
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

785

Manuscript received April 5, 2022
Manuscript revised April 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.4.93

Enhanced Symmetric Encryption Technique for Securing Users’

Data in Public Cloud Environment

A. Fairosebanu1†, Dr. A. Nisha Jebaseeli2††,

Government Arts and Science College, Kumulur, Lalgudi, Affiliated to Bharathidasan University, Trichy, India

Summary

Cloud is the biggest backbone for storing data and
maintaining the data reliably. Cloud helps many enterprises to
keep their data alive without any management issues. Most
enterprises are like to have their data in the cloud because of its
benefits. It has more compatibility for accessing the data. Even
though the cloud gives many advantages to the users, it has the
biggest problem in maintaining the data securely. Cloud is not
transparent. Users can’t know the data storage details, and the
administrators maintain and monitor the data. The public nature
of the cloud may disclose data to other users or the possibility
that the administrators can view the data. Hence, data security is
the biggest challenge in the cloud environment. To handle the
security challenges in the cloud, cryptography approaches may
help to do. This paper enhances cryptography data security
techniques based on encryption. The research focuses on the
symmetric nature of encryption because of its capability to
process a huge amount of data. The proposed approach is block
cipher encryption to encrypt and decrypt the data using a key.
The proposed technique is tested for its security efficiency and
performance using the cloud-based deployment and security
analysis tool. Test results demonstrate that the proposed approach
is more efficient in the public cloud environment.
Keywords:
Cloud Computing, Cryptography, Encryption, Symmetric
Approach, Block Cipher.

1. Introduction

Cloud computing is an evolutionary technology that
derives many concepts from the existing technologies like
parallel computing, pervasive computing, utility
computing and grid computing. It is internet-based
computing. Without an internet connection, it may not be
possible to access the cloud [1]. It can be delivered as a
service to the user based on their computing requirement.
Users can be general users or enterprises. According to the
user’s requirement, they can access the cloud [2]. The
cloud provisioned the users to get more benefits from their
virtual nature. It provides a collaborative environment for
working together in a single environment. The cloud helps
the small and medium scale industries improve their IT
business to handle it properly [3]. The cloud’s main
objective is to provide complete computing services,
especially on providing storage. Cloud provides a huge
amount of virtual storage to maintain a large amount of

data. Due to the unlimited nature of the cloud, users can
get limitless services for all computing services.
Enterprises are adopting cloud for their storage
outsourcing [4].

Apart from all cloud benefits and advantages, the cloud
has the biggest fall in securing data in storage. Figure 1
shows the challenges in the cloud [5]. Security is the
biggest concern in the cloud. The cryptography techniques
generally address security. Cryptography can be delivered
in the different security services. The list of cryptography
security services is Authentication, Authorization,
Confidentiality, Integrity and Availability [6]. The security
service ensures the level of security at different levels. The
authentication ensures the originality of the incoming users.
Authorization talks about the authorized user roles in the
network or enterprises. Confidentiality is the topmost
concern in security to ensure that the authorized users only
access the data. Integrity tells whether the data is modified
or not during the transmission. Availability talks about the
existence of Deny of service in the network [7]. Among all
the services in cryptography, confidentiality needs more
attention to maintain the data securely. Confidentiality of
the data is maintained by using encryption techniques.

 Figure – 1 Security Risk and Challenges

The encryption techniques are divided into two
categories symmetric and asymmetric. The asymmetric

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

786

may provide more security than the symmetric, but it can’t
be used in a large amount of data encryption. It can be
only used for password encryption and other secret code
encryption. Symmetric encryption is a more useful
technique in addressing the confidentiality of the data
stored in the cloud. Symmetric encryption uses a unique
key to encrypt and decrypt. The sender encrypts the data
using a key, and the key is securely communicated to the
receiver to retrieve the data. The proposed encryption
technique in the paper is based on the cryptosystem’s
symmetric nature, and it is block cipher encryption [8]. It
can encrypt a block of data at a time. The proposed
encryption technique is enhanced from the present
techniques concerning the number of rounds and keys used
in the encryption. The key is a block of bits that can be
processed to generate the necessary sub-version according
to the round. The enhanced cipher is used in the public
cloud environment to secure users’ data.

