
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

374

Manuscript received April 5, 2022
Manuscript revised April 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.4.44

An Improved Intrusion Detection System for SDN using Multi-Stage
Optimized Deep Forest Classifier

Saritha Reddy A 1† , Ramasubba Reddy B2††, and Suresh Babu A3†††

 Research Scholar, JNTUA, AP, India. Professor, SVEC, AP, India. Professor, JNTUACE, India

Abstract
Nowadays, research in deep learning leveraged automated
computing and networking paradigm evidenced rapid
contributions in terms of Software Defined Networking (SDN)
and its diverse security applications while handling cybercrimes.
SDN plays a vital role in sniffing information related to network
usage in large-scale data centers that simultaneously support an
improved algorithm design for automated detection of network
intrusions. Despite its security protocols, SDN is considered
contradictory towards DDoS attacks (Distributed Denial of
Service). Several research studies developed machine learning-
based network intrusion detection systems addressing detection
and mitigation of DDoS attacks in SDN-based networks due to
dynamic changes in various features and behavioral patterns.
Addressing this problem, this research study focuses on effectively
designing a multistage hybrid and intelligent deep learning
classifier based on modified deep forest classification to detect
DDoS attacks in SDN networks. Experimental results depict that
the performance accuracy of the proposed classifier is improved
when evaluated with standard parameters.
Key words:
Software Defined Networking (SDN), Network Intrusion Detection
Systems (NIDS), DDoS attacks, Deep forest Classification.

1. Introduction

As an increasingly complicated system, the current
Internet architecture has been in place for three decades.
Legacy Internet cannot keep up with the ever-changing
needs of new apps because it lacks adaptability. Network
services may be configured and deployed with unparalleled
scalability and flexibility using Software Defined
Networking (SDN) [1]. Separating the control plane from
the data plane allows for better flexibility and control of the
traffic flows in the network. SDNs use the OpenFlow [2]
protocol to collect network information in real-time since
their architecture is flow-based. However, as shown in [3],
the SDN design also brings significant security challenges
relating to the control plane, the control-data interface, and
the control application interface. It's only been recent that
SDN security has risen to the front of people's minds as a
significant worry (For instance, see [4] and [5] and
references therein). In terms of network security, an

intrusion detection system (IDS) plays a critical role. IDS
Anomaly seeks to find data that differ from a model's
expected behavior. Anomaly-based IDS techniques include
artificial neural networks (ANN), support vector machines
(SVM), and Bayesian networks. There is a significant False
Alarm Rate (FAR) and computational cost associated with
these strategies, as noted in [6]. Deep Learning (DL) has
superseded traditional machine learning approaches, a
novel methodology that achieves improved accuracy. In
resource-restricted networks like SDNs, DL has a strong
argument for its flexibility since it can analyze raw data and
learn high-level characteristics independently.

SDN is a promising architecture that isolates the control
function from the forwarding hardware and provides today's
data centres more flexibility and programmability. Three
layers make up the SDN architecture: a control plane
(controller), a foreground and a back-ground, as depicted in
Fig. 4. In the data plane, packets are sent via one or more
switches. The OpenFlow protocol is used by the vast
majority of commercially available switches today. SDN
switches are also referred to as OpenFlow-enabled switches
because of this. According to the software operating on the
application plane, the control plane has a variety of
controllers that turn these switches into intelligent devices
like routers, IDS, and firewalls. Southbound API (often
known as OpenFlow) is responsible for connecting the
control plane to SDN switches. Use of the northbound
interface allows communication between applications and
the controller.

A network operating system (NOS) determines the
operation of SDN switches through the Control Plane. It has
total control over the network. Network traffic may be
studied more effectively by using a central network
controller that has access to all of the network's traffic data.
Controllers like as NOX and Ryu Onix are among the most
popular SDN options.

Because it oversees and regulates the whole network, the
centralised controller becomes the primary point of attack.
To overwhelm the control plane, an attacker might saturate

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

375

its computing and communication resources. Unmatched
packets are processed and flow rules are installed into the
SDN switch when the controller reaches saturation of its
resources. Resources like memory, CPU and buffer are used
by the controller as a result of this As a result, the controller
takes a long time to process valid requests due to the high
volume of flooded requests. This causes the whole network
to slow down significantly. Limitation of data-control
channel bandwidth: After receiving a new packet, the
switch sends the header to the controller and saves the
payload in the buffer. When a switch is swamped with
requests, the buffer becomes overflowing and the switch
fails to function. In order to avoid overloading the
communication channel, it then begins transmitting entire
packets back to the controller. Genuine users see a delay
since it uses up all of the channel's bandwidth.

The Internet now offers a wide range of valuable services
because of advancements in Internet technology. There are
several security dangers, though. Network Intrusion
Detection Systems (NIDS) uses two types of detection
methods: signature-based and anomaly-based. When just
the attack signature (pattern) is known, signature-based
detection (also known as abuse detection) might be
beneficial. Anomaly-based detection, on the other hand,
may be used to both known and unknown assaults. The idea
of "traffic identification" is also used by NIDS, i.e.,
extracting valuable information from the captured traffic
flow and then categorizing the recorded traffic as either
normal or attack using a previously taught machine learning
algorithm Network infections, eavesdropping, and
malicious

Assaults are on the rise. Therefore, network security has
shifted to the forefront of public discussion and government
priorities. Intrusion detection, on the other hand, can
effectively deal with these issues. Network information
security relies heavily on intrusion detection. Internet
commerce is growing exponentially, and as a result, there is
increasing complexity in network behavior characteristics,
making intrusion detection more difficult [2], [3]. A critical
difficulty that cannot be avoided is recognizing various
types of harmful network traffic, particularly spontaneous
hostile network activity.

In reality, network traffic may be split into regular and
abnormal (normal and malicious traffics). Aside from that,
there are five different kinds of network traffic: regular; dos;
root to local; user to root; and probe (Probing attacks). As a
result, detecting intrusions may be viewed as a challenge of
categorization. The accuracy of intrusion detection may be
significantly enhanced by enhancing the efficiency of
classifiers inefficiently recognizing hostile traffic. In
intrusion detection, approaches like machine learning
[4,5,6,7,8,9] are frequently employed to spot malicious

traffic. On the other hand, these approaches belong to the
shallow learning category and often emphasize feature
selection and engineering. With low identification accuracy
and a high rate of false alarms, they struggle with feature
selection and cannot successfully tackle the enormous
intrusion data classification challenge.

