
IJCSNS International Journal of Computer Science and Network Security, VOL22 No.4, April 2022

559

Manuscript received April 5, 2022
Manuscript revised April 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.4.66

Deep Learning based on Image Recognition Convolutional
Neural Networks

Salah Alamri

Computer Science Department, Computing College-AlQunfuda, Umm Al-Qura University, Saudi Arabia

Abstract
Deep learning has grown in popularity over the last few decades.
This technique has a variety of applications, including self-driving
automobiles, successful web search, statement recognition, and
image recognition. Deep learning's success gradually spreads into
everyday lives. Deep learning is a sort of artificial intelligence
(AI) technology that allows technology to learn independently and
without being explicitly programmed. This is a fascinating and
difficult matter with the potential to shape technology's future.
This paper develops an image recognition system using python
programming languages and the most popular deep learning
workflow, Convolutional Neural Network, or CNN. We also use
Keras and TensorFlow, a third-party library, to perform these
operations.
Keywords: CNN, Neural Networks,	 Keras, TensorFlow, deep
learning.

1.Introduction

In 1943 Walter Pitts and Warren McCulloch
developed the concept of a neural network type of machine
learning regarding the organization and operation of
biological brain networks to replicate the processes that
occur in the brain [2]. Individual components known as
"neurons" comprise neural networks. Neurons are
organized into clusters and layers. Each layer's neurons are
all linked to neurons in follow layer. Processed molecules
transfer data between both the input and output layers. In
the network, each node conducts the necessary
mathematical calculation sending information to every
node it is linked to.

Neural networks are made up of fundamental elements
that are like neurons. These units are connected and have
the advantage of being modified because of a learning
process or algorithm. To determine its activation state,
almost all these units combine the information supplied by
its connections separately (in tandem). The unit's activation
is then a linear or nonlinear function of its response. In
general, linear algebra ideas are utilized to examine linear
units, with eigenvectors and eigenvalues being the central
concepts. This investigation demonstrates the striking
resemblance between linear neural networks and the
general linear model constructed by statisticians [4].

The CNN comprises many layers of neurons, each of which
is a non-linear operation on a linear modification of the
previous layer's outputs. Convolution layer and pooling
layers are the most popular layers. Pooling layer activation
is modified to use a fixed function, while convolution layers
weights should be learned [12].

As a sort of artificial neural network design in 1998,
Yann LeCun invented convolutional neural networks [1].
CNN makes use of some visual cortex properties. The
visible critical application of this architecture is image
categorization. CNN, for example, is used by Facebook for
automatic tagging algorithms, Amazon for product
suggestions, and Google for picture search.

2. Literature Review

Much research on Image Recognition in CCN has
been published in recent years. This section provides an
overview of current Image Recognition in CCN as it applies
to this article. Karen Simonyan et al. [3] study how the
depth of a convolutional network influences its quality in a
large-scale image recognition environment, Karen
Simonyan et al. [3] write. As a result, their crucial
contribution is a thorough analysis of growing depth
networks employing a modest (3 x 3) convolution filter
construction, revealing that extending the depth to 16–19
weight layers can give improvements over earlier
arrangements. Their findings formed the basis of their
ImageNet Challenge 2014 entry. They won first and second
overall in the localization and categorization tracks, in both,
demonstrating that representations generalize very much
diverse datasets and obtain state-of-the-art results. As a
result, they had no choice but to make two of the
better-performing ConvNet models public to aid research
study on using deep pictorial representations in computer
vision.

The 1.2 million categorized rising-precision images in
ImageNet LSVRC-2010 competition into 1000 unique
categories, Alex et al. [5] "built a vast, deep convolutional
neural network." As a result, they obtained top-one and
top-five mistake ratios 37.5 % and 17.0 % on test data, far
better than existing state-of-the-art. The neural network
has 650,000 neurons and 60 million parameters. It has 5

IJCSNS International Journal of Computer Science and Network Security, VOL22 No.4, April 2022

560

convolution layers. Some have been preceded by
high-pooling layers, 3 totally connected layers, and a
1000-way SoftMax at the finish. To speed up training, they
operated a high-efficiency and non-saturating neurons GPU
version of the convolution technique. To avoid over-fitting
in totally connected layers, they used a conventional
regularization approach known as "dropout," which proved
quite effective. Their entry of a model version won the
ILSVRC-2012 contest with a top-five testing fallacy of
15.3 %, rapprochement to 26.2 % for the second-better
access. They will enter in the ILSVRC-2012 contest with a
variant vehicle, and as a result should take first place with a
15.3 %, rapprochement to 26.2 % for runner-up.

