
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

481

Manuscript received April 5, 2022
Manuscript revised April 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.4.57

“Change” in Conceptual Modeling and Systems Reconfiguration

 Sabah Al-Fedaghi

Computer Engineering Department, Kuwait University, Kuwait

Summary
In this paper, we explore the notion of change in systems
and software engineering, emphasizing its philosophical
elucidation. Generally, it has been claimed that change is so
pervasive in systems that it almost defeats description and
analysis. In this article, we analyze change using the
conceptual modeling technique called a thinging machine
(TM), which reflects change in terms of the actions of
creating, processing, releasing, transferring, and receiving
things. We illustrated change in TM modeling with an
example of a system’s reconfiguration of business product
handling designed using business process modeling
notation (BPMN). Then we analyze the notion of change
and compare its various definitions in philosophy.
Specifically, we examine Zeno’s paradox that involves how
to account for change and continuity together in moving
things. The problem is that we cannot assert that an arrow
is actually moving when it has been shot from a bow
because the arrow needs to be at a certain place at each
point in time, which by definition cannot contain any
duration at all. In our analysis of this problem, we convert
the arrow trajectory into space units called thimacs. In the
TM generic actions, two types of change are identified:
state and progression (PROCESS) changes. Therefore,
when an arrow flows to a TM machine that represents a
trajectory space unit, it is rejected, causing it to bounce
away to the outside. That is, the arrow is transferred,
arrives, and is transferred back; therefore, the arrow is
never accepted into a thimac in the trajectory at any
moment. The result of such analysis seems to introduce a
logical explanation for the notion of movement discussed
in Zeno’s puzzles.

Keywords:
Conceptual modeling, change, thinging machine model,
Reconfiguration, Zeno’s paradox

1. Introduction

In software and systems engineering, adaptation to
future user requirements or changing domain-imposed
requirements is an essential consideration in the system’s
development and operating environment [1]. Systems are
expected to operate in dynamic environments and to deal
with the new problems and arbitrary changes. To cope with
these changes, a reconfiguration process may be applied to
rearrange the system components concerned with deliberate
modifications to technical and organizational subsystems.
Frequent changes are made to update hardware and

software components, fix software flaws and other errors,
address security threats, and adapt to changing business
objectives [2].

This paper focuses on schematic changes involving
structural changes resulting from altering requirements and
bringing a system into compliance with those requirements.
Such changes necessitate modifying the conceptual
specification of the involved system. System specifications
can be developed at various levels of abstraction, with
transformations ranging from high- to low-level
specifications. A high-level specification describes the
overall configuration of a system. Change is a central
concept for software and systems engineering. According
to Idris [3], “The meaning of change is one of the
fundamental subjects of inquiry of philosophy. It plays a
substantial role in providing our understanding of reality.”
Such issues as what change is, how it happens, and how
we can know it has happened are essential to our
understanding of systems. Examining the paradoxical
nature of change, we can gain new insights into theory and
practice in many scientific fields [4].

We further explore the notion of change utilizing our
thinging machine (TM) model. Our aim is to develop a
better understanding of the notion of change to appreciate
the nature of the field of software and systems engineering.
Such a field of inquiry, despite considerable technical
developments, has yet to form a coherent and theoretical
framework for its key notions. Accordingly, we attempt to
offer a conceptual framework to study theoretical and trans-
disciplinary foundations of the notion of change. According
to Uysal [5], “Investigating the trans-disciplinary aspects of
[software engineering] may pave the way of some solutions
while it may shed light on building theoretical background
of possible empirical studies. However, the review of
[software engineering] literature shows the little effort
given to this research gap.”

The next section provides a brief description of the
TM model. Section 3 gives a sample TM application in
software engineering in the form of a conceptual model of
a business orders system. The example involves
modification of an ordering conceptual schema as an
instance of changes in requirements in the original
description of the system. In section 4, we focus on
reviewing the notion of change. In section 5, we apply the
TM model to change in the philosophical sense with the
problem of an arrow’s movement in Zeno’s paradox.