2. Related Works

Cloud is used for storing huge amounts of data
storage. When connected to the cloud, we are also ready to
face the biggest challenges from data security.
Cryptography techniques can address security issues.
Ansar et al. [9] suggested that a single security algorithm
to secure data in the cloud is not enough. Ansar et al.
delivered a mechanism to use symmetric key cryptography
and steganography techniques. In their methodology, the
file is separated into eight chunks. Each chunk is
encrypted using a different cryptography algorithm. Key is
used as a stegno image, and it is shared with the recipient
to retrieve the data. The authors suggested using more than
five encryption algorithms to encrypt different chunks.
However, they failed to describe whether they use the
same key for all algorithms or different keys for each file
chunk. To enhance the data security in the cloud,
Gangireddy et al. [10] enhanced the blowfish algorithm
and used the k-medoid clustering to cluster the secret
information. The dragonfly approach is implemented in
their work to improve clustering accuracy. However, the
author does not enlighten how they enhance the blowfish
algorithm from the research perspective. Similarly,
Thangapandiyan et al. [11] proposed a modified elliptic
curve downward cryptography. A verification id is
assigned to each user and admin. Modification of the ECC
is not given in the paper. Pushpa [12] proposed a hybrid
approach encryption technique to improve medical data
security in the cloud environment. The paper combines the
blowfish and two fish algorithms to enhance security in the
cloud. Sanjeev et al. [13] proposed a multilevel hybrid data
security approach to strengthening data security in the
cloud. The authors proposed to use symmetric and
asymmetric cryptography algorithms in a multilevel

manner. According to the methodology, the data is first
encrypted using the DES algorithm, and the encrypted data
from the DES is again encrypted using the RSA algorithm.
This hybrid approach takes more time for encryption and
decryption. Hosseinet al. [14] suggested avoiding using
plex cryptography encryption algorithms for secure data in
the cloud before the speed of data encryption is more
significant in the cloud. Hence, the author developed a
solution that uses an improved blowfish algorithm to
encrypt the data and the elliptic curve algorithm to encrypt
the key used in the encryption. Along with this, using a
digital signature to ensure the integrity of the data. Many
more literature [15]-[20] are reviewed. Most of the
literature is described their proposed approach in the
manner of hybrid way. But, combining two or more
algorithms into a single algorithm must consider the time
taken for processing data before uploading to the cloud.

3. Methodology

The proposed encryption technique is an enhanced
standard of existing cryptography approaches. A block
cipher encryption uses a secret key to encrypt and decrypt
the data. In the existing encryption approaches, the number
of rounds executed for encryption and decryption is fixed
and known to adversarial users. The hacker can try to hack
the data by knowing the number of rounds in the
encryption. The proposed technique is enhanced by hiding
the number of rounds executed for encryption and
decryption. The number of rounds of the encryption is
dynamically decided from the key. The actual key used for
this proposed encryption technique is 196-bit. But, at the
time of generating the key, it is 200-bit. The last 8 bits are
split into two 4-bit and find XoR between those two 4-bits
to get a 4-bit. Hence the 200-bit is converted to a 196-bit
key and used for encryption. The last four is taken as the
sub-key1, which denotes the number of rounds the
encryption is executed for a certain plaintext. In the same
manner, the decryption is also executed. The encryption of
the proposed technique takes 64-bit as input and produces
64-bit as output. The input plaintext data is processed in
two cryptography techniques: substitution and
transposition. Figure 2 depicts the block diagram of the
proposed encryption technique.