Deep learning-based approaches for intrusion detection
have been suggested one after the other in recent years. The
authors in [10] present a mal-ware traffic categorization
approach using a convolutional neural network using traffic
data as an image. Classifiers do not require any additional
input data because this approach uses the original traffic as
the input data. According to [11], Recurrent Neural
Networks (RNN) can detect network traffic behavior by
representing it as a series of changing states over time.
Classifying incursion traffic is made easier using an LSTM
network, which the authors demonstrate in [12]. According
to the findings of the experiments, the LSTM algorithm is
capable of discovering all of the attack types buried in the
training set.

As you can see, all of the approaches discussed above
look at the traffic on the network as a whole as a series of
bytes. They don't take full advantage of network traffic
domain knowledge. It is analogous to handling traffic as if
it were an unrelated entity, like CNN does, and ignores the
internal relations of the network traffic. In the first place,
network traffic is organized into levels. A network traffic
unit is a collection of data packets traveling over a network.
A data packet is a packet of data made up of a number of
bytes. In the second place, traffic characteristics inside the
same and distinct packets change considerably. The
separate extraction of sequential elements from distinct
packets is required. Put another way, not all traffic aspects
are equally significant for traffic categorization when
extracting features from particular network traffic.

Recent advances in ensemble-based models include a
mixture of multiple ensemble-based models, including
random forests (RFs) and the stacking, developed by Zhou
and Feng [13] and known as the Deep Forest (DF) or
gcForest. As in a multi-layer neuronal network structure,
there are several levels in gcForest, but each layer has
numerous RFs instead of neurons. To put it another way,
one may think of the gsForest as an ensemble of decision
tree ensembles. Zhou and Feng note out that gcForest is far
more straightforward to train than deep neural networks,
which involve a considerable deal of hyperparameter
tweaking and vast amounts of training data in order to
perform well.

The proposed deep forest classifier includes a novel
modification of the screening mechanism for confidence

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

376

based on the adaptive weighting of every training instance
at each cascade level based on its mean class vector at the
previous level. the Deep Forest Adaptive Weighted
(AWDF). For applying weights, there are two methods to
choose from. This is the first method, in which weighted
cases are randomly selected for use in training trees.
Because of this, the number of "active" instances decreases
as one moves up the forest hierarchy. Weights may be used
to establish a splitting rule for training the decision trees in
a second approach. AWDF outperforms in numerical
experiments, according to the findings.

In summary, the major contributions of the study include
designing a unique multistage optimized Deep Learning-
based NIDS system reducing computing complexity while
improving detection accuracy. Investigate the influence of
various feature selection strategies on the NIDS detection
performance and time complexity (training and testing).
Hyper-parameter optimization approaches and their impact
on NIDS detection performance are proposed and
investigated. We compare the proposed framework's
performance to previous research by increasing detection
accuracy, a decrease in FAR, and a smaller training sample
and feature set.

The paper is organized as follows. A short description of
existing research works is given in Section 2. Section 3
provides the detailed description of the proposed
mechanism. Dataset details and numerical experiment
results are furnished in Section 4. Concluding remarks are
provided in Section 5.

2. Literature Study

A network intrusion detection system (IDS) was
proposed in the study [14] to identify hostile activity. A
recursive feature reduction is done on the CICIDS2017
dataset before the suggested IDS is evaluated using random
forest. This is followed by applying a Deep Multilayer
Perceptron Model (DMLP) to the chosen features, with an
accuracy of 91%. This model has two steps: sparse
AutoEncoder (AE) for unsupervised feature learning and
softmax regression classifier trained on the obtained
training data. N. Shone et al. presented this self-taught
learning model. They used their model on the NSL-KDD
dataset and could attain an accuracy of above 98%.

The feature pattern graph model presented by Xiao et al.
(2019) [15] collects features from TCP, UDP, and ICMP
data. Entropy-based on ports per IP, Tuan et al. (2019) [16]
researched important aspects to identify malicious traffic,
then utilised the KNN algorithm to detect and discard the
traffic. K-Nearest Neighbors (KNN) algorithms were
tweaked by Xu et al. (2019) [17] to increase detection

precision and efficiency. The controller, in accordance with
(Mehr and Ramamurthy, 2019) [18], pulls several fields
from the packet in messages (SIP, DIP, Sport, Dport).
Entropy is computed using these variables, and the model is
trained using both legal and malicious traffic. Flow packets,
flow bytes, and the pace of flow entries are used by the
SVM to determine if incoming traffic is legitimate or
malicious. Using this strategy, the consequences of a DDoS
assault are decreased by 36%. There are two parts to the
Safeguard Scheme (SGS) proposed by Wang et al. (2019)
[19]: malicious traffic detection in OpenFlow switches and
a defensive mechanism in the control plane. In order to
identify malicious traffic, switches analyse packet
properties and apply the Back Propagation Neural Network
to see whether there is a malicious flow present (BPNN).
Notifications are sent only if the defence module receives
an alarm message. By remapping controllers, the defence
module may alleviate the pressure on the controllers. Using
the KNN based machine learning algorithm,

SDN time series analysis was offered by Fouladi et al.
(2020) [20] as a DDoS protection approach. To identify a
rapid shift in network traffic, the proposed technique
predicts the forthcoming traffic characteristics (number of
unique source IP addresses (USIP) and destination IP
addresses (UDIP))... Another research used six machine
learning models to construct a low-volume DDoS
protection system (SVM, J48, Random Forest, Random
Tree, REP Tree, MLP). The suggested approach is tested
using the CIC DoS 2017 dataset and achieves a 95%
detection rate. For both low and large volume assaults,
Dehkordi and colleagues (2020) [21] integrated the
entropy-based technique with machine learning methods.
By choosing the appropriate time period, the detection rate
may be maximised. A 99.85 percent success rate is achieved
compared to existing DDoS protection methods, which are
already in use. For effective detection of DDoS assaults,
researchers used the generalised entropy (GE) and
information-distance metric to reduce duplicate traffic
aspects. They used the SNORT intrusion detection system
to gather network traffic in order to decrease controller
overhead. It is hoped that this strategy would help enhance
the accuracy of deep learning classifiers such as
Convolutional Neural Networks (CNNs) and Stacked Auto
Encoders (SAEs).