IJCSNS International Journal of Computer Science and Network Security, VOL22 No.4, April 2022

482

2. Thinging Machine (TM) Modeling

The traditional ontology divides entities into objects,
which are extended in space, and processes, which are
extended in time. TM modeling introduces a drastically
different conceptualization, which consists of a lower
(static) characterization of entities as things that are
simultaneously machines, and both merge into a complex
of interrelated entities called thimacs [6]. At the upper
level (dynamics), a time thimac combines with the static
thimac to initiate events (See Fig. 1).

The thing and the corresponding machine “exist” as
one thimac; the thing reflects the unity, and the machine
shows the structural components, including potential
(static: outside of time) actions of behavior. The static
“thing” does not actually exist, change, or move, but it has
potentialities for these actions when combined with time.
Such a view reminds us of the wave particle dualism of
quantum mechanics.

A thimac is a thing. The thing is what can be created
(appear, observed), processed (changed), released,
transferred, and/or received. As we will discuss later, a
thing is manifested (can be recognized as a unity) and
related to the whole TM or as a static (timeless)
phenomenon. This whole TM occupies a conceptual
“space” that forms a network of co-existing thimacs. The
whole is a grand thing/machine. Thimacs can be “located”
only via flow connections among thimacs. Later, when we
discuss dynamism, this thing becomes an “instance” when
supplemented with time (which is also a thing) to form a
dynamic unity of a thing called an event. Therefore, things
are part of the TM static description (model) and are part
of the dynamic model when merged with time.

The thimac is also a machine that creates, processes,
releases, transfers, and/or receives. Fig. 2 shows a general
picture of a machine. The figure indicates five “seeds” of
potentialities of dynamism: creation, processing, release,
transfer, and receive. All things are created, processed,
and transported (acted on), and all machines
(thimacs) create, process, and transport other
things. Things “flow through” (denoted by a solid
arrow in Fig. 2) other machines. The thing in a TM
diagram is a presentation of any “existing”
(appearing) entity that can be “counted as one”
and is coherent as a unity.

Fig. 2 can be described in terms of the following generic
(has no more primitive action) actions:
Arrive: A thing moves to a machine.
Accept: A thing enters the machine. For simplification, we
assume that all arriving things are accepted; thus, we can

combine the arrive and accept stages into one stage: the
receive stage.
Release: A thing is ready for transfer outside the machine.
Process: A thing is changed, handled, and examined, but no
new thing results.

Create: A new thing is born (found/manifested) in the
machine and is realized from the moment it arises
(emergence) in a thimac. Things come into being in the
model by “being found.”
Transfer: A thing is input into or output from a machine.

Additionally, the TM model includes the triggering
mechanism (denoted by a dashed arrow in this article’s
figures), which initiates a flow from one machine to
another. Multiple machines can interact with each other
through the movement of things or through triggering.
Triggering is a transformation from one series of
movements to another.

3. Example of TM Modeling

According to Zhou [7], systems are increasingly
expected to operate in dynamic environments to deal with
the new problems and tasks, and the system’s flexibility
requires dynamic reconfiguration. “Reconfiguration” refers
to changes such as adding actions or deleting components,
changing links between systems, and modifying component
configuration. Zhou [7] emphasized that systems have to
face problems caused by continually developing new web
services and modifying or terminating existing web
services. The area of service reconfiguration requires more
work on the modeling and verification of dynamic
reconfiguration of dependable services, including the
problem of interface between old configuration activities,
new configuration activities, and reconfiguration activities
[7]. For example, Zhou [7] designed a system using
business process modeling notation (BPMN). This case
study was conducted on an organization that handles
product orders from customers. When the organization
receives an order from a customer, a form is filled out.
Then this form is sent to credit check and passes to
inventory check. After this evaluation, the order is rejected,
or it is processed and passed on to billing and shipping. The
billing procedure bills for the total cost of ordered items
plus their shipping costs. Afterward, the order is archived
and a confirmation notification is sent to the customer. Fig.
3 shows a partial view of the BPMN model of the given
case study.

