several models of NHPP
software development reliability have been
developed to measure software reliability, but the
general assumption of these models is that the work
environment is similar to a growing environment. In
fact, the unpredictability of software operating
conditions significantly affects software reliability
and the unpredictable environment. So when a
software system operates in a field environment, its

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

263

reliability in terms of theoretical reliability and other
areas usually differs from similar software. This
study proposes a new model based on the speed of
detection of a test coverage error and investigates the
ambiguity of the coverage ID in terms of operating
conditions. They compare the performance of a
particular model with many existing NHPP SRGMs.
Li et al., [22] proposed a state-based error
localization approach. The executed trace to be
analyzed for the observed failure is then compressed
using a set of trace points at each stage of the
dynamic pro graph. Zhang et al., [23] studied the
most difficult problem of testing a domain
distribution loop in an SDN environment. They have
introduced two new test protocols that can be used
for domain loop tests. Both protocols are protected,
meaning that each protocol protects personal
information about its location and configuration. The
first protocol, based on random sampling with very
little error power, was very effective in rapidly
reducing sample errors Although the first is less
effective, the second protocol provides 100%
accuracy of results based on a secure package cross-
test. They provided rigorous evidence to ensure
security and accuracy, and our protocols perform
well when tested with real-time network data.
Gazzola et al., [24] proposed a method that regulates
knowledge in this area through a review of a group of
108 documents, software automation techniques,
descriptions of methods and approaches, their
relatively representative examples, and a review of
open challenges and empirical evidence published to
date. Experiments and research the combination of
methods, techniques and heuristics and automated
repair techniques creates a growing and multifaceted
research framework. Kong et al., [25] studied detail
about 180 seeds for 17 small and large projects and
how to correct real mistakes. They examined the
repair results of five representative automated
programs, including GenProg, RSRepair, Brute-
force-based technique, AE and Kali based technology,
on repair results. We will further examine the results
of various material programs and trial rooms
regarding the performance and effectiveness of
program repair techniques.

Qiu et al., [26] presented a computers work long
hours at certain loads, under controlled stress
conditions, to accelerate database malfunctions.
Second, it examines and formulates models of
mathematical relationships of data species. Such

relationship models are used for TTF / MTTF
extrapolation under different operating conditions
and are needed to reduce system reliability
assessment time. Jiang et al., [27] localize and
address these gaps and compare these strategies with
existing strategies. The results indicate future
automated program repair instructions. Over the last
decade, more and more attention has been paid to
auto-repair techniques designed to automatically
create the correct patches in real-world defects.
Various technologies and tools have been proposed
and developed. Gupta et al., [28] presented the report
proposes an approach to multi-case trial testing and
various types of distorted coverage and compares it
with current approaches. SPEA-2, NSGA-2 and
VEGA algorithms were used for test analysis, and
tests were performed on malicious 4j database
applications. The results of the study indicate that the
proposed approach has the potential to reveal more
errors compared to existing approaches. All errors
found by incorrect estimation of localization can be
improved or compared with existing approaches.
Software development is an ongoing process. Testing
and debugging at all stages of software development
are the most important steps.

The main purpose of testing is to detect
maximum errors quickly. After fixing the error, it
should be removed using the appropriate debugging
method. Two steps are completed one after the other,
which requires different information. Kim et al., [29]
proposed the effectiveness of context-based change
program (CCLA) technology in selecting changes,
correcting location selection, and integrating changes
that are key features that drive bit hunt gap. The CCA
collects short sub-modifications and their AST
contexts and uses them to identify words only if the
CCA is used. They evaluated CCA performance with
a unique collection of 54k (221k) updates, from links
written by approximately 5K men. Results show that
CCA corrects 90.1% of the changes required for the
test packet connection, and less than 5% of changes
occur intentionally. They found that collecting
additional changes would only be useful if effective
search engine navigation supported the environment.
In addition, the CCA Repair Model 44J found 70%
more defects at the patch repair site than the SCFL
tool alone. Caballero et al., [30] proposed a method
for debugging and testing in integrated frameworks,
where each step creates useful information for the
other and re-uses the results of each step. Some