Providing object categorization and detection that use
the cifar-10 set of data with targeted classification and
prediction of aviation photos, according to Duth P.
Sudharshan et al. [6], claimed that object detection from
image repositories is difficult in computer vision and image
processing. They used Keras with TensorFlow support to
learn, test, and generate the model on a constrained
computer system. The experiments show how long it takes
to learn, test, and build a model in a confined computing
environment. They used 60,000 images and 25 epochs to
train the system, which took 722 to 760 seconds on a Tensor
Flow CPU machine. After 25 generations, the training
accuracy is 96 %, and the system can recognize input
image's using the trained model

Medical imaging is quickly becoming one of the
essential modalities for cancer diagnosis, according to
Houssam BENBRAHIM et al. [7]. It lets us see inside
organs in detail and any malignancies present. The area,
extent, and phase tumour lesions are depicted in these
photographs. Automatically classifying skin cancers based
on images is a critical endeavour that can assist doctors,
laboratory technologists, researchers, and laboratory
technologists in making the best judgments possible. The
study, deep learning, was utilized to build a sort of model
for hiding tumours in images operating a CNN established
on Keras and TensorFlow. The HAM10000 dataset
contains 10,015 dermatoscopic images is used to test this
method. The experiment's classification results show that
their model has a validation set accuracy of 94.06 % and a
test set accuracy of 93.93 %. The results of the investigation,
their model had a classification accuracy of 93.93 % in the
test set and 94.06 % in cross-validation.

Samer Hijazi et al. [8] have collaborated on this effort.
In pattern recognition and image identification,
convolutional neural networks (CNNs) are frequently
employed due they outperformed different methods in a
variety of ways. As a result, they use CNN principles to
handle the challenges of a public issue give
Cadence-developed performance software and algorithms
that switch off computing weight and power for

unpretentious drop symbol distinction ratio. In addition,
they discuss using CNNs of the challenges in embedded
techniques and the critical features of Tensilica® and
Cadence® Visual P5 digital signal processor (DSP) for
Computer Vision, software, and Imaging on which it is built.
It is well-suited for CNN applications in various
recognition functions and images.

3. Convolutional Neural Networks and Neural
Networks

CNN's hierarchical neural networks with alternating
convolutional and subsampling layers. CNNs differ in how
subsampling layers and convolutional are implemented as
the nets are taught [10].

Here we examine the usage of CNNs for image
categorization in further depth. The primary aim of image
categorization is to accept an image as input and then
classify it. This is a skill that people develop from life, and
image shown in figure 1 is from an elephant. A computer
sees the image entirely differently:

Figure 1: Human Eyes VS Computer Eyes

The computer perceives an array of pixels rather than an
image. For example, 300 x 300 image size, the scenario, the
array size will be 300 × 300 x 3. Where 300 is the width,
three hundred is the height, and three is the RGB channel
values. Each of these numbers is assigned a value ranging
from 0 to 255 by the computer. This number describes the
pixel's intensity at each position.

The computer looks for the base-level features to solve
the recognition challenge. In human terms, such traits
include the trunk and huge ears depicted in figure 1. These
properties are known as borders or curvatures to computers.
The computer then builds more abstract concepts using
groupings of convolutional layers. Finally, before being
output, the image is processed thru a set of convolutions,
totally connected layers, pooling and non-linear.

IJCSNS International Journal of Computer Science and Network Security, VOL22 No.4, April 2022

561

3.1 Convolutional Layers

A CNN's primary building block is a convolutional
layer. It is composed of a series of filters (or kernels). The
characteristics of these should be taught during the learning
phase. The filters are typically shorter in length than the
image. To produce an activation map, each filter interacts
with the image. The filter is slid across the image's width
and height, and the fleck consequence between each filter
element and the input is computed in each locative for
convolution [11].