Time Thing/machine thimac

Event

Fig. 1 Static and dynamic thimacs.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No. 4, April 2022

483

3.1 Reconfiguration

According to Zhou [7], the company decides to
reconfigure the order of billing and shipping activities,
moving the billing activity to occur before the shipping
activity and keeping the old configuration process and new
configuration process simultaneously available. This
reconfiguration requires change only in the system’s main
lane while the rest of the workflow remains the same. Fig.
4 shows the modified part of the new configuration’s
BPMN diagram. Comparing this BPMN to the old BPMN
diagram in Fig. 3, the two parallel gateways in the main
lane have been removed, and the two activities are now
called synchronously to keep the old and new configuration
processes simultaneously available. Accordingly, Zhou [7]
defines a default flow that is identical to the old
configuration. This default flow can be altered by an
interrupting message event contained in the “determine
configuration” activity included in a separate reconfigure
region pool. This activity determines which configuration
should be used when the system is called. The modified
part of new configuration BPMN diagram is shown in Fig.
4.

3.2 TM Static Model

Fig. 5 shows the corresponding TM static model. The
figure can be described as follows. First, a customer request
arrives at the office (circle 1). It is sent to the order
generator, (2) where an order is created (3) and sent to the
office, where it is processed (4). If it is OK, a credit check
is created (5) that flows to the credit check unit, (6) where
the result of checking is created (7) and flows to the office
(8). If the result is not OK, (9) a rejection is sent to the
customer (10 and 11). If the result is OK, (12) an inventory
check is created and sent to inventory (13). The result of
the inventory check is sent to the office (14 and 15), where
it is processed. If the result is negative, a rejection is sent to
the customer (16 and 17). If the inventory result is positive
(18), a Bill&Ship request is sent to Bill&Ship main (19).
There, requests for a call bill (20) and call ship (21) are sent
to the billing and shipping units. When the billing details
(22) and shipping details are received (22 and 23), an
invoice with billing and shipping details is created (24) and
flows to the archive (25). When an acknowledgement is
received from the archive (26), a notification of success is
sent to the customer (27 and 28).

3.3 TM Events Model

A TM event is defined as a subdiagram of the static

diagram (called a region of the event) plus time. Fig. 6
shows a sample of two events: calculating the billing
details and calculating the shipping details. Accordingly,
we can specify events on the static TM diagram assuming
that regions represent events. Each generic event can be
converted to a generic event; however, models usually
specify a larger events.

The set of events defined over the static description can be
listed as follows.
Event 1 (E1): A customer request reaches the office.
Event 2 (E2): The request is sent to the order generator,
where it is processed.
Event 3 (E3): The order generator creates an order.
Event 4 (E4): The order flows to the office workflow,
where the order is examined.
Event 5 (E5): If the order is OK, a request for a credit check
is created.
Event 6 (E6): The request for a credit check goes to the
credit check department.
Event 7 (E7): The credit check department processes the
request and creates OK if it is valid.

 ….

Fig. 4 The modified part of new configuration BPMN diagram.

Fig. 3 Case Study Workflow - BPMN Model

 …

IJCSNS International Journal of Computer Science and Network Security, VOL22 No.4, April 2022

484

Fig. 5 The TM static model of the case study.

1

Office workflow

Process

Order
generator

Process

Request

Create
Request
Credit
check

Credit
check

Process Create
Result

Transfer

Receive

Release

Create

Order
Transfer

Receive

Create
Request

Inventory
check

Process

Inventory
Result

Process

Transfer

Receive

Release

OK

YES
Bill&Ship

request

Bill&Ship Main

Process

Transfer

Receive

Create Call bill

Bill

Bill details

Process

Ship details

Ship

Transfer

Release

Transfer

Customer

Transfer

Transfer

Receive

Release

Transfer

Release

Transfer

Transfer

Receive
Transfer

Create

Transfer

Release

Transfer

Release Receive

Transfer

Transfer

Release

Create

Create

Call Ship

Process

Transfer

Release

Receive

Transfer

Transfer

Release

Create

Transfer

Receive

Transfer

Receive

Transfer

Release

Process

Create

YES NO

Create

Transfer

Release

Rejection

Process
NO

Receive

Process

Transfer

Release

Transfer

Receive

Create

Transfer

Receive

Process

Bill & ship
details

Create

 Archive

Process

Transfer

Release

Transfer

Receive

Receive

Create

Transfer

Transfer

Release

Acknowledge

Create

Transfer

Release Success

Call
Archive

2

3

4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
21

22 23

24

25

26

27

28

Fig. 6 Two events of the case study.

