
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022 
 

 

89

Manuscript received May 5, 2022 
Manuscript revised May 20, 2022 
https://doi.org/10.22937/IJCSNS.2022.22.5.14 

 

Access Control Models for XML Databases in the Cloud 

Shumukh Alfaqir 1,  Saloua Hendaoui 2  Fatimah Alhablani 3 and Wesam Alenzi4 

 

Cyber Security Department College of computer science and information Al-Jouf University – Aljouf, Saudi Arabia 

 

 

Abstract  
Security is still a great concern to this day, albeit we have come a 
long way to mitigate its numerous threats. No-SQL databases are 
rapidly becoming the new database de-facto, as more and more 
apps are being developed every day. However, No-SQL databases 
security could be improved. In this paper, we discuss a way to 
improve the security of XML-based databases with the use of trust 
labels to be used as an access control model. 
Keywords:  
XML Databases, Cloud, Access Control Model, Privacy-
Preserving 

1. Introduction 

With the growth of the internet and the increase in the 
number of users using an application on the web and mobile, 
Cloud-Computing has emerged as a solution where 
computing and processing are no longer conducted locally. 
Companies and organizations both in governmental and 
private sectors have immigrated most of their businesses to 
the cloud, where it becomes more efficient, faster, and 
maintainable by cloud servers. Hence, the companies and 
organizations are no longer working on network issues and 
therefore, they are only focusing on managing their actual 
businesses.  

Access control models are models that are used for 
managing databases to control the access only to specific 
users who has certain privileges within a specific 
organization. For example, in a business company, the 
database must be only accessible by authorized users such 
as the business owner, the network administrators, and so 
on. Another example, in a hospital, where the medical 
databases can be accessed by authorized users such as 
patients, doctors, pharmacists, laboratories specialists, and 
so on. Therefore, the access model either allows or denies 
users from accessing the data. This is done through assuring 
three criteria as follows  
 
-Identification: when users claim their identity. 
- Authentication: when the claiming user gets 
authenticated as the real user. 
- Authorization: when the user is allowed to access 
the data. 
There are a lot of variations for access control models where 
it depends on the needs of the organization as well as the 
methodology used in the implementation. To name a few of 

the most famous access control models that have been 
recently studied: attribute-based access control model, role-
based access control model, where these access control 
models are considered fine-grained access control models 
that are customized with fine, strict, and exact details 
belonging to the authenticated users who are allowed to gain 
access to the database. [2] 

Extensible Markup Language - XML - databases have 
become the dominant type of databases being used on the 
cloud, due to their easy implementation. Yet it is very light 
with minimum storage space being consumed on the cloud. 
on the other hand, issues of security and privacy have 
emerged, where the cloud computing platforms are 
considered as untrusted media because it is physically 
existing outside the borders of the workplace of a company. 
Therefore, privacy-preserving access control to such data 
being stored on the cloud has become a must to ensure the 
security and the privacy of the data, as well as to ensure that 
the data must be only accessible by the authenticated real 
users i.e., the owner of the data. 
 
       There are two types of privacy violations over the cloud: 
 

- External threat: where attacks come from outside 
the network platforms as in common network 
attacks, such as Denial-of-Service. 

- Internal Threat: attacks from the operators 
working on the cloud platforms. To fight against 
such attacks, data being stored on the cloud are 
stored in an encrypted form to fight against the 
external network attacks, while the data being 
enquired from the XML databases while being 
encrypted, without the need for the data to be 
encrypted, this way the data is stored on the cloud 
is being protected against the internal attacks of the 
cloud platforms operators. [1] 

In this paper, the focus of using Access Control Models that 
will be used only on XML databases, where the next 
subsection defines XML databases and mention the 
featuring characteristics of using XML databases. 
 