4. Proposed PUCS Cipher

The proposed encryption PUCS Cipher encrypts
the data as a 64-bit block. It is executed for the number of
rounds based on the key. The rounds of the encryption are
not fixed; it is changed for different input data. The key
used for encryption is 196-bit. It is processed and split into

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

787

four subkeys. The plaintext bits are permutated based on

subkey 2.Permutation denotes the transposition of bits.
After permutation, the 64-bit is split into two equal half of
32-bit. For example, subkey 3 is 64-bit and split into two
32-bit. The two 32-bit is XoRed with subkey 3. After XoR,
the two 32-bit is swapped. After swapping, two 32-bit are
merged into 64 bits, and now a single round is completed.
The same round of execution is continued at the number of
times denoted by subkey 1. Once all rounds are completed,
the 64-bit is XoRed with subkey 4 and generates the 64-bit
plaintext. Figure 3 shows the encryption execution of the
proposed technique.

4.1 Procedure of PUCS Cipher

Step 1: Users’ data are taken as Input Plain Text (PTEXT)
Step 2: Consider the binaries of PTEXT
Step 3: Input PT is divided into 64 bits blocks. PUCS
Cipher encrypts 64-bit blocks at a time.
Step 4: Get a 196-bit key KEY for PUCS Cipher from
KPMaaS.
Step 5: Last four bits in the key KEY denotes number
rounds to be executed for encrypting the data.
Step 6: The round function starts. Form the PTEXT into an
8X8 Matrix MAT.
Step 7: Get the first 64-bit subkey SKEY1 from the 196-
bit key.
Step 8: Convert the SKEY1 64-bit into corresponding
eight decimal values.
Step 9: Arrange the eight decimals on the top of each
eight-column of the MAT.
Step 10: Read the bits from the MAT by column based on
the ascending order of the eight decimal values placed on
the top of each column.
Step 11: The 64-bit is split into two equal half of 32-bit
blocks by reading even and odd positional bits separately.
Step 12: Get the second 64-bit subkey SKEY2 from 196-
bit KEY.
Step 13: Split the SKEY2 into two 32-bit keys.
Step 14: Find the XoR of two 32-bit plaintexts with two
32-bit keys and get the result of two 32-bits blocks.
Step 15: 32-bit swap is carried out.
Step 16: Merge the resulting two 32-bit blocks into 64-bit
by alternatively placing bits from both blocks.
Step 17: The round function is completed. Steps from step
6 to step 15 is repeated in several rounds based on the
encryption rounds. The result from the first round is given
as the input to the next round.
Step 18: After all rounds, a 64-bit output is derived. It is
XoR with the third subkey SKEY3 from the key K.
Step 19: The resulting 64 bits from Step 17 is the cipher
text CTEXT.

64-bit Key k 196-

196-bit key is split
into four sub

Key
K2 64

Key

Key

Key K1=4-
bi

N=toDecimal(
)

While

Form the plaintext 64-bit
into a 8X8 Matrix

The decimal values of Key
K2 is arranged in the top

Bits in the 8X8 matrix are
read based on K2 values

next N=N-1

The 64-bit is split in to

Bits are read by columns
according to the

ascending order of the

64-bit text

Left 32-

 64-bit cipher text is

Right 32-

Merged

32-bit K3 32-bit K3

Left 32- Right 32-

Right 32- Left 32-

64-bit K4

Figure – 3 PUCS Cipher Encryption Procedure

64-bit Input

XoR Substituion

64-bit Output

Rounds function
based on the Key

Key Generation

do

n=25, x=0

p=random(32, 126)

k.append(tobinary(p))

Encryption

while (x<n);

x=x+1

Key k

Figure – 2 Block Diagram of Encryption and
Key Generation in PUCS Cipher

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

788

5. Experiment with Sample Data

The proposed technique has experimented with sample
plaintext shown in the box below.