The picture (pixel-valued matrix) is fed into the
Convolutional Layers. Assume that the input matrix
reading starts just at top left of images. The software then
chooses a shorter matrix there, known as a filter (or neuron
or core). The filter produces convolution, and the instance
advances along the input image. The filter's job is to
increase its original pixel values. All these multiplications
are added together to provide a single number. The filter has
only read the image in upper left corner, it then moves one
unit to the right at a time to complete the reading. After
passing the filter through all places, a matrix is formed,
which is less than the input matrix as shown figure
2.

Figure 2: Convolutional Layers

This operation is akin to distinguishing visual boundaries
and simple colors from a human standpoint. However, the
entire network is required to recognize higher-level
characteristics such as the trunk or massive ears. The
network will be made up of many convolutional networks
and nonlinear and pooling layers. When a picture is passed
during one convolution layer, the outcome of the beginning
layer becomes the inputs of the next layer. This occurs with
each subsequent convolutional layer.

 Nonlinear Layer – after every convolution process,
add. It has an activation function, which gives it
nonlinearity. A network would be insufficiently
intense and unable to model the response variable
if it lacked this attribute (as a class label).

 The pooling layer comes after the non-linear layer.
Operates height and width to the image and
conducts a down sampling operation.

Consequently, the image's size is reduced. In addition, a
few features or boundaries were recognized as in previous
convolution operation, and the detailed image is no longer
required for further processing and is compressed to create
less complicated photos. After completing a sequence of
convolutional, non-linear, and pooling layers, a fully linked
layer must be attached. This layer receives data from
convolutional networks. Connecting an utterly connected
layer to the network's results in an N-dimensional vector,
where N is several classes from which the model chooses
the needed style. In the following section, we will look at a
portion of the Python code for this model.

4. Performance Evaluation

This section illustrates the proposed study's
performance evaluation, including data and preprocessing,
VGGNet implementation, training implementation, and
classification implementation.

4.1 Data and Preprocessing

The datasets are available on the instructor's website
and contain around 500,000 photos. These photos depict
various things that may be found in a shopping mall.
Dresses, garments, electrical equipment, culinary tools, and
other items are depicted. The initial stage is to perform data
preprocessing, which will train a convolutional neural
network. Includes recognizing and classifying each of these
photos using deep learning and Keras. Surprisingly, the
provided data also contains a list of pictures in
comma-delimited file format, each category index. As a
result, this will organize these photographs into distinct
directories and label them with a category index. All of this
is described in the source code below.

Listing 1: Preprocess.py: Read CSV File and Extract Only Image Names,
and Category Index (First and Second Columns)

IJCSNS International Journal of Computer Science and Network Security, VOL22 No.4, April 2022

562

Listing 2: Preprocess.py: Read Images and Category Arrays and Store
Specific Images in A Specific Folder

4.2. VGGNet Implementation

We use a more minor, additional consolidated
variation of the VGGNet net in the CNN architecture.
Zisserman and Simonyandescribed in their 2014
publication. VGGNet architectures are distinguished:

• To use 33 convolutional layers of the top in every other to
increase deep.

• Using total pool to reduce quantity size.

• Layers are connected at the network's end before reaching
a SoftMax classifier.

We created a minor VGGNet architecture, depicted in
figure 3, to train Keras's deep learning classifier.

Figure 3: Smaller VGGNet

SmallerVGGNet, a scaled-down version of VGGNet, was
implemented. In addition, create a new python file called
smallervggnet.py and place it in the py image search folder.

Begin by importing modules as shown below:

Listing 3: smallervggnet.py: import modules

Following that, define SmallerVGGNet class as shown
below:

Listing 4: smallervggnet.py: Smaller VGGNet class

Construction strategy necessitates 4 parameters:

• Width: Width is a dimension in an image.

• Height: Image's dimension height.

• Depth: The image's depth is commonly familiar to several
channels.

• Classes: Several categories in the dataset will impact the
final layer in the model.