1.1 XML Definition and Features  
 

XML stands for extensible Markup Language, the 
word Markup comes for using tags <> as marks, to mark up 
the stored data within the tag marks. The word Extensible 



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022 
 
 

 
 

90

comes from the fact that you can use tags marks in an 
unlimited manner, unlike when using the HTML where the 
used tags are pre-defined and limited. The aforementioned 
features have allowed the XML-Based Databases to be used 
for storing data and transferring data easily among 
networked platforms. The most important feature of XML 
is that it is readable by both machines and humans, this 
helps in reading, editing, and deleting XML records by 
programmers, as well as, transferring XML records among 
machines over the networks. [2]  

 
Lastly, XML is recently used in cloud computing 

environments due to its ease of implementation and 
distribution, yet it is a very practical way to model and 
organize data in a hierarchical way, which helps in adding 
more info to this hierarchy to add more characteristics such 
as adding additional features of security and privacy for the 
sake of sending and receiving data that are stored in the 
XML records privately and securely through cloud 
networks. These added security features are going to be the 
basis for building access control models to assure that the 
data are being only accessible and retrieved by authorized 
and authentic users as we shall see in the next section of the 
literature review.  

 
This remaining of this paper is going to be organized 

as follows, section 2 lists previous research works related to 
Access Control Models for XML- based cloud computing 
platforms. Section 3 introduces the proposed model. 
Section 4 states the problem to be solved. discussion and 
analysis, section 5 introduces the proposed methodology. 
section 6 gives details regarding testing the proposed model, 
section 7, gives details regarding conducting the  
performance analysis, section 8 concludes the paper. And 
finally, section 9 lists the references.  
 
 
2- LITERATURE REVIEW  
 

In [1], Z. Wu et al. have proposed a privacy protection 
approach for XML-Based Archive Management Systems in 
the cloud. Their contribution lies in introducing a trusted 
body as a middleware between the owner of the data to 
conduct encryption on the data, after that, when data are 
sent to be stored in XML databases on the cloud, the data is 
stored in an encrypted form, with featuring data being 
appended the data, these featuring data are going be used by 
the access control. Therefore, data being enquired, are 
enquired based on the featuring data, so the results of the 
queries get sent to the owner of the data, without the need 
to decrypt the data being stored in the cloud. By applying 
this storing methodology, the data that is being stored in 
XML databases are guaranteed to be private and secure.  
In [2], Norah F. has proposed a new methodology for 
relabeling the records in the XML databases. This is done 

by appending trust notations to the indexes of records in the 
XML database. These trust notations are used later by the 
access control model to grant access only for authenticated 
users.  
 

In [3], Samiya F. and Sridevi B have proposed a new 
privacy-preserving access control model for accessing 
medical images stored in (EHRS) Electronic Health 
Records System-based XML databases. Their proposed 
approach combines both homomorphic encryptions to store 
the data encrypted, and when sending queries, the access 
control model applies a multiparty computation for 
information retrieval privately and securely.  

 
Another work in the same field of EHRS is done in [4], 

where K. Seol et al. have proposed a new attribute-based 
access control for XML-Based EHRS. The proposed access 
control model ensures security and privacy by attaching 
attribute-data to the stored medical data, so that data are 
retrieved only to those authenticated users who have these 
attributes such as doctors, pharmacists, laboratory 
specialists, etc., this is to protect the medical data from 
internal attacks that might take place by the could service 
providers. In addition, XML encryption and XML digital 
signature are also applied when retrieving data from XML 
databases, this is to protect the data from external network 
attacks such as information infringement. 

 
In [6], M. Wang et al. have proposed a dynamic access 

control model for accessing data stored in XML databases 
where a scheme called privacy bipartite graph was included 
to provide a dynamic nature for authentic users to add, edit, 
and delete the data dynamically over cloud networks. Their 
proposed scheme aims to achieve protection against 
external network attacks such as reasoning attacks by using 
dynamic XML semantic encoding data to be used by the 
access model on behalf of only authorized users.  
In [8], L. Guo et al. have proposed a purpose-based access 
control that utilizes different structures for different users. 
To further accomplish applying a security layer on top of 
the XML database, Shamir’s secret sharing was applied. 
The experimentations were conducted using C++, and the 
performance analysis was conducted in terms of storage 
space and time consumed during requesting queries from 
the XML database.  
 