Step 1: Users’ data are taken as Input Plain Text (PTEXT)

Table – 1 Sample Input Data of User

PName PMR No DOB
Hospital

Name
Disease Amount

Ram K SU9322 19/8/1987 suthan hunger 19000

PTEXT RamKSU932219/8/1987suthanhunger19000
PTEXT converted to Decimal:
R82 a97 m10 K75 S83 U85
957 351 250 250 149
957 /47 856 /47 149
957 856755 s115 u117
t116 h104 a97 n110h104
u117 n110 g103 e101 r114
149 957 048 048 048

Step 2 : Consider the binaries of PTEXT
PTEXT converted to Binaries:
01010010 01100001 01101101 01001011 01010011
01010101 00111001 00110011 00110010 00110010
00110001 00111001 00101111 00111000 00111001
00110010 00111001 00111000 00110111 01110011
01110101 01110100 01101000 01100001
01101110 01101000 01110101 01101110 01100111
01100101 01110010 00110001 00110010 00110000
00110000 00110000
Step 3: Input PT is divided into 64 bits blocks. PUCS

Cipher encrypts 64 bits blocks. Experiment
considers first 64 bits block for encryption:

PTEXT01010010 01100001 01101101 01001011
01010011 01010101 00111001 00110011

Step 4: Get a 196 bits key for PUCS Cipher from KPMaaS.
KEYM{WO]GXB 4k0hGGP`]'+mG^2L 3
Decimal equivalent of KEY 77 123 87 79 93 71 88 66 52
107 48 104 71 71 80 96 93 39 43 109 71 94 50 76 58
Binaries of KEY01001101 01111011 01010111

01001111
01011101 01000111 01011000 01000010 00110100

01101011
00110000 01101000 01000111 01000111
01010000 01100000 01011101 00100111 00101011

01101101
01000111 01011110 00110010 01001100 0011
KEY Size: 196 Bits.
Step 5: Last four bits in the key KEY denotes number

rounds to be executed for encrypting the data.
 Last four bits00113
 Number of Rounds3

Step 6: The round function starts. Form the PTEXT into an
8X8 Matrix MAT.

Round 1
0 1 0 1 0 0 1 0
0 1 1 0 0 0 0 1
0 1 1 0 1 1 0 1
0 1 0 0 1 0 1 1
0 1 0 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 1 1 1 0 0 1
0 0 1 1 0 0 1 1

Step 7: Get the first 64-bit as a subkey SKEY1 from 196 bits
key.

SKEY1 01001101 01111011 01010111
01001111 01011101 01000111 01011000
01000010

Step 8: Convert the SKEY1 64-bit into corresponding eight
decimal values.

SKEY1 77 123 87 79 93 71 88 66
Step 9: Arrange the eight decimals on the top of each

eight-column of the MAT.

77 123 87 79 93 71 88 66
0 1 0 1 0 0 1 0
0 1 1 0 0 0 0 1
0 1 1 0 1 1 0 1
0 1 0 0 1 0 1 1
0 1 0 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 1 1 1 0 0 1
0 0 1 1 0 0 1 1

Step 10: Read the bits from the MAT by column based on

the ascending order of the eight decimal values
placed on the top of each column.

PTEXT01111111 00100100 00000000 10001111
01100011 10011001 00110010 11111100
Step 11: The 64-bit is split into two equal half of 32-bit

blocks by reading even and odd positional bits
separately.

OBlock01110100 00001011 01011010
01011110

EBlock11110010 00111001 10010101
01001110

Step 12: Get the second 64-bit Subkey SKEY2 from 196-bit
KEY.

SKEY2 00110100 01101011 00110000 01101000
01000111 01000111 01010000 01100000

Step 13: Split the SKEY2 into two 32-bit keys.
LSKEY200110100 01101011 00110000

01101000

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

789

RSKEY201000111 01000111 01010000
01100000

Step 14: Find the XoR of two 32-bit plaintexts with two
32-bit keys and get the result of two 32-bit
blocks.