Ship details

Receive

Transfer

Transfer

Create

Transfer

Event: Calculate the billing details

Call bill

Bill details

Receive

Transfer

Transfer
Release
Create

Transfer Transfer Release

Transfer Release

Time

Event: Calculate the shipping details

Create

Create

Create

Bill

Ship

Transfer
Release

Transfer
Receive

Process

Process Receive

Process Receive

Region of Event

 Release
Region of Event

Call Ship
Create

Process

Transfer
Release

Transfer

Time

Receive

Bill&Ship Main

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No. 4, April 2022

485

 To save space, we will not list all nineteen events that Fig.
7 shows.

From the chronology of these events, we can construct the
behavioral model of the system of handling product orders
from customers, as Fig. 8 shows.

Fig. 7 The TM events model of the case study.

Office workflow

Process

Order
generator

Process

Request

Create
Request
Credit
check

Credit
check

Process Create
Result

Transfer

Receive

Release

Create

Order
Transfer

Receive

Create
Request

Inventory
check

Process

Inventory
Result

Process

Transfer

Receive

Release

OK

YES
Bill&Ship

request

Bill&Ship Main

Process

Transfer

Receive

Create Call bill

Bill

Bill details

Process

Ship details

Ship

Transfer

Release

Transfer

Customer

Transfer

Transfer

Receive

Release

Transfer

Release

Transfer

Transfer

Receive

Transfer

Create

Transfer

Release

Transfer

Release Receive

Transfer

Transfer

Release

Create

Create

Call Ship

Process

Transfer

Release

Receive

Transfer

Transfer

Release

Create

Transfer

Receive

Transfer

Receive

Transfer

Release

Process

Create

YES NO

Create

Transfer

Release

Rejection

Process

NO

Receive

Process

Transfer

Release

Transfer

Receive

Create

Transfer

Receive

Process

Bill & ship
details

Create

 Archive

Process

Transfer

Release

Transfer

Receive

Receive

Create

Transfer

Transfer

Release

Acknowledge

Create

Transfer

Release Success

Call
Archive

E1

E2
E3

E4
E5

E6

E7

E8

E9
E10

E11
E12

E13

E14

E15

E16

E17

E18

E19

E1 E2 E3 E4 E5 E6 E7 E8

E9

E10 E11

E12

E13 E14

E15

E16

E17 E18 E19

Fig. 8 TM behavioral model of the case study.

IJCSNS International Journal of Computer Science and Network Security, VOL22 No.4, April 2022

486

3.4 Reconfiguration

Zhou’s [7] reconfiguration of the order of billing and
shipping activities involves moving the billing activity to
occur before the shipping activity and keeping the old and
new configuration processes simultaneously available.
From the TM modeling prospect, it is clear that the
required reconfiguration aims at change in the behavioral
model. This change can be accomplished without changing
the original static TM description. In contrast, Zhou’s
BPMN model involves a single static-level description;
therefore, it is necessary to change the original BPMN
diagram. In the TM, we can introduce two additional events
as follows:

E20: Configuration of behavior 1, where the billing activity
and the shipping activity are simultaneously activated.
E21: Configuration of behavior 1, where the billing activity
occurs before the shipping activity and bookkeeping.

Accordingly, the behavioral model is structured as Fig. 9
shows. The change involves the control system, which
activates various modules of events. Imagine Zhou’s
configuration problem involves n>2 series of alternatives.
This situation requires an extensive additional modification
to the original schema. A TM events-level solution is a
more effective solution.

4. A Glimpse of the Change Notion

The remaining part of this paper will focus on
exploring the notion of change. Because the philosophical
field of the topic is very broad, we will concentrate on a
specific track of study, namely Zeno paradoxes.

Generally, “change” is used to refer to an object
changing its ordinary properties over time. An object
undergoes change whenever it gains or loses some of its
properties. According to Mortensen [8], “Change is so
pervasive in our lives that it almost defeats description and
analysis.” Change is problematic because it requires
something becoming something out of something that it is
not. Also, as change is a fluid process, how can we
accurately determine when it has happened or to what
extent? [4].