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

264

frameworks are instantly common in very different
programming languages. Erlong (Functional), Java
(Required, Object Oriented), SQL (Data Request).
Test results obtained using the Erlong program
confirms the operation of the framework. It provides
a common integrated framework for troubleshooting
and testing. This simplifies each step and increases
efficiency at various stages of the software
development cycle and reduces overall effort. Ye et
al., [31] proposed about the features of Quixbugs and
test the program for 10 repair tools; Our main results
are: 16/40 Non-standard applications Quixbugs may
contain at least one test package; Quixbugs produced
a total of 338 trusted patches using the tools reviewed,
of which 53.3% matched the patches according to our
guidelines. Liu et al., [32] proposed a method how
the most recent measurements of relative APR
systems are. The impact of repairs is unknown, and
the estimated dimensions are often unclear because
the design results (in the approach and evaluation
system) are not always known. To significantly
reduce the reliability of design results in a program
repair approach, we complete a comprehensive
review of patch construction systems and offer eight
criteria for evaluating the performance of APR
equipment. Finally, they present test data of 11 major
program repair systems to highlight some of the
warnings and specific dimensions in the literature.
They believed that the widespread adoption of these
measures in the community would lead to the
development of practical and reliable tools for
program repair. The summary of research gap is
given in Table 1.
Table 1 Research Gap summary

Ref Methodology Testing and
debugging

Parameters

21 NHPP software
reliability growth
models and Improved
NCD method

Fault
detection
rate

Number of
bugs fixed

22 state-based fault-
localization approach

minimum
debugging
frontier set
(MDFS)

Number of
bugs fixed

23 Software-Defined
Networking

inter-domain
loop tests

Precession

24 Generate-and-validate
techniques

repairing and
healing

Number of
bugs fixed

25 GenProg, RSRepair,
Brute-force

seeded and
real faults

Precession

26 stress testing method TTF or Mean Number of

TTF bugs fixed
27 Defects4J method Patch

correctness
Precession

28 Multi-objective
selection

fault
localization
score

Precession

29 Context-based change
application (CCA)

Navigating
patch search
space

Number of
bugs fixed

30 Declarative debugging
method

single
unified
framework

Number of
bugs fixed

31 automated patch
correctness assessment
techniques

Quixbugs Precession

32 Patch generation
system

Eight
evaluation
matrices

Number of
bugs fixed

3. Proposed methodology and System

architecture

3.1 Research Gap

Hua [33] have introducing SketchFix, which strongly
combines the steps of generation and verification and uses
considerable time management behavior for large-scale
repair candidates. SketchFix uses the Edsketch Sketch
Machine to fill in query search gaps. Disadvantages
Experimental evaluation using the 4J mark shows that
SketchFix significantly reduces the amount of reassembly
and re-implementation compared to other approaches and
performs better exposure management at AST node level
grains. Several APR techniques have recently been
proposed to improve the quality of software testing. [21]-
[33]. A variety of hardware and program error classes can
be effectively corrected. However, little attention has been
paid to the advances in effective APR techniques for
software bugs that are widely occurring during the
software life cycle maintenance phase. The problem with
software is that it automatically fixes bug fixes to
significantly reduce debugging costs and improve software.
To address this issue, the trial packet-based repair tool
reviews the test package provided by Oracle and modifies
the non-standard input program to confirm the entire trial
package. However, according to recent empirical studies,
sketching can be useful [33] is not fully satisfactory,
particularly for Java. In addition, the techniques and tools
of APR that make knowledge collection challenging differ
in many ways. Therefore, in this paper, we focus on
creating the optimal APR hardware to improve the
performance of a software test run. The main objectives of
the proposed OAPR-HOML technology are:

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

265

The hybrid optimization and machine learning techniques
utilized to improve the quality of software testing and
debugging.

 The machine learning technique used to enhance
the reliability of software testing.

 To study and analyze the different optimization
and machine learning techniques for ARP

 Introduce an optimization technique for compute
optimal location of faults which reduce the fault
searching cost, testing cost and time.

 Introduce a machine learning technique to
provide the automatic fault repair in a program
which enhances the accuracy and quality of
testing.


3.2 System architecture of proposed OAPR-HOML’1

technique

The system architecture of proposed OAPR-HOML’1
technique is shows in Fig. 1 which gives the detailed
structure of working function. First, the proposed OAPR-
HOML’1 technique computes the exact fault location to
identify the suspicious part using IGO algorithm. Then, we
applied OL-ANN technique to compute the AST node-
level transformation schemas for sketches creation. These
maps are drawn directly and executed against the test kit.
We discuss the schemes used after the AST node change
position to address suspicious locations in the test program.

 Expression Transformer: If the false statement
contains AST node variables, fixed values, or
field defects, the node object will move to the
specified hole.

 Operator Transformer: If there is a binary
expression with an arithmetic operator in the
wrong line, that binary expression will move into
the hole.

 Overloading Transformer: If the incorrect account
has a reset mode, specify the parameter types and
different types of parameters and call to create
exposure holes.

 Condition Transformer: The subsection refers to
the left and right external expressions associated
with the operator.

 If-condition transformer: Use the if-condition
before the false statement with the conditionality
hole.