Table 1 summarizes the most relevant works being listed in 
the literature review section in terms of the methodology 
proposed and evaluation metrics being used.  



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022 
 

 
 

91

 
3- PROBLEM STATEMENT 
 

The problem with the current XML-based databases is 
that there is no practical way to secure access to the database 
records. Every party can have access to all records within 
the database. Some may try to achieve a considerable 
amount of security, but they either employ complex 
mechanisms or incur high storage and performance 
overhead. 

Several ways can be used to secure such databases, 
only of which we will be addressing in this project is a trust-
based hierarchy access control model. The idea is to assign 
trust level labels to certain nodes in the hierarchy, 
depending on which the access to the data in those nodes is 
restricted. This method is by far the best method that can be 
implemented in terms of time and storage complexities. 
Trust-based access control model has a constant time 
complexity since the database backend only checks the trust 
level of the node it is about to access. If the currently 
logged-in user has sufficient access level, they are granted 
the right to access the node they are trying to access, 
otherwise, they are rejected. There is no need to search for 
any value since the trust level label is stored as a simple 
XML attribute on the node to be secured. 

Storage complexity is constant as well. There is no 
need to add the trust level label to each child of the secured 
node, as the level is automatically inherited from parent 
nodes. If the parent node of any node has a higher trust level 
label value than its own, the trust level is automatically 
inherited by that node. For example, if there is a node called 
Users with a trust level of 99, each node of which will have 
at least a trust level of 99 regardless of what is the current 
value assigned to it. 

In this paper, we are going to propose a trust-based 
access control model that would be used to grant or deny 
the access of users to the XML databases. The idea of this 
proposed scheme would be achieved by proposing a trust 

labeling approach, which works by adding trust notations 
(some digits) to the records of the database (the nodes) that 
reflects the permissions related to the authorized users.  
For the performance analysis, it will be conducted in terms 
of time and storage being consumed.  
 
4- THE PROPOSED METHODOLOGY  
 

Our proposed solution is implemented using the 
popular programming language C++. the project is 
implemented using the 2017 standard of the language 
(C++17) because it offers more compile-time features (thus 
increasing the overall performance of the final project). The 
implementation uses the CMake build system as its build 
scripts generator. The reason we chose this software 
specifically is that it is cross-platform and can run on any 
platform. Another reason is that it is the most supported 
build system for C++ out there and is used by some of the 
biggest projects built with C++. 

The implementation splits the logic of the database 
into two parts. Each part has distinct responsibilities with 
separate boundaries. The backend is responsible for 
managing the database logic. It is responsible for every 
operation taking place in the database, including adding, 
deleting, updating, and setting trust levels on the database 
level. The other part is the database frontend, which is 
responsible for converting user instructions of different 
forms into understandable commands to delegate to the 
backend for execution. The reason we chose to split the 
project into two parts is that this makes the project much 
easier to reason about and makes the act of changing the 
codebase much simpler. 

The first part (and by far the most important) is the 
database backend. The backend has all of the logic that 
should take place in the database. The database backend is 
responsible for creating and manipulating the data in the 
database file. It is also responsible for maintaining security 
by maintaining the trust access control labels on the data it 

Paper Methodology proposed  Evaluation metrics 
[1] Appending data features to the data being used in an XML database,  

where the access control model uses these data features during 
sending queries when retrieving data.  

Security, Efficiency, and Accuracy. 

[2] Enhancing the labeling syntax in XML databases by adding trust 
notations into the labeling syntax. 

Efficiency, Flexibility, and Scalability

[3] Proposing an access control model that combines homomorphic 
encryption and secure multiparty computation. 

Security  

[4] Adding attributes to the stored data, to be used by attribute access 
control model, and using XML Encryption and XML Digital 
Signature.  