Entropy-based DDoS defences with little computing cost
were suggested by Mishra et al. (2021)[22] . Flow rate,
entropy, and count thresholds have been set to zero in the
proposed technique to begin analysing the data. Initial
comparison is made with the initial threshold value of
packet flow rate. Switch flow table data are used to calculate
entropy after surpassing the threshold. The count value is
increased when the calculated entropy falls below the
threshold. When the attack count reaches a certain level, an

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

377

attack alarm message is created. An IP-blocking controller
receives and stores information from switches such as DPID
and port numbers during the mitigation phase. In a DDoS
assault, Shohani et al. (2021) [23] discovered that the
attackers target random hosts rather than a single host.
There are four steps to the strategy that has been presented.
Initially, a network sleuth examines the communication that
is both benign and malicious. Second, a controller uses a
statistical model to estimate the amount of flow table misses
in OpenFlow switches. Lastly, an exponential weighted
moving average (EWMA) linear regression is employed to
estimate the threshold of table misses at periodic intervals.

Convolutional neural networks are used in [24, 25] to
develop a new network intrusion detection model (CNNs).
The CNN model enhances class accuracy when used with
small numbers while simultaneously reducing the false
alarm rate (FAR). Authors [26] utilized a method like this
to reduce the dimensionality of a dataset. They used the
KDD CUP and UNB ISCX datasets for PCA tests with
Random forest and C4.5 classifier methods. Ten main
components were used to compare classification accuracy
to 41 features using a classifier called the C4.5.

Natesan et al. [27] proposed an efficient feature selection
and classification to attain an optimum detection rate using
a parallel computing model and a nature inspired feature
selection approach. In addition, the Map Reduce
programming paradigm is utilised for the selection of the
ideal subset with the least amount of computing effort.
Rough Set Theory (RST) and SVM are both used in IDS.
To improve the Wei et al [28] DL-based DBN model, it has
been recommended that particle swarm and genetic
algorithms should be used together. NSL-KDD was used to
test the model's performance. The results showed
considerable increases in the detection rates of the U2R and
R2L classes. The main disadvantage of the suggested model
is that it takes longer to train because of its intricate
structure.

Jiang et al.[29] proposed an effective IDS system with a
deeper hierarchy by combining CNN with long-range
bidirectional short-term memory. To increase the number of
marginal samples, a SMOTE is utilized. This helps the
algorithm effectively learn the features. The problem of
unequal power between the sexes has been resolved. The
spatial features were extracted using the CNN, while the
temporal functions were extracted using the BiLTSM.
Experiment with NSL-KDD datasets. The given approach
improves accuracy as well as detection rate. Detection rates
for minor data classes have risen marginally, but they
remain mediocre compared to other attack classes. Because
of the complicated structure, training takes longer. Zhang et
al. [30] proposed a multi-layer IDS model based on CNN
and gcForest. The group of researchers also presented a

novel P-Zigzag approach for translating raw data into two-
dimensional grey features. In the initial coarse grit layer,
they used a superior CNN model for initial detection. The
anomalous classes are then classified into N- 1 class using
gcForest (caXGBoost) in the finely grained layer. They
used a dataset to integrate the UNSW- NB15 and CIC-
IDS2017 datasets. According to the results of the studies,
the proposed model has a much higher accuracy and
detection rate than single algorithms while also reducing the
FAR.

Yu and colleagues [31] suggested an IDS model based on
the new concept of DL few-shot learning (FSL). One of the
objectives is to use a small number of balanced dataset data
to train on. The vital feature is extracted and scaled using
DNN and CNN incorporated in the model. NSL-KDD
datasets were used to get experimental results that showed
model efficiency at respectable detection rates for minority
groups. Only 2% of the data was used for training to get
outstanding results for the studied data set. Xiao et al. [32]
present an efficient CNN-based IDS. The important thing
Principle Component Analysis and Adobe AE will be used
first for feature extraction. After being converted into a 2-D
matrix, the feature set is then fed into the neural network.
Experiments with the KDD Cup'99 dataset were carried out.
Studies show that it saves significant time during
development and testing. The main issue with R2L attack
classes is that their detection rates are lower than those of
other attack types.

The existing models for intrusion detection have several
drawbacks, despite several earlier studies in the literature.
It's common knowledge that class imbalance occurs in
intrusion detection datasets, although many studies ignore
it. Also, rather than following a systematic approach, the
size of the training sample is typically chosen at random.
They are also constrained by the usage of out-of-date
datasets like KDD-CUP99. The optimization of hyper-
parameters using several strategies was also studied in
specific papers. However, just one method was employed
instead. In addition, just a few studies looked at the
framework's temporal complexity, an often-overlooked
statistic.

3. Methodology

This research presents a multistage DL-based NIDS
system that minimizes computational complexity while
retaining detection performance. This is accomplished in
phases, each with a new set of approaches. Figure 1 depicts
the suggested methodology's workflow.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

378

Figure 1: Working Flow of Proposed Methodology

3.1 Data Pre-processing:
In the pre-processing data stage, we will be using the Z-
score technique to normalize the data and the SMOTE
algorithm to oversample the minority class.

3.1.1 Z-Score Normalization:
Z-score normalization refers to the process of normalizing
every value in a dataset such that the mean of all of the
values is 0 and the standard deviation is 1.Z-score data
normalization is the initial step in the pre-processing data
stage. The data must first be encoded with a label encoder
to make numerical characteristics out of categorical ones.
This is followed by a data normalization process that
involves figuring out the normalized value xnorm for every
data sample xi as follows:

(1)

where 𝜇 = Mean vector of an individual feature and 𝜇
=Standard deviation
Notably, the Z-score data normalization is carried out since
DFC works better with normalized datasets [33].

3.1.2 SMOTE Technique:
Second, the SMOTE technique is used to accomplish
minority class oversampling. With this technique, the

minority class gets synthesized more often, resulting in a
lower class imbalance, hurting the DL classification model's
performance [34,35,36]. To increase the performance of the
training model, it is critical to executing minority class
oversampling, especially for network traffic datasets, which
are prone to this problem.
A new minority class instance is generated by analyzing
existing examples using the SMOTE technique. The
algorithm compiles all instances of the minority class into a
single set 𝑋𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦. For every instance
𝑋𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 within 𝑋𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 there generate a new
synthetic instance 𝑋𝑛𝑒𝑤 which is computed as follows.
𝑋𝑛𝑒𝑤=𝑋𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑟𝑎𝑛(0,1) ∗ (𝑋𝑗 − 𝑋𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒), 𝑗 = 1,2,
… . . , 𝑘 (2)
In which 𝑟𝑎𝑛(0,1) is considered as a random value within
the range [0,1], and 𝑋𝑗 is determined by the sampled from
the set of k nearest neighbours {𝑋1, 𝑋2, 𝑋3 … … … 𝑋𝑘}
of instance 𝑋𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒. It should be

Highlighted that SMOTE technique creates new high-
quality instances that statistically match samples of the
minority class, unlike other oversampling algorithms that
reproduce minority class instances.