OBlock01110100 00001011 01011010 01011110
LSKEY200110100 01101011 00110000 01101000
XoR01000000 01100000 01101010 00110110
Output

EBlock11110010 00111001 10010101 01001110
RSKEY201000111 01000111 01010000 01100000
XoR Output10110101 01111110 11000101
 00101110

Step 15: Merge the resulting two 32-bit blocks into 64-bit

by alternatively placing bits from both blocks.
PTEXT01100101 00010001 00111101 01010100
01111000 10011001 00001110 01111100
Step 16: The round function is completed. Steps from Step

6 to Step 15 is repeated in several rounds based
on the encryption rounds. The result from the
first round is given as the input to the next
round.

The experiment considers the plaintext with 64-bit, and it
is executed for one round based on the key generated for
this plaintext.

6. Implementation Setup

The proposed work is implemented and tested in the
cloud environment. The proposed encryption procedure is
coded in c#.net and developed as a web-based application.
The developed application is hosted in the cloud
environment called MyASP.NET. The MyASP.NET is a
cloud-based platform providing service. They provide a
platform to host the user’s application. The environment
allows only the application that is developed in the .NET
framework. The proposed technique is developed in the
Visual studio 2012 .Net framework. The hosting
environment provides a user-friendly environment to host
thedeveloped application. The hosting environment is the
cloud server. Once the applicationis hosted in the
MyASP.NET platform service, it can be accessed by any
user from anywhere in the world. MyASP.NET
environment provides a domain name for the application
hosted in the cloud server. Users can use the domain name
of the hosting application to open it. The client can use any
operating system to access the hosted application. The
developed application is tested for its performance
according to the time taken for encryption and decryption.
First, the application is provisioned with upload the
plaintext to the server. Now the plaintext is encrypted
using the proposed encryption technique. Finally, the
encrypted text is displayed in the corresponding place in

the application. During this encryption, the time is
calculated. The time is calculated from the MyASP.NET
server. Similarly, other encryption techniques test their
performance based on the time taken for encryption and
decryption. The performance and security level result is
compared in the following section.

7. Results and Discussions

The proposed technique and existing techniques are
tested with a similar implementation setup. The
performance of the proposed encryption is calculated by
the time taken for encrypting and decrypting the data. The
technique is tested with sample medical data. As discussed
earlier, the proposed technique encrypts 64-bit plaintext at
a time. According to this, the input given to the technique
is 64bit from the medical data. Then, the technique
encrypts and decrypts the data. The time taken is noted for
different sizes of the data. The taken to encrypt the data
varies based on the size of the key and the number of
rounds executed for encrypting the data. The results shown
in the following tables are taken from the average time
taken for encrypting the data up to five to six encryption or
decryption. The total number of rounds executes for
encryption and decryption is 16 rounds. Table 2 shows the
performance comparison based on encryption time.

Table – 2 Performance Comparison by Encryption Time

The technique’s decryption time is also

considered for measuring performance. Decryption takes a
more or less similar time to encryption. Table 3 shows the
decryption time comparison with the present techniques

Table – 3 Performance Comparison by Decryption Time

Size DES Blowfish PUCS Cipher

100 KB 69 42 31

200 KB 139 81 64

300 KB 207 128 103

400 KB 276 173 138

500 KB 350 219 169

The time taken varies according to the changes in
the execution of rounds. Moreover, the proposed
techniques are not run simultaneously in the same rounds.
Instead, the round of execution is decided based on the key.

Size DES Blowfish PUCS Cipher

100 KB 72 44 37

200 KB 141 85 75

300 KB 213 132 112

400 KB 282 177 150

500 KB 355 223 188

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

790

Therefore, encrypting 100KB of data with one round is
approximately 2.33 milliseconds. Table 4 shows the time
comparison of the encryption of the proposed technique
with different rounds