Efficiency, Security  

[6] Proposing a dynamic access control model by using privacy 
Bipartite graph with XML semantic encodings  

Security  

[7] Proposing a purpose-based access control that utilizes structure 
view, as well as Shamir’s Secret sharing for protection. 

Efficiency in terms of storage space 
and time consumed during query  

Table 1 ‐ Summary of Literature Review 



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022 
 
 

 
 

92

is operating on. The backend is also responsible for 
managing the database file opening, saving, and closing. 
To be able to interact with the database backend, the second 
part is the database frontend comes into place. This part is 
responsible for taking commands from the user regardless 
of its form (Command Line Interface- CLI or Graphical 
User Interface - GUI). The front-end takes the command 
from the user input source and converts them into a unified 
form to be passed to the frontend commands. The frontend 
implements the commands that are used to manipulate the 
data in the database, as well as querying the data. The 
current implementation only supports two forms of 
commands input methods: command-line arguments, and 
an interactive command-line shell. 

Firstly, the commands input method; the command 
line arguments method works by taking the command line 
arguments passed to the program when executing. The 
arguments are taken starting from the third argument (the 
first is the name of the executable file, and the second is the 
database file path) to the end of the arguments list. If there 
were only two arguments passed to the executable file, the 
second commands input method is used. 
While the first commands-input method is simple, it is not 
sufficient for executing more than one command. The 
second commands-input method, the Interactive Command-
Line shell. The shell runs more than one command in the 
lifetime of the program, unlike the command line arguments 
method (which executes only one command). This method 
works like any other shell by showing a prompt and taking 
input from the user in a loop. 
 
5- TESTING  
 

The first thing you see when you run the provided 
implementation is the ASCII Art logo, shown in Figure 1, 
and a message saying that you should run “desc” to see 
available commands.  

 

 Fig.1. The greeting screen  
 
The “desc” (which stands for describe) is a built-in 
command to show descriptions about the commands passed 
to it. This command has a special case when no arguments 
are passed to it, which is that the output will be the 
description of all of the available commands. 
Figure 2 shows a list of all available commands in the 
provided implementation. We shall discuss them one by one 
in the next sections. We will start with the basic read/write 
commands, such as “get”, “set”, “remove”, and “tree”. Then 
we will move to the security commands, namely “login” 
and “set_trust”. Finally, we will have a tour around the 
built-in shell commands, which are: “echo”, “usage”, 
“desc”.  
 
 
 
  

Fig.2.1 “desc” command output with no arguments passed 



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022 
 

 
 

93

5.1 First, Read/Write commands: 

 “Set” command 
The “set” command as shown in Figure 3 is one of the 

most basic commands found in the provided 
implementation. It is used to set values to keys passed to it 
as arguments. The command expects exactly two arguments, 
the first being the key which to set the value to, and the 
second is the value to be assigned to the provided key. The 
command will fail if the user does not have sufficient access 
to the node identified by the key passed to the command. 

Fig.3. “set” command examples 

 “Tree” command 
The “tree” command as shown in Figure 4 is the easiest 

way to visualize the database into a readable tree structure. 
It is the easiest of the two reading commands (the other 
being “get”). It takes an optional argument, which is the get 
which to print as a tree. If no argument is passed, the whole 
database is printed as a tree. 

 

 
Fig.4. “tree” command example 

We can notice that there is a node marked as 
“<protected>”. This node is the authentication information 
node in the database. It is hidden because the current access 
level is less than the required access level by that node 
(which is 101 – more than the default max by 1). This field 
can be shown if we use a user who has access to it, however; 
we will discuss this in the security commands section. 

 “GET” command 
The “get” command as shown in Figure 5 is used to get 

the value of a key passed to it. It accepts exactly one 
argument, which is the get which to show its value. The 
command will fail if the user does not have sufficient access 
to the node identified by the key passed to the command. 

 
Fig.5. “get” command example 

 “Remove” command 
The “remove” command is used to delete the data 

associated with the key passed to it. The command will fail 
if the user does not have sufficient access to the node 
identified by the key passed to the command. 