In ancient Greece, Heraclitus was famous for his insistence
that “the only thing that is constant is change.” Heraclitus
claimed that everything changes all the time.
Aristotle claimed that “time is the measure of change” and
that “there is no time apart from change….” (Physics) of
things. According to Aristotle, “time is not change [itself]”
because a change “may be faster or slower, but not
time….” (Physics). In a modern context, Einstein’s theory
of relativity implies a moving clock can tick more quickly
or slowly than another clock, but time itself isn’t faster or
slower [9].

Zeno argued that change cannot exist; it is all an
illusion. The argument in this context is that things cannot
exist and not exist simultaneously. Reality is an unchanging
unity. Zeno developed a series of paradoxes to demonstrate
logically that change is an illusion. Motion, for example, is
an illusion. To reach a destination, one must first reach a
halfway point. When one reaches that halfway point, they
have yet another one to reach, and this process is logically
infinite. Movement does exist, but how can we possibly
determine exactly when and how it happens without
involving Zeno-type paradoxes [4]?

In the next section, we apply one of the Zeno-type
paradoxes in the context of TM where space is
conceptualized as thimacs. Accordingly, we will visualize
“space units” as thimacs with their five action potentialities
(no speculation about the nature of these thimacs).

A thimac can be viewed as having interior (create,

process, and receive (accept)) and boundary (release,
transfer, and receive (arrive)) posts. A moving thing may
reach the boundary of this space thimac (arrive) but not
necessarily “enter” it (accepted). Some factor (e.g.,
movement) leads the arriving thing to be ejected to the
outside (transfer: output) of the space thimac. Fig. 10
illustrates this scenario. Therefore, we have two disjoint
cases: inside the space thimac, where settlement and
continuity occurs, and the thimac boundary posts, where
moving things collide with the space thimac but never
succeed in penetrating to the inside. Accordingly, a motion
is possible among these space thimacs similar to a child
walking inside a container filled with plastic balls.

Configuration 1

Configuration 2

Fig. 9 The TM new behavioral model of the case study.

E1 E2 E3 E4 E5 E6 E7 E8

E9

E10 E11

E12

E13 E14
E15

E16

E17 E18 E19

E20

E21

E15 E16

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No. 4, April 2022

487

However, we assume that such bouncing of things
among space thimacs is applied to things in motion. Stable
things can settle inside these space thimacs. The following
section elaborates on such speculative analysis and applies
it to Zeno’s puzzle of an arrow’s movement. We explore
the notion of change by analyzing Zeno’s paradox of
motion using the TM model. A paradox is a proclamation
that holds conflicting concepts. The discussion is pure
speculation and may contribute to logical analysis of the
concept of space.

5. Change and Zeno’s Paradox

One philosophical approach claims that space (and
time) exist always and everywhere regardless of what else
exists and that space (and time) provide a container within
which matter exists and moves independently of the
container [9]. Newton argued that space is an absolute
entity and that everything moves in relation to it. This
concept led to the distinction between “relative” and
“absolute” motion. Leibniz maintained that space is the
spatial relations between things. Space cannot exist
independently of the things it connects. If nothing existed,
then space would not exist. This statement implies that
there is no container; space is only a set of relationships
among existing physical material, and time is a set of
relationships among the events of that material [9].

Current thinking is that space is quantized; therefore,
when we move across space, we are actually jumping from
small locations to other small locations [10]. As Cham and
Whiteson [10] stated, in this view, space is a network of
connected nodes, like the stations in a subway system.
Each node represents a location, and the connections
between nodes represent the relationships between these
locations (i.e., which one is next to which other one).

These nodes of space can be empty and still exist. A field
just means there is a number, or a value, associated with
every point in that space. In this view, particles are just
excited states of these fields [10].

5.2 Space and Motion

Zeno’s paradox under consideration deals with the
problem of how to account for change and continuity
together.