 Return-statement transformer: Include a response
statement before an incorrect statement. If the
current system revenue type is empty, file a blank
income statement, otherwise an impact hole based
on the system revenue type will be provided.



4. Optimal automated program repair

approach (OAPR-HOML’1)

4.1 Suspicious location detection using IGO algorithm

Selection of characteristics is a prerequisite for many
machine learning tasks, such as classification and
clustering. It helps maintain important and relevant
characteristics and avoids unnecessary and inappropriate
features. For classification, feature selection is a subset of
features that reflect the most important and unique
characteristics of events in each class. Here we applied
grasshopper optimization algorithm for selecting the
optimal features. The locust optimization algorithm
implements the optimal behavior of locusts in nature. Like
the other set of algorithms, each locust represents a
candidate solution that is generated approximately at the
beginning and then according to the evaluation process;
become the best locust leader. The leader will attract him
to the other locusts. Gradually all the locusts move
towards the cats. Below is the mathematical structure of
IGA.

jjjj BFRY  (1)

The social interaction is denoted by jR , the force of

gravity is denoted by jF , and jB indicates air

consumption is defined.

Fig. 1 System architecture of proposed OAPR-HOML’1

technique

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

266

In the locust movement process, social interaction plays an
important role in jR , which can be achieved.

ji

M

jii
jij ccsR

^

,1

)(


 (2)

The jic indicate the Euclidean distance between two

locusts available by || jiji yyc  . r is the activity used

to assess the intensity of social interaction can be assessed
as follows

sj egesr 





)((3)

G denotes gravity, while W denotes attractive length.
Below is the formula for calculating the gravitational
factor

fj efF
^

 (4)

g is a gravitational constant that refers to a uniform vector
directed toward the center of the earth.
Below is the formula for calculating the wind direction
coefficient.

lj evB
^

 (5)

V represents the value of continuous sliding and le is unit

vector in the direction of the wind. The locust motion
formula can be expressed as follows.

  lf

ji

ji
ji

M

ji
i

j evef
c

yy
yyrY

^^

1

|| 






 (6)

Let c
jY denote the grasshopper position j in the cth

dimension. The improved equation is as follows.

  c

ji

ji
ji

cc
M

j
i

c
j t

c

yy
yyr

wava
ddY

^

1
1

21 ||
2
















 



 




 (7)

Slope coefficient parameters d1 and d2 are used to
simulate the process of locust locusts gradually
approaching the feed position and eventually feeding on
the mass. As the number of repetitions increases, d1 is
used to reduce the search target, while d2 is used to reduce

the severity and interference effect. The parameter update
formula is as follows

W

dMINdMAX
wdMAXd j


 (8)

Algorithm 1 Suspicious location detection using IGO

algorithm

Input : Position of grasshopper

Output : Cluster centroid

 1 Initialize the parameters dMAX , dMIN

 2 Initialize the initial population

 3 Calculate the fitness of each individual of the

population

 4 Assign t to the individual with the highest fitness

value in the initial population

 5 Update jd using

W

dMINdMAX
wdMAXd j




 6 For each individual do

 7 Normalize the distances between individuals

 8 Update the position of individual using

 
ji

ji
ji

cc
M

j
i

c
j c

yy
yyr

wava
ddY

1
1

21 ||
2 














 



 




 9 If the individual exceeds the boundaries, bring them

back

1

0

End for

1

1

Re-evaluate the fitness of each individual in the

population

1

2

If there is a better solution, replace t with it

1

3

End

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

267

The clustering method is defined: C offers a large file.

cmcccC ji2,1 (9)

dz is the z center of the cluster is called the vector.

dzidzTdzidzdzdz),,...,...2,1( (10)

Cluster I and C are the length of the cluster.







js

i i

m

j jzj

zi
bz

cb
d

1

1
)(

 (11)

The cosine is the standard value I use to calculate the
similarity points between two vectors (e.g. document and
cluster centroid) because C1 is the document number 1 and
C2 is the cluster centroid.










T

i i

T

i i

T

i ii

cTlcTl

cTlcTl
cc

1

2
21

2
1

1 21

),(),(

),(),(
)2,1cos((12)

The working function of the suspicious location detection

using grasshopper optimization algorithm is described in

algorithm1.