Table – 4 Comparison of the Encryption of the Proposed Technique with

Different Rounds

Rounds
 Size

5
Rounds

8
Rounds

10
Rounds

15
Rounds

100 KB 12 19 23 35

200 KB 25 37 46 69

300 KB 35 58 70 106

400 KB 48 75 92 141

500 KB 61 96 116 173

The more important measure of the encryption

technique’s efficiency is security strength. Based on the
percentage of security level only, it can be claimed that the
proposed technique is more efficient than the existing
techniques. In this contact, the proposed technique is
tested for security level using a hacking tool called ABC
universal hacking tool. This tool is used to analyze the
security strength of the encryption techniques.
Furthermore, the tool hacks the encrypted data generated
by the proposed techniques and tries to get the plaintext
without knowing the key. The percentage of security is
calculated from the percentage of plaintext found by the
tool. Finally, the retrieved plaintext by the tool is matched
with the original plaintext based on the percentage of
matching the security level. Table 5 show the security
level of all encryption techniques considered in the
research.

Table – 5 Percentage of Security Level

S.No. Encryption
Techniques Security Level (%)

1 DES 78

2 Blowfish 84

3 PUCS Cipher 89

The results shown in the tables show that the

proposed encryption is more efficient to perform in the
public cloud. Furthermore, performance comparison shows
that compared to other approaches, the proposed technique
perform well and execute the data in minimum time
duration than the existing approaches. The proposed
approach is measured for its efficiency in securing the data
stored in the cloud. The table result shows that the security
level of the proposed technique is higher than the existing
security techniques.

8. Conclusion

Cloud implementation is more difficult with security
approaches. The proposed technique is the block cipher
encryption technique enhanced from the present technique.
The enhancement is done in rounds, round function and
key used. The proposed technique is 196-bit encryption. It
is executed according to the keys for the number of rounds.
The number of round execution is not fixed in the
proposed technique. The proposed technique is tested for
its efficiency with existing techniques for its performance
and security level. Compared to the existing technique, the
proposed technique performs well in executing the data in
minimum duration. The proposed technique’s security
level is also higher than the existing approaches. The
security level is tested using the security analyst tool called
Hackman tool.

References
[1] K. B. Sarmila and S. V. Manisekaran, A Study on Security

Considerations in IoT Environment and Data Protection
Methodologies for Communication in Cloud Computing,
IEEE International Carnahan Conference on Security
Technology (ICCST), 2019, pp. 1-6.

[2] R. Doshi and V. Kute, A Review Paper on Security
Concerns in Cloud Computing and Proposed Security
Models, IEEE International Conference on Emerging
Trends in Information Technology and Engineering (ic-
ETITE), 2020, pp. 1-4.

[3] C. Myeonggil, The Security Risks of Cloud
Computing,IEEE International Conference on
Computational Science and Engineering, 2019, pp. 330-330.

[4] P. Hima Bindu1, T. Bhaskar Reddy2, An Exploration Of
Security Issues For Cloud Computing, Journal of
Engineering and Science, Vol 11, Issue 1, 2020, pp. 144-152.

[5] New 2019 Cloud Security Research Reveals Key
Challenges for Security Professionals,
https://www.businesswire.com/news/home/2019062400538
7/en/New-2019-Cloud-Security-Research-Reveals-Key-
Challenges-for-Security-Professionals, viewed March
2020.

[6] A. S. Mattoo, D. Upadhyay, A. K. Dubey and M. K. Shukla,
An approach to analyze and protect data on Untrusted Cloud
Network, IEEE International Conference on Cloud
Computing, Data Science & Engineering (Confluence),
2020, pp. 139-144.

[7] P. A. Pandire and V. B. Gaikwad, Attack Detection in Cloud
Virtual Environment and Prevention Using
Honeypot,International Conference on Inventive Research
in Computing Applications (ICIRCA), 2018, pp. 515-520.

[8] H. Song, J. Li and H. Li, A Cloud Secure Storage
Mechanism Based on Data Dispersion and Encryption, in
IEEE Access, vol. 9, 2021, pp. 63745-63751.