We cannot assert that an arrow is actually moving after it
has been shot from a bow because the arrow needs to be at
a certain place at each point of time, which by definition
cannot contain any duration at all [11]. The arrow is not
moving because all of its trajectories consist of a series of
these moments, and at each moment, it is not moving. So
if it is not moving at one moment, then it is not moving at
all [11]. According to Hongladarom [11],

One might, for example, argue against Zeno that points
of time containing no duration at all do not actually exist
and what do exist are only chunks of time which contain
a length of time however small. Hence there is not such
a thing as a point in the line of time, and what does exist
in the line are smaller sections of the line which can be
divided and further divided, but no absolute point can be
reached. The arrow, then, moves in these smaller chunks
of time, and since these chunks are not points the arrow
can move within those chunks. This argument does not
seem to work, however, because one would then need to
find an account of how the arrow moves from the
beginning of the chunk to the end.

The basic problem, according to Hongladarom [11] is the
simultaneous existence of continuity and change in the
case of the moving arrow. Mortensen [8] described the
arrow puzzle as follows:

An arrow in flight could not really be moving because at
any given instant it would be at a place identical with
itself (and not another place); something at just one
(self-identical) place could not be described as moving,
and an arrow which is motionless at every instant in a
temporal interval must be motionless throughout the
interval.

Following the view that space is a network of connected
nodes, we propose that these nodes are thimacs. Therefore,
we have a net of thimacs, as Fig. 11 shows, illustrated as
connected machines in two-dimensional background. Two
connected machines denote connectedness that permits
flow of things between the thimacs.

 Space thimac
Boundary

 Space thimac

Space thimac

 Inside

Output Input Arrive

Accept Inside

Output Input Arrive

Inside

Output Input Arrive

 Space thimac

Inside

Fig. 10 A thing flows across space thimacs where each thimac does not accept it until it loses its movement energy and settles in the last thimac.

Input Arrive
Boundary Boundary Boundary

IJCSNS International Journal of Computer Science and Network Security, VOL22 No.4, April 2022

488

Events (changes) propagate between the two connected
thimacs through the transfer stages that form their
“borders.” For example, Fig. 12 shows the propagation of
change (events) between two machines in terms of
sequence of events, assuming that each machine represents
a unit of space. Next, we distinguish between two types of
phenomena in a TM: states and progressions. The idea is
that progression is unstable change that does not need to
be the thing to be in a fixed place. For example, suppose
that a ball hit a player and bounced away. In this case, we
can say, using TM terminology, that the ball has been
transferred, arrived to the player, then transferred away
without being received by the player. Similarly, an arrow
can “touch” the space thimac without being received into
the corresponding space.

A TM stage can be viewed as either a state or
progression (typically called PROCESS). When
understood as a state, a stage is a complete
potentiality ready to be actualized. Understood as a
progression, it is an accumulated PROCESS. A
transfer event between two thimacs is a pure
progression stage. For example, when an arrow in the
Zeno puzzle is in the transfer event between two
space thimacs, this does not mean that it is located in
the transfer stage. Transfer itself is a pure change;
therefore, change cannot be captured as a stable
phenomenon. In contrast, a process event is a change
and a state. For example, changing the color of a car
from blue to white involves the process of “whiting”
the car and the result: the car is now a white car.
Transferring an arrow between two adjacent spaces
(e.g., through a door between them) involves
movement but no location where the arrow can be in
the transfer state. Creation also involves a location,
e.g., the arrow is created and ready to be released or
processed.

In TM, a change happens in the model when a generic
event occurs, e.g., creation, processing, releasing,

transferring, and receiving. A generic event can be
understood in term of states and/or a progression

-

- When understood as a state of a thing (such as being
created), as in physics, a state of matter is one of the distinct
forms in which matter can exist, i.e., solid, liquid, gas,
or plasma. Accordingly, states of things in a TM machine
are created, processed, released, transferred, and received.
For example, the state created indicates existence, which
may be declared initially as in “there is” or appears as a
result or effect of processing, e.g., salt (NaCl) appears from
processing its chemical components, sodium (Na) and
chlorine (Cl).

- Understood as a progression, the event is the rising stretch
of flux. A thing is subjected to alteration to reach the state of
being processed, e.g., a car is exposed to damaging before
being labeled as a damaged car; a patient needs to be
anesthetized to be in the state of unconsciousness.