4.2 Select AST node-level transformation schemas

using OL-ANN

A typical neural network of sorting problems consists
of 4 different types of layers: input layer, hidden layer,
soft-max layer, and output layer. Problems with
misdiagnosis and classification can now become a problem
for neural network-based classification. First, the two
labels are common and lead to error detection, which is a
binary classification problem. In this case, a neural
network can be built using two different data sets: one for
normal data and the other for error data type. The artificial
neural network (OL-ANN) classification, which is based
on the study of opposition, is used to identify program
errors and use them to correct program errors.
Opposition-based Learning (OBL) is a machine
intelligence algorithm that reflects its counter-evaluation
while taking a closer look at the solution of the current
evaluator and the current candidate. It is a new concept for
computational intelligence used in many optimization

methods to improve solution outcomes. Weight and other
parameter values in traditional neural network systems are
approximate. Random weight tries to reach the global
optimal or approach the optimal weight to achieve the
optimal solution with minimal errors. Starting with a
random load took more time to reach optimal solutions. As
a result, if a random start is too close to the optimal load,
this can accelerate the accumulation. To accelerate the
integration speed of the neural network algorithm, we used
the inverse weight values to obtain the global optimal
weight values. Opposition-based learning can be defined
as follows:

Assume  abz , as a real number. The opposition

number z is stated as

zabz 


 (13)

Similarly, the inverse weight M in dimensional space, let

 MzzzZ ,...,, 21 (14)

Where Szzz M ,...,, 21 and

   Mabz jjjj ,...,2,1,  . The opposition points are

defined with the help of its coordinates.

),...,,(21



 Mzzzz (15)

jjj zabz 


 (16)

At the same time, opposition-based learning can be
defined using inversion values and inverse weight

determination, the values),...,,(21



 Mzzzz is the

function of opposition of   ,..., 21 MzzzeZ  . Then,

both the values are compared as   








zfzf . Therefore,



z has good fitness when compared with z. Here, calculate
the slope of all loss activities in relation to the weight
found in the network. At the correct size of the input nodes,

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

268

the hidden layers and the output layers m, l and n are the

total size of their input events which is qjy which

indicates the q’s illustration of the input value of thj . The

weight of thl node is the thj node of the hidden input layer

which is denoted as lju . The actual weight of the node i

and the output of the output layer l from the indirect

output of l are represented as ily .

  







 



m

j
qjljqlql yugNetgw

0

 (17)

For the thi node, the layer nodes output is

  







 



m

j
qlilqiqi wzgNetgx

0

 (18)

Where, the standard sigmoid function is selected as the

stimulating activity in the following equation,

 
ye

yg 


1

1
 (19)

In the below equation the global error function is defined.

 
 


q

q

n

i
qiqi

Q

q
Q xTDD

1 1

2

1 2

1
 (20)

For sample q the error is indicated as QD . The ideal result

is represented as qiT . Below equation are the weight

correction formulas.

  
 









q

q
qjqlql

n

i
ilqjil yww

1 1

1 (21)

In general, the learning rate range is 0.1- 0.3 which is
represented as . In the output layers, weight adjustment

of neurons is examined as follow,

  
 









q

q
qjqlql

n

i
ilqjlj ywwu

1 1

1 (22)

The algorithm 2 represents the function of opposition

learning artificial neural network.

Algorithm 2 Classify transform schema using OL-ANN
Input : Neurons
Output : Weight
1 Initialize the values for the input
2 Compute the opposition number by

zabz 


3 Evaluate the opposition point using

jjj zabz 


4 Compare the values as

  








zfzf

5 Estimate the node of the output layer
6 Select the standard sigmoid function by

 
ye

yg 


1

1

7 Obtain the weight corrections
8 End

5. Results and Discussion

To evaluate the performance of proposed OAPR-
HOML’1 technique in this section with the open source
frequently used datasets for Java-targeted APR research.
First, we discuss the description of dataset, and present the
implementation details. Then, we discuss the comparative
analysis of proposed OAPR-HOML’1 technique with the
existing state-of-art techniques.

5.1 Dataset description

The proposed OAPR-HOML’1 technique is evaluate
through the Defects4J (v1.0), It does not have its flaws 357
by 5 open source projects are JFreeChart (chart C),
Closure compiler (Closure Cl), Apache commons-Lang
(Lang L), Apache commons-Math (Math M) and Joda-
Time (Time T). In general, the whole Defects4J is too

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

269

large for simulation analysis, so we arbitrarily choice
faults after every plan to validate the performance of
proposed OAPR-HOML’1 technique. The detailed
description of each project is discussed as follows:

Table 2 Description of Defects4J (v1.0) benchmark

dataset

Project Number of

bugs

Lines of

code

Number of test

cases

C 26 96,000 2,205

CL 133 90,000 7,927

L 65 22,000 2,245

M 106 85,000 3,602

T 27 28,000 4,130

Total 357 321,000 20,109

From table 2, we know that a amount of bugs, lines of
codes and amount of test cases of project C is 26, 96000
and 2205 respectively. The number of bugs, lines of codes
and the number of test cases of project CL is 133, 90000
and 7927 respectively. The number of bugs, lines of codes
and the number of test cases of project L is 65, 22000 and
2245 respectively. The number of bugs, lines of codes and
the number of test cases of project M is 106, 85000 and
3602 respectively. The number of bugs, lines of codes and
the number of test cases of project T is 27, 28000 and 4130
respectively. Then, the performance of proposed OAPR-
HOML’1 technique is compared with the existing state-of-
art APR techniques are SketchFix, SimFix, Astor, Nopol,
ACS, HDRepair, CapGen, ELIXIE, kPAR and jKali.