3.2 Feature selection
To better understand the models' detection performance and
temporal complexity, this research analyses two alternative
feature selection techniques: information gain-based and
correlation-based feature selection. Designing DL models
for large-scale systems that generate high-dimensional data
is especially significant in this regard [37,38,39].

3.2.1 Information Gain-based Feature Selection
The information gain-based feature selection (IGBFS)
algorithm is the first to be studied. It utilizes information
theory ideas like entropy and mutual information, as the
name says, to pick out the best traits. The IGBFS uses a
feature's quantity of information (in bits) to rank it, and only
the most information-dense features are sent to the ML
model as part of its feature subset. As a result, [40] is the
function for evaluating features.

𝑖ሺ𝑆;𝐶ሻ ൌ 𝐻ሺ𝑆ሻ െ 𝐻ሺ𝐶|𝑆ሻ ൌ ∑𝑆 ∈ 𝑆ூ ∑𝐶ூ ∈

𝐶𝑃൫𝑆ூ,𝐶ூ൯ log
൫ௌ,൯

ሺௌሻ∗ሺሻ
 (3)

In which (𝑆; 𝐶) is considered as mutual information in-
between class C, and Subset S where H(S) is considered as
entropy as well as the distinct feature set of subset S. 𝐻(𝑆|𝐶)
is computed as a conditional entropy of an uncertain and
discrete subset of the feature set S derived from class C,
𝑃(𝑆𝑖, 𝐶𝑖) is calculated as the join probability if the class 𝐶𝑖
and the feature having value 𝑆𝑖.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

379

3.2.2 Correlation-based Feature Selection

The correlation-based feature selection (CBFS) method is
the second feature selection technique under consideration.
Its ease of use and ranking attributes according to their
association with the target class are often utilized [41,42,43].
If a characteristic is thought to be important by CBFS, it is
included in the subset (i.e., if it is highly correlated with or
predictive of the class). When employing CBFS, the feature
subset evaluation is performed using Pearson's correlation
coefficient. In other words, the evaluation function is
computed as follows:

(4)

Where 𝑀𝑒𝑟𝑖𝑡 𝑠the merit is related to the context feature
subset S, the number of features in the subset S is K, �̅��̅̅��̅� is
computed as average Pearson class-feature correlation as
well as �̅̅��̅�𝑓 ̅ is computed as a feature- feature Pearson
correlation.

3.3 Hyper-parameter Optimization

Random search (RS) and Genetic Algorithm (GA) meta-
heuristic algorithms are examined in this study to see which
is the most effective for hyper-parameter optimization.

3.3.1 Random Search

In a random search, the objective function is fed random
inputs, which are then evaluated to see if any patterns
emerge. There are no assumptions about how the objective
function is structured, which makes it more effective. Using
this approach, non-intuitive solutions may be developed for
situations involving a large amount of domain knowledge
that might impact or prejudice the optimization process
being used. Because algorithms that rely on accurate
gradients might fail when searching in noisy or non-smooth
parts of the search space, it is possible that random
searching is the optimum approach in these situations.

A pseudorandom number generator may be used to create
a random sample from a given domain. It is necessary to
have a well-defined limit or range for each variable before
a random value can be selected and evaluated. It may be
more economical to produce a big sample of inputs and then
analyse them since generating random samples is
computationally easy and does not need much memory.
Because each sample is distinct, several evaluations may be
performed in parallel to speed up the process. The RS
method is the first of several hyper-parameter optimization
methods. Heuristic optimization models are the ones that
use this technique [36]. Like the grid search algorithm [37,

38], RS experiments with many parameter combinations to
find the best one. To put this into a mathematical
perspective, consider the following model.

(5)

The objective function f should be maximized (usually the
model's accuracy), and the collection of tuning parameters
is called parameter tuning. While grid search searches
through all potential possibilities, the RS technique
randomly selects a sample of those to test. This is in contrast
to grid search. This means that when there are only a few
hyper-parameters to consider, RS outperforms grid search.
This technology also makes it possible to undertake parallel
optimization, which further reduces the computational
complexity.

Meta-heuristic optimization techniques are a subset of
hyper-parameter optimization methods. These algorithms'
goal is to find or provide an effective solution to an
optimization issue [44,45,46,47,48,49]. They are ideal
candidates for hyper-parameter optimization because they
solve combinatorial optimization issues with decreased
computing complexity. Using a technique known as
Genetic Algorithm, this research examines well-known
meta-heuristics for hyper-parameter optimization (GA).
Meta-heuristic algorithms influenced by evolution and
natural selection are standard. Another well-known
example is this one. It is frequently utilized to find superior
solutions to combinatorial optimization issues using
biologically inspired procedures such as mutation,
crossover, and selection. GA algorithms can effectively
explore the solution space by using these operators. The GA
method operates as follows in the context of ML hyper-
parameter optimization:
a. To begin with, create a new population of
chromosomes, which are randomly generated solutions.
Hyper-parameter value combinations may be found on
every chromosome.
b. Apply a fitness function to each chromosome to
determine its level of fitness. When employing the
chromosomal vectors, the function is generally the ML
model's accuracy.
c. Descend the list of chromosomes in order of
relative fitness.
d. Crossover and mutation processes can produce
new chromosomes to replace those that are no longer
needed.
e. Repetition of steps b) to d) until no improvement
in performance is observed, or a stopping threshold is
reached.
f. DFC (Deep forest Classifier) receives the ideal
characteristics and uses them in the final procedure.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

380

3.4 Modified Deep Forest Classifier (DFC)
The Deep Forest is an ensemble-based decision tree

approach that emphasizes building deep models using
modules that are non-differentiable. It is built around three
primary principles that are considered the reasons behind
the rich accomplishments of deep models. The reasons are
as follows:
• Layer by Layer processing: It is considered one of
the significant factors since, no matter how complex the flat
model becomes, the features of layer by layer processing
cannot be achieved.
• In-model feature transformation: Basic machine
learning models work on the original set of features.
However, new features are generated during the learning
process of a deep model.
• Appropriate model complexity: Large datasets
need complex models, basic machine learning models are
limited in terms of complexity. However, it is not the case
with deep models.
The overall structural working of the deep forest is
separated into two broad parts Cascade Forest Structure &
Multi-Grained Scanning. Cascade forest structure ensures
layer-by-layer processing, while Multi-grained scanning
allows the model to achieve sufficient complexity.