Accordingly, we can redefine a thinging machine to emphasize
the internal states and progression actions, as Fig. 13 shows. The
machine is described as follows:

Fig. 11 Thinging machines adjacent to each other.

Create

Receive

Transfer

Release

Process

Accept Arrive

Output Input

Create

Receive

Transfer

Release

Process Accept Arrive

Output Input

Create

Receive

Transfer

Release

Process

Accept Arrive

Output Input

Create

Receive

Transfer

Release

Process Accept Arrive

Output Input

Fig. 12 Propagation of change between machines in terms of sequence of
events, assuming that each machine represents a unit of space.

 Space

Transfer Transfer Release Receive

 Space

Transfer Transfer Release Receive

Receive

Fig. 13 States and progressions in a thinging machine.

Create

Process
Accept

Transfer Release

Arrive

Output Input

1

2

3
4

5
6

8
7

9

10

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No. 4, April 2022

489

- Create: a thing is created initially (given) by a previous
process in the machine (circle 1), e.g., processing Na and Cl
creates NaCl. As a result of the creation event, a thing is in
the created state. A state will be denoted by a thick
horizontal bar, as the figure shows. There may be a queue of
created things in this state. The thing in the creation state
may flow to either the process stage or the releasing stage.

- If a created thing flows to the process stage (2), then the first
phase of the processing includes a progression to change the
thing (3). This progressing is denoted by an upward thick
arrow, as the figure shows. Thus, the thing first starts
changing, half changing, etc. until it reaches the changed
(processed) state, which is indicated by the horizontal thick
bar (4). It may stay in this state for a while, or it may flow to
either the released state or progression (released
immediately) (4).

- If a created thing flows to the release stage (6), it may stay
in the released state (7), waiting for a while to be actually
released, or it may be subjected to releasing (progression)
immediately (8). This progression event is denoted by a
downward thick arrow. It involves continuous motion of a
thing to the thimac’s boundary, or “periphery.”

- A good example of the release state is an output buffer filled
with data waiting to be released to the outside. The
progression starts with bits leaving the buffer and racing to
reach the output port. This “race” is a progression.

- Transfer – Output (9): This is a progression represented by
“jumping” to the outside. The jump itself is not a state and
involves time. No stable state exists between racing to the
edge (release progression) and jumping to the outside
(output progression). It is a continuous change.

- Arrival (10): This is a progression of a thing reaching a
machine’s boundary from the outside. At this point, the
thing is not in the machine but only arriving and interacting
with this boundary to be accepted or castoff to the outside. It
is a progression analogous to an ocean wave reaching
upward by a push of air to reach a high point and then
collapse downward. The wave is never in a recognizable
state. Similarly, at the thing’s arrival, it evolves and
collapses in being judged to be accepted or pushed back to
the outside (we denote this progression with two thick
arrows in a reverse form of a wave). A thing being
subjected to progression means that it is never “motionless”
in the involved stage. Fig. 14 shows an analogy for this
scenario, in which a bed frame is moved through various
floors without actually being on any one floor before
reaching its destination. Another analogy is a traveler who
arrives at several transit countries before reaching their
destination.

Applying this concept to Zeno’s arrow, the moving arrow is
never in two successive place units at one time, and no
diverse states of the arrow exist within one time. Fig. 15
illustrates this situation in which the arrow flows to input,
arrival, and output. See also Fig. 16. The arrow
“squeezes” through the space units, bouncing back at
the entrances, as Fig. 17 shows. As soon as it loses its
motion, its momentum is “absorbed” inside a space
unit.

Fig. 14 A bed frame moves between floors; however, at no particular point in
time it is at a place that is part of any floor.

Floor

Floor

Receive

Create

Process
Accept

Transfer Release

Arrive

Output Input 7

Fig. 15 The projection of the arrow in a thinging machine.

Fig. 16 The arrow does not settle in a thinging machine.