5.2 Analysis of APR techniques repair efficiency

The simulation assessment is performed to investigate
the forms of human resistance with proposed OAPR-
HOML’1 technique. Known to our knowledge, currently
128 bugs that are ready to be corrected, at least 89 of
which is a tool APR. Defects and errors using version 4,
prove that they are not corrected, 267 in all literature tool.
This is a major challenge to the research MAR. In the
following Tables 3-7, ‘Y’ defines the bug is properly
secured, ‘X’ defines a bug is reasonable but incorrect and
‘?’ indicates bug is not generating fix. Table 3 describes
the performance comparison of repair efficiency of
proposed and existing APR techniques for chart C project.
In this simulation, we select the 20 bugs from chart C

project in random manner. It is clearly depicts the repair
efficiency of proposed OAPR-HOML’1 technique is very
high compare to the existing APR techniques. The
proposed OAPR-HOML’1 technique fixes the 15 number
of bugs among 20 bugs. However, the existing APR
technique fixes the 8, 2, 5, 0, 5, 3, 0, 0, 0, 1 and 0 numbers
of bugs for SketchFix, SimFix, Astor, Nopol, ACS,
HDRepair, CapGen, ELIXIE, kPAR and jKali respectively.
Table 4 describes the performance comparison of repair
efficiency of proposed and existing APR techniques for
Closure CL project.

In this simulation, we select the 20 bugs from Closure

CL project in random manner. It is clearly depicts the
repair efficiency of proposed OAPR-HOML’1 technique is
very high compare to the existing APR techniques. The
proposed OAPR-HOML’1 technique fixes the 15 number
of bugs among 20 bugs. However, the existing APR
technique fixes the 9, 6, 8, 2, 3, 2, 2, 3, 3 and 2 numbers of
bugs for SketchFix, SimFix, Astor, Nopol, ACS,
HDRepair, CapGen, ELIXIE, kPAR and jKali respectively.
Table 5 describes the performance comparison of repair
efficiency of proposed and existing APR techniques for
Lang L project. In this simulation, we select the 20 bugs
from Lang L project in random manner. It is clearly
depicts the repair efficiency of proposed OAPR-HOML’1
technique is very high compare to the existing APR
techniques. The proposed OAPR-HOML’1 technique fixes
the 15 number of bugs among 20 bugs. However, the
existing APR technique fixes the 14, 8, 9, 3, 3, 0, 1, 3, 3,
and 2 numbers of bugs for SketchFix, SimFix, Astor,
Nopol, ACS, HDRepair, CapGen, ELIXIE, kPAR and
jKali respectively.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

270

 Table 6 describes the performance comparison of repair
efficiency of proposed and existing APR techniques for
Math M project. In this simulation, we select the 20 bugs
from Math M project in random manner. It is clearly
depicts the repair efficiency of proposed OAPR-HOML’1
technique is very high compare to the existing APR
techniques. The proposed OAPR-HOML’1 technique fixes
the 10 number of bugs among 10 bugs. However, the
existing APR technique fixes the 6, 3, 3, 3, 0, 2, 0, 0, 0 and
1 numbers of bugs for SketchFix, SimFix, Astor, Nopol,

ACS, HDRepair, CapGen, ELIXIE, kPAR and jKali
respectively. Table 7 describes the performance
comparison of repair efficiency of proposed and existing
APR techniques for Time T project. In this simulation, we
select the 20 bugs from Time T project in random manner.
It is clearly depicts the repair efficiency of proposed
OAPR-HOML’1 technique is very high compare to the
existing APR techniques. The proposed OAPR-HOML’1
technique fixes the 10 number of bugs among 10 bugs.
However, the existing APR technique fixes the 5, 3, 3, 2, 0,
0, 0, 0, 1 and 1 numbers of bugs for SketchFix, SimFix,
Astor, Nopol, ACS, HDRepair, CapGen, ELIXIE, kPAR
and jKali respectively.