3.4.1 Cascade Forest Structure

Figure.2. Cascade forest construction

A cascade structure is employed to represent the layer-by-
layer processing of raw features. Each layer in the cascade
takes input (processed information) from the previous layer
and feeds it into the next layer. A layer in the structure can
be defined as an ensemble of decision tree forests. It is
ensured that diversity is maintained while creating
ensembles by including different kinds of forests.
The working in cascading stage proceeds as follows, for a
given case, an approximate class distribution will be
generated by each forest. This is done by considering the

training examples and fraction of different classes at the
terminal or leaf node where the particular instance falls,
then averaging all the trees in the same forest. This has also
been depicted in Figure. 2. The approximated class
distribution so obtained forms a vector of classes with the
help of k-fold cross-validation. The vector is then
concatenated with the original set of features. The result is
then forwarded to the next cascading layer. K-fold cross-
validation helps in reducing the risk of overfitting. The
number of levels is determined automatically based on the
performance of the validation set.
A striking difference in deep forest and other deep models
is the ability to adaptively change the model complexity by
terminating the amount of training data when tolerable. This
provides a considerable advantage when working with
datasets of varying sizes.

3.4.2 Multi-Grained Scanning

The cascading forest procedure is enriched with the
procedure of multi-grained scanning. The inspiration
behind the multi-grained scanning procedure was that deep
models are generally well suited and good at handling
feature relationships. The whole process is depicted in
Figure 3. The sliding windows and feature vectors scan raw
features are produced. The feature vectors are either
negative or positive based on the extraction from the
training sample; they are then used to produce class vectors.
A completely random forest is trained using the instances
extracted from windows having the same size. The
concatenation of generated class vectors obtains
transformed features.

The actual label of the training sample is used to assign
the instances that are extracted from the windows. Though
these assignments can be incorrect, they can be attributed to
the flipping output method. Also, feature sampling can be
performed if transformed feature vectors are too long. The
sliding windows size is varied to obtain grained features
vectors that are different.

Figure.3. Multi-Grained scanning.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

381

The Deep forest has shown a lot of promise, and its success
can be attributed to the following factors:
　 Fewer hyper-parameters
　 Data-dependent tuning of model's complexity
　 Less dependence on GPU

3.5 Security Considerations

The scalable manner uses distributed parallel ML
algorithms with several optimization strategies to manage
an extensive network and host event volumes. The scalable
design also enables a quick and parallel examination of
network and host-level actions using the overall graphic
processing unit (GPU) processing capacity.

It is a signature-based NIDS system with a multistage
optimization of DFC-based NIDS frameworks. A good
example of this is that the framework oversamples the
minority class in network traffic, which is often the attack
class [50]. Observations of known started assaults teach the
framework new things. It's important to remember that
Since it is taught using a binary classification model, the
framework may be used as an anomaly-based NIDS,
classifying any unusual activity as an attack. As a module
inside a larger security framework/policy, this framework
can be used by a person or organization to protect
themselves better. This security framework/policy can
include other techniques such as firewalls, deep packet
inspection, user access control, and user authentication
procedures can be included in this security
framework/policy [51,52]. This would provide a safe
architecture with many layers that can protect user data and
information while maintaining privacy and security.

4. Results and Discussions

All tests were conducted on an Ubuntu 14.0.4 LTS with
Python. Use Scikit-learn to implement all traditional
machine learning algorithms. Using GPU-enabled
TensorFlow4, three DNNs were developed with a higher
Keras5 framework backend. The GPU was NVidia
GK110BGL Tesla K40, and the CPU was configured to run
on a 1 Gbps Ethernet network (32 GB RAM, 2 TB hard disk.
The following test cases were selected to assess the
performance of the proposed and different classical deep
learning classifiers on the NSL-KDD dataset. However, the
deep forest has less hyperparameters and it can adjust the
hyper-parameters automatically during the training process.

4.1 Dataset Description
We considered the widely available and widely used leak
detection data sets in earlier work: the NSL-KDD data set
[53]. The dataset has standard data, and four different types
of attacks include Probe, U2R, R2L, and DoS. There are 42-
dimensional features presented in each intrusion record, and

it is categorized into a 3-dimensional symbol feature, a
traffic type label, and a 38-dimensional digital feature.
Table 1 shows the description of the data set.

Table 1: Dataset Description

Category Train Test
Normal 77423 9899
DoS 12256 8458
Probe 4897 2211
U2R 65 211
R2L 789 2989
Total 128983 22897

4.2 Performance metrics

The basis truth value is necessary for the evaluation of
the various statistical measures. In binary classification, the
foundation truth consisted of several connection registers
that were normal or attacked. Let L and A be the sum of
usual and Attack logs in the test dataset and use the
subsequent terms to determine the excellence of the
classification model:
• True Positive (TP) - the sum of connection records
properly categorized to the Usual class.
• False Negative (FN) - the sum of Attack
connection records incorrectly categorized to the
Usual connection record.
• True Negative (TN) - the sum of connection
records properly categorized to the Attack class.
• False Positive (FP) - the sum of Normal linking
records wrongly categorized to the Attack linking record.
The following evaluation metrics are examined based on the
above-given terms.

4.3 Performance of the Proposed Metrics
The proposed evaluation has been segregated into major
parts, such as binary classification and Multiclass
classification. The binary classification detects the Attack
or normal communication. Multiclass classification has

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

382

detected the various types of Attack, which is presented in
the dataset.

A. Multiclass classification
The detailed results for the classification of the proposed
system for multiclass are reported in this section.

Table.2. Comparative analysis of multiclass on Proposed
DFC method

Category Accuracy
(%)

Precision
(%)

Recall
(%)

F-score
(%)

Normal 79.08 87.27 94.60 91.47
DoS 82.75 93.16 87.47 83.42
Probe 83.43 75.81 78.62 87.28
U2R 81.33 71.04 76.47 92.94
R2L 87.19 72.32 69.04 81.15

Figure 4: Graphical Representation of Proposed DFC for

different categories on NSL-KDD Dataset.