SPACE UNIT

Periphery

IJCSNS International Journal of Computer Science and Network Security, VOL22 No.4, April 2022

490

6. Conclusion

In this paper and several previous papers, we have
explored the TM model and its application in several
notions, such as change, event, and systems behavior. This
type of study enhances the software and systems
engineering community’s philosophical foundations. In
this article, we aimed to reflect on philosophical concepts,
specifically the concept of change, and attempted to
introduce conceptual modeling in the philosophical
context. We started by giving a sample TM application in
software engineering in the form of a conceptual model of
a business orders system. The example involves
modification of an ordering conceptual schema as an
instance of requirements change in the original description
of the system. This case study of change in a system led to
application of the same modeling tool, the TM model, of
change in the philosophical sense, as in the problem of an
arrow’s movement in Zeno’s paradox. Although the
general idea of dividing space into connected nodes is not
a new concept, applying thimacs as space units seems to
introduce a logical explanation for the movement
discussed in Zeno’s puzzles. This direction of study needs
further scrutiny and examination, but it seems to be a
promising exercise that ties together problems in several
fields of study.

References

[1] Karsai, G., et al.: An Approach to Self-Adaptive Software

Based on Supervisory Control. In: Springer-Verlag Lecture
Notes in Computer Science, 2614/2003, pp. 24–38 (2001)

[2] Magalhaes, R.: The Organizational Implementation of
Information Systems: Towards a New Theory. PhD thesis,
London School of Economics (2010) Available:
http://etheses.lse.ac.uk/284/1/Magalhaes_The%20organizati
onal%20implementation%20of%20information%20systems.
pdf

[3] Idris, M. R.: The Concept of Change in the Philosophy of
Mulla Sadra and Hegel: A Comparative Analysis. PhD
thesis, Arts, The Asia Institute, The University of
Melbourne (2010)

[4] Thornley, C. V.: Information Retrieval (IR) and the
Paradox of Change: An Analysis Using the Philosophy of
Parmenides. Journal of Documentation 68(3), 402–
422 (2012) 10.1108/00220411211225601

[5] Uysal, M. P.: In Search of Software Engineering
Foundations: A Theoretical and Trans-disciplinary
Perspective. International Journal of Computer Theory and
Engineering 8(4), 328–332 (2016) DOI:
10.7763/IJCTE.2016.V8.1066

[6] Al-Fedaghi, S.: Conceptual Modeling of Events Based on
One-Category Ontology. International Journal of Computer
Science and Network Security 22(3), 425–436 (2022)
doi.org/10.22937/IJCSNS.2022.22.3.54

[7] Zhou, M.: A Case Study of Workflow Reconfiguration:
Design and Implementation. Ph.D. thesis, Technical
University of Denmark Informatics and Mathematical
Modelling, Lyngby (2011) DOI:
10.1.1.934.2791&rep=rep1&type=pdf

[8] Mortensen, C.: Change and Inconsistency. In: Zalta, E.
N. (ed.). The Stanford Encyclopedia of Philosophy, Spring
2020 Edition, (2020)
<https://plato.stanford.edu/archives/spr2020/entries/chang/>.

[9] Dowden, B.: Time. In: The Internet Encyclopedia of
Philosophy, Accessed March, 13, 2022.

[10] Cham, J. & Whitseson, D.: What Is Space? Nautilus.
Science Connected (2017) https://nautil.us/what-is-space-
6286/

[11] Hongladarom, S.: Metaphysics of Change and Continuity:
Exactly What is Changing and What Gets Continued?
Kilikya Felsefe Dergisi 2, 41–60 (2015)

Fig. 17 The arrow “squeezes” through the space units, bouncing
back at the entrances.

Movement
direction

 Sabah S. Al-Fedaghi is an associate
 professor in the Department of Computer
 Engineering at Kuwait University. He
holds an MS and a PhD from the
Department of Electrical Engineering and
Computer Science, Northwestern
University, Evanston, Illinois, and a BS

from Arizona State University. He has published many
journal articles and papers in conferences on software
engineering, database systems, information ethics, privacy,
and security. He headed the Electrical and Computer
Engineering Department (1991–1994) and the Computer
Engineering Department (2000–2007). He previously
worked as a programmer at the Kuwait Oil Company. Dr.
Al-Fedaghi has retired from the services of Kuwait
University on June 2021. He is currently (Fall 2021/2022)
seconded to teach in the department of computer
engineering, Kuwait University.