5.3 Comparative analysis

In this section, we compare the performance of
proposed OAPR-HOML’1 technique with the existing
state-of-art APR techniques are SketchFix, SimFix, Nopol,
ACS, HDRepair, CapGen, ELIXIE, kPAR and jKali in
terms of number of bugs fix, accuracy, precession, recall
and F-measure. The detailed description of those
performance metrics are as follow: Accuracy (Acc) defines
the ratio of the number of bugs correctly fixed against the
number of total bugs in the project. Precision (Pre) defines
number of errors troubleshooting correct account number
was first created errors reliable link was first created.
Recall (Re) defines that many errors at the beginning
reliable links to patches but also raise an error. Finally, the
F-measure (F-m) defines the ratio of the precession +
recall with precession × recall. Table 8 describes the
performance comparison of proposed and existing ARP
techniques on the Defects4J benchmark in terms of
number of bugs fix, accuracy, precession, recall and F-
measure.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

271

Fig. 2 shows the number of bugs fix comparison of
proposed OAPR-HOML’1 technique with the existing
modern APR methods such as SketchFix, SimFix, ACS,
Nopol, HDRepair, CapGen, ELIXIE, kPAR and jKali. It is
clearly depicts the number of bugs fix of proposed OAPR-
HOML’1 technique is very high in terms of 66/62, 40/18,
68.4/66, 91.2/49.2, 89.4/66.6, 63.1/63.7, 54.3/40.5,
70.1/31.8 and 94.7/75.3 higher than the existing APR
techniques such as SketchFix, SimFix, ACS, Nopol,
HDRepair, CapGen, ELIXIE, kPAR and jKali respectively.
Fig. 3 shows the accuracy comparison of proposed OAPR-
HOML’1 technique with the existing modern APR
methods such as SketchFix, SimFix, ACS, Nopol,
HDRepair, CapGen, ELIXIE, kPAR and jKali. It is clearly
depicts the accuracy of proposed OAPR-HOML’1
technique is very high in terms of 29.93%, 34.94%,
23.38%, 89.7%, 74.56%, 11.53%, 33.27%, 68% and 96.48%
higher than the existing APR techniques such as SketchFix,
SimFix, ACS, Nopol, HDRepair, CapGen, ELIXIE, kPAR
and jKali respectively.

Fig. 2 Performance comparison of number of bugs fix

 Fig. 4 shows the precession comparison of proposed
OAPR-HOML’1 technique with the existing modern APR
methods such as SketchFix, SimFix, ACS, Nopol,

HDRepair, CapGen, ELIXIE, kPAR and jKali. It is clearly
depicts the precession of proposed OAPR-HOML’1
technique is 14.69%, 29.16%, 8.62%, 83.31%, 69.54%,
1.97%, 26.01%, 57.75% and 94.75% very high in terms of
higher than the existing APR techniques such as SketchFix,
SimFix, ACS, Nopol, HDRepair, CapGen, ELIXIE, kPAR
and jKali respectively. Fig. 5 shows the recall comparison
of proposed OAPR-HOML’1 technique with the existing
modern APR methods such as SketchFix, SimFix, ACS,
Nopol, HDRepair, CapGen, ELIXIE, kPAR and jKali. It is
clearly depicts the recall of proposed OAPR-HOML’1
technique is 24.1%, 23.5%, 25.7%, 69.2%, 11.37%,
69.28%, 25.70%,64.85% and 95.23%very high in terms of
higher than the existing APR techniques such as SketchFix,
SimFix, ACS, Nopol, HDRepair, CapGen, ELIXIE, kPAR
and jKali respectively. Fig. 6 shows the F-measure
comparison of proposed OAPR-HOML’1 technique with
the present modern APR methods such as SketchFix,
SimFix, ACS, Nopol, HDRepair, CapGen, ELIXIE, kPAR
and jKali. It is clearly depicts the F-measure of proposed
OAPR-HOML’1 technique is 20.8%, 20.6%, 26.5%,
78.48%, 70.3%, 8.2%, 20.4%, 66.09% and 93.4%very
high in terms of higher than the existing APR techniques
such as SketchFix, SimFix, ACS, Nopol, HDRepair,
CapGen, ELIXIE, kPAR and jKali respectively.

Fig. 3 Performance comparison of accuracy

Fig. 4 Performance comparison of precession

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

272

Fig. 5 Performance comparison of recall

Fig. 6 Performance comparison of f-measure

6. Conclusion

An improved grasshopper optimization (IGO) algorithm is
used for fault location identification in the given test
projects and opposition learning based artificial neural
network (OL-ANN) technique is used to select AST node-
level transformation schemas to create the sketches which
provide automated program repair for those faulty projects.
From simulation results, we observe the average accuracy
of proposed OAPR-HOML’1 is n% higher than the
existing state-of-art APR techniques; the average
precession of proposed OAPR-HOML’1 is n% higher than
the existing state-of-art APR techniques; the average recall
of proposed OAPR-HOML’1 is n% higher than the
existing state-of-art APR techniques; and the average F-
measure of proposed OAPR-HOML’1 is n% higher than
the existing state-of-art APR techniques. Finally, the
OAPR-HOML’1 is evaluated using Defects4J benchmark
and the with respect to the number, which is like a
performance bugs have been state-of-the-art technology
run, accuracy, precession, recall and F-measure.