While in the normal category, the proposed method
achieved 79.08% accuracy, 87.27% precision, 94.60%
recall, and 91.47% F1-measure. While comparing with
other types of recall experiments, the proposed DFC
achieved high performance on the standard category only.
The proposed method achieved high precision (i.e. 93.16%)
on the DoS category and high F1-measure (i.e.92.94%) only
on the U2R category. In other categories like Probe, U2R,
R2L, the proposed method achieved nearly 71% to 75% of
precision, 69% to 78% of recall, and 81% to 87% of
accuracy, where DFC achieved less recall value (i.e.69.04%)
on R2L category only.

B. Binary classification

The detailed results for Binary classification of several
classical ML and DL classifiers and proposed systems are
reported in this section. Figure 5 shows the graphical
analysis of the proposed classifier.

Figure 5: Graphical Representation of Proposed DFC with
existing techniques for binary data classification

Table.3. Comparative analysis of binary class on Proposed
with various existing algorithms.

Algorithm Accurac
y

Precisio
n

Recall F-score

Random
Forest (RF)

88.70 90.41 89.21 90.02

Support
Vector
Machine
(SVM)

91.50 91.82 90.81 92.27

Convolutio
nal Neural
Network
(CNN)

91.90 91.78 92.52 92.41

Bi-
directional
Long Short
Term
Memory
(Bi-
LSTM)

93.50 92.63 91.38 93.18

Recurrent
Neural
Network
(RNN)

92.70 93.90 92.93 94.32

LSTM 94.27 94.91 93.47 94.63

Proposed
DFC

95.32 96.95 94.24 95.02

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

383

From the above table 2, it is proved that the proposed DFC
achieved better accuracy (95.32%), precision (96.95%),
recall (94.24%), and F-score (95.02%) than existing ML
and DL techniques. The existing methods, namely SVM
and CNN, achieved nearly 91% to 92% accuracy, precision,
recall, and F-score. The other ways, such as Bi-LSTM,
RNN, and LSTM, gained almost 92% to 94% of accuracy,
precision, recall, and F-score on binary data classification.
While compared with all techniques, Random Forest (RF)
provides low results in all parameters, i.e. 88.70% accuracy,
90.41% precision, 89.21% recall, and 90.02% F-score.

C. Minimal feature analysis

Optimizing functionality is an essential step to detect
intrusion. This is a crucial step towards identifying more
correctly the different sorts of attacks. Without optimizing
features, a misclassification of assaults may be possible, and
the development of a model would take a long time. The
methods for selecting functions reduced the training and
testing time significantly and enhanced the rate of detecting
intrusions. Two experiment trials are performed on limited
feature sets on the NSL- KDD to assess the performance of
the proposed method and static machine learning
classifications. Table 4 provides detailed results. Compared
to tests in 4 feature sets, the experiments with 11 and 8
feature sets were good. In addition, experiments with 11
groups of functionalities were successful compared to the
eight sets. The performance difference of 11 to 8 minimum
set of features is minor.

 Table.4. Comparative analysis of test results using minimal
feature sets.

 Accuracy (%)

Algorithm 11 features 8 features 4 features

RF 88.27 89.67 87.18

SVM 91.82 92.43 88.79

CNN 92.04 92.94 91.41

Bi-LSTM 93.13 93.06 92.07

RNN 94.43 94.16 93.66

LSTM 94.89 94.87 94.09

Proposed DFC 96.90 95.08 94.39

The above table consists of validated techniques with
proposed methods for different attacks, namely Normal,
DoS, Probe, U2R, and R2L. When the number of features
is minimized, the accuracy of the proposed DFC is also

Figure 6: Graphical Representation of proposed DFC with
existing classifiers in terms of accuracy while reducing the

features set.

minimized. For instance, its accuracy is 96.90%, when the
11 features are reduced, and its accuracy is 95.08%, when
eight features are reduced, finally, it reaches 94.39% of
accuracy when only four features are reduced.
COMPARED WITH EXISTING METHODS, the RF
technique achieved low accuracy, i.e., nearly 87% to 89%
for all features reduction. When the feature set is 8, the
existing methods such as SVM, CNN, Bi-LSTM, RNN, and
LSTM achieved 92.43%, 92.94%, 93.06%, 94.16%, and
94.87% of accuracy, but the same techniques gained
88.79%, 91.41%, 92.07%, 93.66%, and 94.09% of accuracy
only.

5. Conclusion

Due to the growing reliance of individuals and
businesses on the Internet and their concerns about the
security and privacy of their activities, the field of cyber-
security has attracted considerable interest from both
industry and academia. Increasing resources have been
budgeted and deployed to safeguard modern Internet-based
networks from malicious assaults. Thus, many NIDS kinds
have been put up in the literature. There is still space for
improvement in NIDS performance despite the
advancements that have been made. High volumes of
network traffic data, constantly changing settings, and a
variety of attributes acquired as part of training datasets
(high dimensional datasets) all contribute to the
requirement for real-time intrusion detection and analysis.
This can only be done by selecting and optimizing the most
appropriate set of DL-based detection models' parameters.
That is why the authors of this research advocated for a new,
simpler, and more efficient DL-based NIDS system. in
terms of both complexity and detection performance. This
research initially looked at the effects of oversampling
approaches on the training sample size for the models. It

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

384

established the smallest training sample size necessary for
an efficient intrusion detection system using NSL-KDD.

According to the findings of the experiments, adopting
the SMOTE oversampling approach reduces the size of the
training datasets. IGBFS and CBFS feature selection
strategies have been used in this study, and their effects on
feature set size, training sample size, and model detection
performance have all been studied. The results of the
experiments revealed that the feature selection approaches
might lower the size of the feature collection. For future
study, other models, such as deep-learning classifiers with
learning rate optimization techniques, can be investigated
because they excel on non-linear and large datasets.

References

[1] Dong, B., & Wang, X. (2016, June). Comparison deep learning
method to traditional methods using for network intrusion
detection. In 2016 8th IEEE International Conference on
Communication Software and Networks (ICCSN) (pp. 581-
585). IEEE.

[2] Zarpelão, B. B., Miani, R. S., Kawakani, C. T., & de Alvarenga,
S. C. (2017). A survey of intrusion detection in Internet of
Things. Journal of Network and Computer Applications, 84,
25-37.