Next, add layers in begin to model as shown below:

Listing 5: Convolution “CONV” => RELU =>” POOL (32 filter)

CONV => RELU => POOL block is seen above in being.
Convolution layer consists of 32 filters, each of which has a
3 x 3 kernel. Following batch normalization, the activation
function RELU is employed.

IJCSNS International Journal of Computer Science and Network Security, VOL22 No.4, April 2022

563

POOL size 3 x 3 used in the POOL layer to swiftly decrease
the spatial dimensions of 96 x96 to 32 x 32 (as in the
following section, train network with 96x 96 x 3 input
images). Dropout will also be employed in network
architecture, as you can see from the code block-dropout
tasks by detaching nodes during the current layer at
connecting and random them to the following layer. The
use of disconnects accidental during learning collections
aids in the natural introduction of profusion in the system.
Because no one node into layer is reliable for indicating a
particular category, item, corner, and edge, randomized
disconnects during training batches aid in the natural
insertion of indifference into the model. Add two levels of
(CONV => RELU) before adding another POOL layer as
shown below:

Listing 6: (CONV => RELU) * 2 => POOL (64 filter)

Learn a more diversified set of features by stacking many
CONV and RELU layers together (before lowering that
volume's spatial dimensions). Filters size is being increased
from 32 to 64; the more minor the spatial dimensions of
volume, the deeper the network, and the more filters learn.
To avoid diminishing spatial dimensions rapidly, reduced
the maximum size pooling from (3 x 3 to 2 x 2). At this
point, dropout is performed once more.

Next, add other set of (CONV =>RELU) ∗2=> P OOL as
shown below:

Listing 7: (CONV => RELU) * 2 => POOL (128 filter)

Raised the size of filter to 128 here. To reduce overfitting
once more, 25% of the nodes are dropped.

Collection of F C => RELU layers as well as a SoftMax
classifier as shown below:

Listing 8: FC => RELU

Dense (1024) specifies the fully linked layer with linear
corrected unit batch normalization and activation. Next,
dropout is done once more, seeing a drop out of fifty % of
nodes thru preparing this time. In entirely linked layers, you
frequently operate a dropout rate from 40-50%, and in
previous levels, you use a considerably lower rate, typically
10-25%. Finally, finish the model with a SoftMax classifier,
which yields anticipated probabilities for every class label.

4.3. Training Implementation

First, parse command line arguments as follows as shown
below:

Listing 9: Command line arguments

Three command line arguments are necessary for training
script:

• –dataset: The input dataset's path.

Dataset is structured in dataset guide, with every category
represented by a sub guide. In addition, category
photographs can be found within each sub guide.

• –model: Output model's path — The training script trains
the example and saves the sample to disk.

• –labelbin: Output label binarized path extracts the class
labels. Where dataset guide terms and generates tag
binarized. There is additionally one option statement.

• –plot. If you establish a path/filename, a plot.png file is
created of your essential tasking guide.

IJCSNS International Journal of Computer Science and Network Security, VOL22 No.4, April 2022

564

After handled command line arguments, initialize the
following variables:

(1) EPOCHS: The whole numeral of epochs for which net
trained (i.e., how multiple periods net "sees" every training
example and realizes patterns of it).

(2) INIT LR: The first learning ratio — 1e 3 defaulting
values for the Adam improver train the net.

(3) BS: Send batches of photos on the net for a train. Each
epoch has many batches. The BS value determines batch
size. (4) IMAGE DIMS: Provide locative measurements of
input photos here. Input photos must be 96 by 96 pixels of
three channels (i.e., RGB). Smaller VGGNet was created
explicitly of image. Develop information and tags to store
the preprocessed pictures and tags.

Then loop through photographs and use the Keras
function to convert and resize them to fit model. The data
array is then converted to a NumPy array, and the pixel
intensity is scaled to an area [0, 1]. Also change the tags
from a list to a NumPy array. Finally, an information note is
a press display size (in MB) of the information matrix. A
frequent technique of deep learning, or any machine
learning for an issue, is to part test and train.