Acknowledgments:

Authors thank, K. Abijith Rao (CEO, SNIST) and
Management of Sreenidhi Institute of Science and
Technology, JNT University Anantapuramu for
providing a assistance to establish working environment
in the lab to carry out my present research. Authors also
acknowledge, Prof. C V Tomy (Director), T. Shiva
Reddy(Prinicipal), Dr. Aruna varanasi (head of the

department) for continuous moral support, help and
encouragement.

References
 [1] Peng, R., Li, Y.F., Zhang, W.J. and Hu, Q.P., 2014. Testing

effort dependent software reliability model for
imperfect debugging process considering both detection
and correction. Reliability Engineering & System
 Safety, 126, pp.37-43.

[2] Chen, T.Y., Tse, T.H. and Zhou, Z.Q., 2010. Semi-proving:
An integrated method for program proving, testing,
and debugging. IEEE Transactions
on Software Engineering, 37(1), pp.109-125.

[3] Gokhale, S.S., Lyu, M.R. and Trivedi, K.S., 2006.
 Incorporating fault debugging activities into software

reliability models: A simulation approach. IEEE
Transactions on reliability, 55(2), pp.281-292.

[4] Cao, P., Dong, Z., Liu, K. and Cai, K.Y., 2013.
 Quantitative effects of software testing on reliability

improvement in the presence of imperfect
debugging. Information Sciences, 218, pp.119-132.

[5] Kondo, K. and Yoshida, M., 2005. Use of hybrid
 models for testing and debugging control software for

electromechanical systems. IEEE/ASME Transactions on
 Mechatronics, 10(3), pp.275-284.
[6] Hierons, R.M., 2014. Generating complete controllable test

suites for distributed testing. IEEE
transactions on software engineering, 41(3), pp.279-

293.
[7] Lin, C.T. and Li, Y.F., 2014. Rate-based queueing

simulation model of open source software debugging
activities. IEEE Transactions on Software
Engineering, 40(11), pp.1075-1099.

[8] Huang, C.Y., Kuo, S.Y. and Lyu, M.R., 2007. An
 assessment of testing-effort dependent software
 reliability growth models. IEEE transactions on
 Reliability, 56(2), pp.198-211.
[9] Cotroneo, D., Pietrantuono, R. and Russo, S., 2013. Combining

operational and debug testing for improving
reliability. IEEE Transactions on Reliability, 62(2), pp.408-423.

[10] Huang, C.Y. and Lin, C.T., 2006. Software reliability
analysis by considering fault dependency

 reliability, 55(3), pp.436-450.
[11] Kapur, P.K., Pham, H., Anand, S. and Yadav, K., 2011.

A unified approach for developing software reliability growth
models in the presence of imperfect debugging and
error generation. IEEE Transactions on Reliability, 60(1),
pp.331-340.

[12] Popentiu-Vladicescu, F. and Albeanu, G., 2016.
 Nature-inspired approaches in software faults
 identification and debugging. Procedia Computer
 Science, 92, pp.6-12.
[13] Wong, W.E., Sugeta, T., Qi, Y. and Maldonado, J.C.,

2005. Smart debugging software architectural design in
SDL. Journal of Systems and Software, 76(1), pp.15-
28.

[14] Cai, K.Y., Cao, P., Dong, Z. and Liu, K., 2010.
 Mathematical modeling of software reliability
 testing with imperfect debugging. Computers &
 Mathematics with Applications, 59(10), pp.3245- 3285.
[15] Tokuno, K. and Yamada, S., 2003. Markovian
 software reliability measurement with a geometrically

decreasing perfect debugging rate. Mathematical and
computer modelling, 38(11-13), pp.1443-1451.

[16] Minnerup, P., Lenz, D., Kessler, T. and Knoll, A., 2016.
Debugging Autonomous Driving Systems Using Serialized
Software Components. IFAC- PapersOnLine, 49(15),
pp.44-49.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

273

[17] Chen, J. and Venkataramani, G., 2016. enDebug: A
hardware–software framework for automated energy
debugging. Journal of Parallel and Distributed
Computing, 96, pp.121-133.

[18] Abreu, R., Zoeteweij, P. and Van Gemund, A.J., 2011.
Simultaneous debugging of software faults. Journal of
Systems and Software, 84(4), pp.573-586.