[3] Mukherjee, B., Heberlein, L. T., & Levitt, K. N. (1994).
Network intrusion detection. IEEE network, 8(3), 26-41.

[4] Wagh, S. K., Pachghare, V. K., & Kolhe, S. R. (2013). Survey
on intrusion detection system using machine learning
techniques. International Journal of Computer
Applications, 78(16).

[5] Sultana, N., Chilamkurti, N., Peng, W., & Alhadad, R. (2019).
Survey on SDN based network intrusion detection system using
machine learning approaches. Peer-to-Peer Networking and
Applications, 12(2), 493-501.

[6] Panda, M., Abraham, A., Das, S., & Patra, M. R. (2011).
Network intrusion detection system: A machine learning
approach. Intelligent Decision Technologies, 5(4), 347-356.

[7] Li, W., Yi, P., Wu, Y., Pan, L., & Li, J. (2014). A new intrusion
detection system based on KNN classification algorithm in
wireless sensor network. Journal of Electrical and Computer
Engineering, 2014.

[8] Garg, S., & Batra, S. (2017). A novel ensembled technique for
anomaly detection. International Journal of Communication
Systems, 30(11), e3248.

[9] Kuang, F., Xu, W., & Zhang, S. (2014). A novel hybrid KPCA
and SVM with GA model for intrusion detection. Applied Soft
Computing, 18, 178-184.

[10] Wang, W., Zhu, M., Zeng, X., Ye, X., & Sheng, Y. (2017,
January). Malware traffic classification using convolutional
neural network for representation learning. In 2017
International Conference on Information Networking
(ICOIN) (pp. 712-717). IEEE.

[11] Torres, P., Catania, C., Garcia, S., & Garino, C. G. (2016, June).
An analysis of recurrent neural networks for botnet detection
behavior. In 2016 IEEE biennial congress of Argentina
(ARGENCON) (pp. 1-6). IEEE.

[12] Staudemeyer, R. C., & Omlin, C. W. (2013). ACM press the
south African institute for computer scientists and information
technologists conference-east London south Africa (2013.10.
07–2013.10. 09) proceedings of the south African institute for
computer scientists and information technologists co. In Proc.
South African Inst. Comput. Scientists Inf. Technol. Conf. (pp.
252-261).

[13] Zhou, Z. H., & Feng, J. (2017). Deep forest: Towards an
alternative to deep neural networks. arXiv. arXiv preprint
arXiv:1702.08835.

[14] Ustebay, S., Turgut, Z., & Aydin, M. A. (2018, December).
Intrusion detection system with recursive feature elimination
by using random forest and deep learning classifier. In 2018
international congress on big data, deep learning and fighting
cyber terrorism (IBIGDELFT) (pp. 71-76). IEEE.

[15] Xiao, Y., Fan, Z. J., Nayak, A., & Tan, C. X. (2019). Discovery
method for distributed denial-of-service attack behavior in
SDNs using a feature-pattern graph model. Frontiers of
Information Technology & Electronic Engineering, 20(9),
1195-1208.

[16] Tuan, N. N., Hung, P. H., Nghia, N. D., Van Tho, N., Phan, T.
V., & Thanh, N. H. (2019, October). A Robust TCP-SYN Flood
Mitigation Scheme Using Machine Learning Based on SDN. In
2019 International Conference on Information and
Communication Technology Convergence (ICTC) (pp. 363-
368). IEEE.

[17] Xu, Y., Sun, H., Xiang, F., & Sun, Z. (2019). Efficient DDoS
detection based on K-FKNN in software defined
networks. IEEE Access, 7, 160536-160545.

[18] Mehr, S. Y., & Ramamurthy, B. (2019, December). An SVM
based DDoS attack detection method for Ryu SDN controller.
In Proceedings of the 15th international conference on
emerging networking experiments and technologies (pp. 72-73).

[19] Wang, Y., Hu, T., Tang, G., Xie, J., & Lu, J. (2019). SGS: Safe-
guard scheme for protecting control plane against DDoS
attacks in software-defined networking. IEEE Access, 7,
34699-34710.

[20] Fouladi, R. F., Ermiş, O., & Anarim, E. (2020). A DDoS attack
detection and defense scheme using time-series analysis for
SDN. Journal of Information Security and Applications, 54,
102587.

[21] Dehkordi, A. B., Soltanaghaei, M., & Boroujeni, F. Z. (2021).
The DDoS attacks detection through machine learning and
statistical methods in SDN. The Journal of
Supercomputing, 77(3), 2383-2415.

[22] Mishra, A., Gupta, N., & Gupta, B. B. (2021). Defense
mechanisms against DDoS attack based on entropy in SDN-
cloud using POX controller. Telecommunication
systems, 77(1), 47-62.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

385

[23] Shohani, R. B., Mostafavi, S., & Hakami, V. (2021). A
Statistical Model for Early Detection of DDoS Attacks on
Random Targets in SDN. Wireless Personal Communications,
1-22.

[24] Shone, N., Ngoc, T. N., Phai, V. D., & Shi, Q. (2018). A deep
learning approach to network intrusion detection. IEEE
transactions on emerging topics in computational
intelligence, 2(1), 41-50.

[25] Wu, K., Chen, Z., & Li, W. (2018). A novel intrusion detection
model for a massive network using convolutional neural
networks. Ieee Access, 6, 50850-50859.

[26] Vasan, K. K., & Surendiran, B. (2016). Dimensionality
reduction using principal component analysis for network
intrusion detection. Perspectives in Science, 8, 510-512.

[27] Natesan, P., Rajalaxmi, R. R., Gowrison, G., &
Balasubramanie, P. (2017). Hadoop based parallel binary bat
algorithm for network intrusion detection. International
Journal of Parallel Programming, 45(5), 1194-1213.

[28] Wei, P., Li, Y., Zhang, Z., Hu, T., Li, Z., & Liu, D. (2019). An
optimization method for intrusion detection classification
model based on deep belief network. IEEE Access, 7, 87593-
87605.

[29] Jiang, K., Wang, W., Wang, A., & Wu, H. (2020). Network
intrusion detection combined hybrid sampling with deep
hierarchical network. IEEE Access, 8, 32464-32476.

[30] Zhang, X., Chen, J., Zhou, Y., Han, L., & Lin, J. (2019). A
multiple-layer representation learning model for network-based
attack detection. IEEE Access, 7, 91992-92008.