[9] Ansar I. Sheikh, Twinkle Athole, KunalWankhede,
ChandanKawle, Mona Kshirsagar, Data Security using
Hybrid Cryptography in Cloud, Journal of Emerging
Technologies and Innovative Research, Volume 7, Issue 5,
2020, pp. 56-61.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.4, April 2022

791

[10] VenkataKoti Reddy Gangireddy, SrihariKannan,
KarthikSubburathinam, Implementation of enhanced
blowfish algorithm in the cloudenvironment, Journal of
Ambient Intelligence and Humanized Computing, Springer-
Verlag, 2020, pp. 1-7.

[11] M. Thangapandiyan, P. M. RubeshAnand and K.
Sakthidasan, Enhanced Cloud Security Implementation
usingModified ECC Algorithm, IEEE International
Conference on Communication and Signal Processing, April
3-5, 2018, pp. 1019-1022.

[12] B. Pushpa, Hybrid Data Encryption Algorithm for
SecureMedical Data Transmission in Cloud Environment,
IEEE International Conference on Computing
Methodologies and Communication, 2020, pp. 329-334.

[13] Sanjeev Kumar, GarimaKarnani, Madhu Sharma Gaur, Anju
Mishra, Cloud Security using Hybrid
CryptographyAlgorithms, IEEE International Conference on
Intelligent Engineering and Management, 2021, pp. 597-603.

[14] HosseinAbroshan, A Hybrid Encryption Solution to
Improve Cloud Computing Security using Symmetric and
Asymmetric Cryptography Algorithms, International
Journal of Advanced Computer Science and
Applications,Vol. 12, No. 6, 2021, pp. 31-37.

[15] RoshanJahan, PreetamSuman, Deepak Kumar Singh, An
Algorithm To Secure Data For Cloud Storage, IT in Industry,
Vol. 9, No.1, 2021, pp. 1382-1387.

[16] BrozolalMondol and Md. AshiqMahmood, An Efficient
Approach for Multiple User Data Security in Cloud
Computing, IEEE International Conference on Artificial
Intelligence and Smart Systems, 2021, pp. 1130-1135.

[17] Md. Abu Musa and Md. AshiqMahmood, Client-side
Cryptography Based Security for Cloud Computing System,
IEEE International Conference on Artificial Intelligence and
Smart Systems, 2021, pp. 594-600.

[18] Pronika and S. S. Tyagi, Secure Data Storage in Cloud using
Encryption Algorithm,IEEE International Conference on
Intelligent Communication Technologies and Virtual
Mobile Networks, 2021, pp. 136-141,

[19] Tahir, M., Sardaraz, M., Mehmood, Z. et al. CryptoGA: a
cryptosystem based on genetic algorithm for cloud data
security. Springer Cluster Computing, Volume 24, 2021, pp.
739–752.

[20] Adee, R.; Mouratidis, H. A, Dynamic Four-Step Data
SecurityModel for Data in Cloud ComputingBased on
Cryptography and Steganography, Sensors, 22, 1109, 2022,
pp. 1-23.

A. Fairosebanu received her M.Sc., (CS)
degree in Government Arts College
(Autonomous), Kumbakonam, India, in
2012. She also received her M.Phil. (CS)
degree in the Jamal Mohammed College

(Autonomous), Trichy, India, in 2013.
Now she is employed as an Assistant
Professor in PG & Research Department

of Computer Science, Idhaya College for Women,
Kumbakonam, India. In addition, she is pursuing a PhD
(Computer Science) in Government Arts and Science
College, Kumulur, Lalgudi, Trichy, India.

Dr. A. Nisha Jebaseeli completed her
PhD (Computer Science) at
Bharathidasan University in 2014. Now
she is employed as an Assistant
Professor and Head, PG & Research
Department of Computer Science,
Government Arts and Science College,
Kumulur, Lalgudi, Trichy, India. Now
she is guiding 5 PhD Scholars. She has

completed her M.Sc in Bishop Heber College, Trichy, India
and M.Tech in Bharathidasan University, Trichy, India. She
has 18 years of experience in Teaching and 5 years of
experience in Research.

.