Continue by generating an 80/20 random division of
information. Because of the limited number of information
points, 250 images per category use information
enlargement throughout the procession to give additional
standard images to train with (established on current
photos). Information enlargement is a device each profound
learn practitioner should have in their toolbox. Start Keras
CNN model with spatial input dimensions of (96 × 96 x 3).
The smaller VGGNet was designed to accept (96 × 96 x 3)
photos as input. To use alternative spatial measurements to
decrease the network deep for smaller photos and improve
the network deep for bigger ones. Because we have more
than two classes, utilize the Adam optimizer with
knowledge ratios decline and construct a standard with
categorical cross entropy. To train the network, we invoke
the Keras fit-generator method.

4.4. Classification Implementation

Require label binaries and models in memory to
classify the image as shown below.

Listing 10: Label Binaries and Model in Memory

The image is then classified, and the label is created as
shown below.

Listing 11: Identify Correctness

The name of each category index is extracted from the
filename and compared to the tag. The appropriate variable
is "incorrect" to "correct." These two lines presume that
your receiving image does have a filename that includes the
tag.

Following that, proceed as follows:

•To the class label, add the likelihood % and "correct" /
"incorrect" wording. • Scale the generated image to fit
screen.

• On the resulting image, draw the label text.

• Show the output image while waiting for a keypress to
leave.

5.Result

The results of the performance evaluation are
presented in this section.

5.1 Training Result

Run the subsequent command to train the method,
being foolproof to supply the command line options
correctly as shown below:

IJCSNS International Journal of Computer Science and Network Security, VOL22 No.4, April 2022

565

Listing 12: Training Process

According to the result of the train script, Keras CNN
achieved 96.84% sort precision on the train set. The test set,
97.07 % precision. Figure 4 shows that train the standard
for 100 epochs and obtained minimal loss limit overfitting.
However, improve accuracy by collecting more training
data.

Figure 4: Training and Validation Loss/Accuracy Charts

5.2. Classification Results

Classification Results. (Big: Correct, Small: Incorrect) as
shown in figure 5.

Figure 5: Classification Results. (Big: Correct, Small: Incorrect)

6. Discussion

VGGNet is unique in this study. It is "sometimes
referred to VGG," according to this understanding of
VGGNet. Simonyan, as well as Zisserman, established it in
their 2014 paper [3]. Their main contribution was to show
that architecture with tiny (33) filters could be trained to
increase depths (16-19 layers) and realize state-of-the-art
classification on challenging ImageNet classification
assignment.

6.1 Smaller VGGNet: Going Deeper with CNNs

Deep learning network topologies formerly consumed
a variety from filter sizes.

Filter lengths in the CNN's first layer generally range
between 7x7 [5] to 11x11 [9]. As a result, filter sizes were
gradually decreased to 55, with only the network's
innermost tiers using 33 filters in the end.

VGGNet is notable for its use of 33 seeds during the design.
Using tiny seeds presumably allows VGGNet to generalize
to sort problems unrelated to the context in which it was
trained.

If you come across a network architecture that is only made
up of 33 filters, you can be sure it was influenced by
VGGNet. The full VGGNet 16- and 19-layer varieties are
too forward to introduce Convolutional Neural Networks.

We looked at the VGG network family to see what
characteristics a CNN must have to be recognized as a
member of this family, and then built a smaller VGGNet
that can be easily trained on system.

6.2 The VGG Family of Networks

Two fundamental characteristics separate the VGG
family of Convolutional Neural Networks.

In the network's CONV layers, only 33 filters are
employed.
Before conducting a POOL operation, stack several CONV
=> RELU layer sets (with the amount of sequential CONV
=> RELU layers rising as more profound).

The use of a VGGNet variant that is substantially
shallower, known as ‘smaller VGGNet.

6.3 The (Smaller) VGGNet Architecture

This employs a chain from CONV => RELU =>
POOL layers in both ShallowNet and LeNet. However,

IJCSNS International Journal of Computer Science and Network Security, VOL22 No.4, April 2022

566

with VGGNet, several CONV => RELU layers are layered
before a solo POOL layer is applied. This enables the
network to learn more detailed information of the
Convolution layer before down - sampling the spatial input
size with the POOL function. The smaller VGGNet is made
up of 2 series from CONV => RELU => CONV => RELU
=> POOL layers, then a series from FC => RELU => FC =>
SOFTMAX levels.