[31] Yu, Y., & Bian, N. (2020). An intrusion detection method using
few-shot learning. IEEE Access, 8, 49730-49740.

[32] Xiao, Y., Xing, C., Zhang, T., & Zhao, Z. (2019). An intrusion
detection model based on feature reduction and convolutional
neural networks. IEEE Access, 7, 42210-42219.

[33] Ali Alheeti, K. M., & McDonald-Maier, K. (2018). Intelligent
intrusion detection in external communication systems for
autonomous vehicles. Systems Science & Control
Engineering, 6(1), 48-56.

[34] Chen, Z., Yan, Q., Han, H., Wang, S., Peng, L., Wang, L., &
Yang, B. (2018). Machine learning based mobile malware
detection using highly imbalanced network traffic. Information
Sciences, 433, 346-364.

[35] Chen, Z., Yan, Q., Han, H., Wang, S., Peng, L., Wang, L., &
Yang, B. (2018). Machine learning based mobile malware
detection using highly imbalanced network traffic. Information
Sciences, 433, 346-364.

[36] Tan, X., Su, S., Huang, Z., Guo, X., Zuo, Z., Sun, X., & Li, L.
(2019). Wireless sensor networks intrusion detection based on
SMOTE and the random forest algorithm. Sensors, 19(1), 203.

[37] Çatalkaya, M. B., Kalıpsız, O., Aktaş, M. S., & Turgut, U. O.
(2018, September). Data feature selection methods on
distributed big data processing platforms. In 2018 3rd
International Conference on Computer Science and
Engineering (UBMK) (pp. 133-138). IEEE.

[38] Krishna, R. S. B., & Aramudhan, M. (2014, July). Feature
selection based on information theory for pattern classification.
In 2014 International Conference on Control, Instrumentation,
Communication and Computational Technologies
(ICCICCT) (pp. 1233-1236). IEEE.

[39] Bonev, B. (2010). Feature selection based on information
theory. Universidad de Alicante.

[40] Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang,
J., & Liu, H. (2017). Feature selection: A data
perspective. ACM Computing Surveys (CSUR), 50(6), 1-45.

[41] Hall, M. A. (1999). Correlation-based feature selection for
machine learning.

[42] Moubayed, A., Injadat, M., Shami, A., & Lutfiyya, H. (2018,
March). Relationship between student engagement and
performance in e-learning environment using association rules.
In 2018 IEEE world engineering education conference
(EDUNINE) (pp. 1-6). IEEE.

[43] Koch, P., Wujek, B., Golovidov, O., & Gardner, S. (2017).
Automated hyperparameter tuning for effective machine
learning. In proceedings of the SAS Global Forum 2017
Conference (pp. 1-23). Cary, NC: SAS Institute Inc..

[44] Yang, L., & Shami, A. (2020). On hyperparameter optimization
of machine learning algorithms: Theory and
practice. Neurocomputing, 415, 295-316.

[45] Bergstra, J., & Bengio, Y. (2012). Random search for hyper-
parameter optimization. Journal of machine learning
research, 13(2).

[46] Injadat, M., Moubayed, A., Nassif, A. B., & Shami, A. (2020).
Systematic ensemble model selection approach for educational
data mining. Knowledge-Based Systems, 200, 105992.

[47] Injadat, M., Moubayed, A., Nassif, A. B., & Shami, A. (2020).
Multi-split optimized bagging ensemble model selection for
multi-class educational data mining. Applied
Intelligence, 50(12), 4506-4528.

[48] Bianchi, L., Dorigo, M., Gambardella, L. M., & Gutjahr, W. J.
(2009). A survey on metaheuristics for stochastic combinatorial
optimization. Natural Computing, 8(2), 239-287.

[49] Cohen, G., Hilario, M., & Geissbuhler, A. (2004, November).
Model selection for support vector classifiers via genetic
algorithms. An application to medical decision support.
In International Symposium on Biological and Medical Data
Analysis (pp. 200-211). Springer, Berlin, Heidelberg.

[50] Salo, F., Injadat, M., Nassif, A. B., Shami, A., & Essex, A.
(2018). Data mining techniques in intrusion detection systems:
A systematic literature review. IEEE Access, 6, 56046-56058.

[51] Moubayed, A., Refaey, A., & Shami, A. (2019). Software-
defined perimeter (sdp): State of the art secure solution for
modern networks. IEEE network, 33(5), 226-233.

[52] Kumar, P., Moubayed, A., Refaey, A., Shami, A., & Koilpillai,
J. (2019, April). Performance analysis of sdp for secure internal
enterprises. In 2019 IEEE Wireless Communications and
Networking Conference (WCNC) (pp. 1-6). IEEE.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

386

[53] Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009,
July). A detailed analysis of the KDD CUP 99 data set. In 2009
IEEE symposium on computational intelligence for security
and defense applications (pp. 1-6). IEEE.

Ms. Saritha Anchuri,
Research scholar in JNTU
college of Engineering
Anantapuramu, received
M.Tech from Rajeev Gandhi
Memorial College of
Engineering and Technology,
Nandyal. At present she is
working as assistant
professor in the Department
of CSE at Sri Venkateswara

Engineering College, Tirupathi. She is having 10 years of
teaching experience.

Dr. B. RamaSubbaReddy,
Professor of Sri Venkateswara
College of Engineering,
Tirupathi has received Ph.d
from Sri Venkateswara
University, Tirupathi. He
worked in various prestigious
institutions both in Telangana
and Andhra Pradesh as Head of
the Department and is having

more than 20 years of teaching experience. His areas of
interest include Data mining, Computer Networks, Network
security and cryptography, Machine Learning.

Dr. A. Suresh Babu,
Professor, JNTUACEA has
received Ph.d from JNTU,
Hyderabad, India. Since then
he Served as a Head of the
Department , Computer
Science & Engineering,
JNTUACE, Pulivendula ,
Chairman of UG & PG Board
Of Studies ,

CSE,JNTUACE(Autonomous),Pulivendula, Worked as
Addl. Controller of Examinations, JNTUA from Feb 2009
to March 2011, Worked as Deputy Warden for I YEAR
Boys Hostel, JNTUACEA. Currently he is working as an
Controller of Examinations, JNTUA, Anantapuramu. His
research areas include Data mining, Cloud Computing, Big
Data Analytics.