[19] Serrano, E., Quirin, A., Botia, J. and Cordón, O., 2010.
Debugging complex software systems by means of pathfinder
networks. Information Sciences, 180(5), pp.561-583.

[20] Wang, J., Wu, Z., Shu, Y. and Zhang, Z., 2015. An I
mperfect software debugging model considering log-
logistic distribution fault content function. Journal of Systems
and Software, 100, pp.167-181

[21] Li, Q. and Pham, H., 2017. NHPP software reliability model
considering the uncertainty of operating environments with
imperfect debugging and testing coverage. Applied
Mathematical Modelling, 51, pp.68-85.

[22] Li, F., Li, Z., Huo, W. and Feng, X., 2016. Locating
software faults based on minimum debugging
frontier set. IEEE Transactions on Software Engineering, 43(8),
pp.760-776.

[23] Zhang, Y., Zhu, B., Fang, Y., Guo, S., Zhang, A. and
Zhong, S., 2017. Secure inter-domain forwarding loop
test in software defined networks. IEEE
Transactions on Dependable and Secure Computing, 17(1),
pp.162-178.

[24] Gazzola, L., Micucci, D. and Mariani, L., 2017.
 Automatic software repair: A survey. IEEE Transactions on

Software Engineering, 45(1), pp.34-67.
[25] Kong, X., Zhang, L., Wong, W.E. and Li, B., 2018. The

impacts of techniques, programs and tests on
automated program repair: An empirical study. Journal of
Systems and Software, 137, pp.480-496.

[26] Qiu, K., Zheng, Z., Trivedi, K.S. and Yin, B., 2019. Stress
testing with influencing factors to accelerate data race software
failures. IEEE Transactions on Reliability, 69(1),
pp.3-21.

[27] Jiang, J., Xiong, Y. and Xia, X., 2019. A manual
 inspection of Defects4J bugs and its implications for

automatic program repair. Science China Information
Sciences, 62(10), pp.1-16.

[28] Gupta, N., Sharma, A. and Pachariya, M.K., 2020. Testing
and debugging: an empirical evaluation of integrated
approaches. Sādhanā, 45, pp.1-15.

[29] Kim, J., Kim, J., Lee, E. and Kim, S., 2020. The
 effectiveness of context-based change application on

automatic program repair. Empirical Software
 Engineering, 25(1), pp.719-754.
[30] Caballero, R., Martin-Martin, E., Riesco, A. and
 Tamarit, S., 2021. A unified framework for declarative

debugging and testing. Information and
Software Technology, 129, p.106427.

[31] Ye, H., Martinez, M., Durieux, T. and Monperrus, M.,
2021. A comprehensive study of automatic program repair on
the QuixBugs benchmark. Journal of Systems and
 Software, 171, p.110825.

[32] Liu, K., Li, L., Koyuncu, A., Kim, D., Liu, Z., Klein, J. and
Bissyandé, T.F., 2021. A critical review on the evaluation of
automated program repair systems. Journal of Systems and
 Software, 171, p.110817.

[33] Hua, J., Zhang, M., Wang, K. and Khurshid, S., 2018,
October. Sketchfix: A tool for automated program repair
approach using lazy candidate generation. In Proceedings
of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations
 of Software Engineering (pp. 888-891).

T Mamatha received her B.Tech
Degree in Computer Science and
Engineering from Jawaharlal Nehru
Technological University,
Hyderabad,TS, in 2003. She
received her M.Tech in Software
Engineering at JNTUA University
in 2007. At present she is working
as an Assistant professor in

Computer Science and Engineering , Sreenidhi Institute of
Science and Technology,Hyderabad,TS INDIA. Her research
interest includes Software Engineering, Software Testing,
Machine Learning and Networking

B Rama Subba Reddy received
his B.Tech Degree in
Computer Science and
Engineering From Jawaharlal
Nehru Technological University,
Anantapur, India, in 1997.
M.Tech(CSE)From Mysore
university, Mysore in 2002. PhD
(Data Mining) From SV
University,Tirupati 2014. At

present he is working as a Professor &Vice Principal in
Computer Science and Engineering Department ,S V
Engineering College, Tirupati, AP, INDIA. His research interest
includes Network Security , Wireless Communication system
and Software Engineering

C Shoba Bindu received her
B.Tech Degree in Electronics &
Communication Engineering
from Jawaharlal Nehru
Technological University,
Anantapur, India, in 1997.
M.Tech. in Computer Science
and Engineering from JNTUA
University, Anantapuram in 2002.
She received her Ph.D in

Computer Science and Engineering at JNTUA University in
2010.. At present she is working as a professor in Computer
Science and Engineering , JNTUA, Anantapuram, AP, INDIA.
Her research interest includes Network Security, Wireless
Communication system and Software Engineering