7. Conclusion and FUTURE WORK

The little training data is one of the model's critical
shortcomings. We tried on various photos, and the
classifications were sometimes inaccurate. When this
occurred, we studied input picture + network further and
observed that the color visible in the image considerably
influences sort, for instance, if an image contains a lot of
reds and oranges. This is due in part to our input data.
Because these generated images are blatantly fake, there are
no actual "real-world" photos of them. We were inspired by
fan art or movie/TV program stills for our images.
Furthermore, we only had a limited amount of data
(225-250 images). When training a Convolutional Neural
Network, we should have at least 500-1,000 images for
every class. Remember this when working with your data.

We conducted an experiment using the dataset. In the future,
we will increase the amount of data and strive to improve
the quality of the results to extend and improve accuracy.

Acknowledgment
I want to convey heartfelt gratitude to Dr Jin, Ruoming for
his invaluable guidance.

References

[1] Yann Le Cunand Yoshua Bengio. "The handbook of brain

theory and neural networks". Chapter Convolutional Networks
for Images, Speech, and Time Series, pages 255–258. MIT
Press, Cambridge, MA, USA, 1998.

[2] Warren S. McCulloch and Walter Pitts. "A logical calculus of
the ideas immanent in nervous activity". The bulletin of
mathematical biophysics, 5(4):115–133, Dec 1943.

[3] Karen Simonyan and Andrew Zisserman. "Very deep
convolutional networks for large-scale image recognition".
CoRR, abs/1409.1556, 2014.

[4] Herve ABDI. "A neural network primer". Journal of
Biological Systems, 1994, 2.03: 247-281.

[5] KRIZHEVSKY, Alex; SUTSKEVER, Ilya; HINTON,

Geoffrey E. “Imagenet classification with deep convolutional
neural networks”. Advances in neural information processing
systems, 2012, 25: 1097-1105.

[6] Duth P. SUDHARSHAN, Swathi RAJ. “Object recognition in

images using convolutional neural network”. In: 2018 2nd
International Conference on Inventive Systems and Control
(ICISC). IEEE, 2018. p. 718-722.

[7] Houssam BENBRAHIM, Hanaâ HACHIMI, Aouatif AMINE.
“Deep Convolutional Neural Network with TensorFlow and
Keras to Classify Skin Cancer Images”. Scalable Computing:
Practice and Experience, 2020, 21.3: 379-390.

[8] Samer Hijazi, Rishi Kumar, and Chris Rowen, IP Group,

Cadence. “Using convolutional neural networks for image
recognition”. Cadence Design Systems Inc.: San Jose, CA,
USA, 2015, 1-12.

[9] Pierre SERMANET, et al. “Overfeat: Integrated recognition,

localization and detection using convolutional networks”.
arXiv preprint arXiv:1312.6229, 2013.

[10] Dan C. Cires¸an, Ueli Meier, Jonathan Masci, Luca M.

Gambardella, Jurgen Schmidhuber. “Flexible, high
performance convolutional neural networks for image
classification”. In: Twenty-second international joint
conference on artificial intelligence. 2011.

[11] Sakib MOSTAFA, Fang-Xiang WU. “Diagnosis of autism

spectrum disorder with convolutional autoencoder and
structural MRI images.” In: Neural Engineering Techniques
for Autism Spectrum Disorder. Academic Press, 2021. p.
23-38

[12] Qiuhong, KE, JunLiu, Mohammed Bennamoun,

SenjianAn,FerdousSohel,Farid Boussaid, . “Computer vision
for human–machine interaction”. In: Computer Vision for
Assistive Healthcare. Academic Press, 2018. p. 127-145.

Salah Alamri received his B.S.
degree in Computer Science from
King Abdelaziz University, Saudi
Arabia in 2010, and received M.S.
degree in Computer Science from
Kent State University, USA in 2014.
He received the PhD degree in
Computer Science in August 2020

from Kent State University, USA. He is currently work as an
assistant professor, Computer Science department in the Faculty
of Computing at Al-Qunfudhah branch at Umm Al-Qura
University.