1.1 Second, Security commands: 

 “Login” command 
The “login” is used to authenticate a user to the 

provided database engine. There is one user in the system 
by default. The default user has the username “root” and the 
password “toor”. The “root” user has the highest access 
trust level of 101. The users’ information resides in the 
“xdb:Auth” node. The node contains nodes that represent 
users available on the system. This node is protected by an 
access label of 101 (meaning only the root user can access 
it).  

 

 
Fig.6. “login” command example 

 
The normal user cannot access the “xdb:Auth” node 
because it does not have a sufficient trust level. This can be 
observed in Figure 7. The first node in the database is 
marked as “<protected>”, meaning it is not possible to 
access it with the current access level. 
 

 
Fig.7. xdb:Auth node marked “<protected>” 
 
However, the root user can access that node because it has 
an access trust level of 101, which is the same as the 
required minimum trust level to access the “xdb:Auth” node. 
We can see in Figure 8 that after we logged in with the root 
user, the xdb:Auth node is now revealed when we execute 
the “tree” command. 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022 
 
 

 
 

94

 
Fig.8. xdb:Auth node revealed when logging in with the 
root user 
 
Because the root user can access the authentication node, it 
can also add other users by just using the “set” command 
with keys that are inside the “xdb:Auth” node. If logged in 
with the root user, we can set a child to the xdb:Auth node 
with the name of the new user we want to create. We can 
add another child in the created node with the name being 
“password” and the value is the password of the user. We 
can set the trust level of the created account by setting the 
“trust” child value to the value of trust level we want to give 
to the new user. In Figure 9, we will log in with a newly 
created user called “admin” with password “admin”, and 
trust level of 50. 
 

 
Fig.9. Logging in with a newly created user, “admin” 
 

 “set_trust” command 
We can set a minimum required trust level on individual 
nodes in the database using the “set_trust” command. This 
command accepts exactly two arguments. The first 
argument is the key on the node, which to set the minimum 
required trust level on, and the second is the new trust level 
value.  The command will fail if the user does not have 
sufficient access to the node identified by the key passed to 
the command. 
 

 
Fig.10. “set_trust” command example 
 
As shown in Figure 10, we log in with the user we created 
in the previous section. We log in by using the “login” 
command with the username and password is “admin”. We 
can see that we have been granted an access level of 50 
(which is the trust level of the user “admin”). We show the 
data in the database, and we can see that the data is 
accessible. Next, we increase the trust level of the node with 
the key “users.user_1” to 51 (1 above the current access 
trust level). We try to print the data in the database, but we 
get that the node “users.user_1” and its children are hidden. 
In the next command (Figure 11), we see that we cannot 
access that node by using the “get” command. 
 

 
Fig.11. Permission denied error when we use the “get” 
command  
 
BUILT-IN COMMANDS 

 “Echo” command 
The “Echo” command, as shown in Figure 12, is a simple 
test command to check if the program is working correctly. 
It accepts zero or more arguments and just prints them back 
to the user. 

 
Fig.12. “echo” command example 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022 
 

 
 

95

 “Usage” command 
“Usage” shows the usage of the command passed to it. It 
takes either one argument or none. If an argument is passed 
to the command, the usage of the command identified by 
the passed argument value is printed. If no arguments were 
passed, the usage of all of the available commands is shown. 

 
Fig.13. “usage” command example 
 
PERFORMANCE ANALYSIS 

We have added a command called “bench” to the 
system to benchmark the system executing commands on 
different system states. We will first benchmark the system 
with the security being enabled, then we will run the same 
benchmarks with the security being disabled. Finally, we 
will test the system after completely disabling the security 
from within the code. 
The specifications of the machine used to do the 
benchmarking: 

o CPU: Intel© Core™ i7 10850H (6 cores, 12 
threads) 

o RAM: 16GB DDR4 2933 
o Storage: Samsung© 970 EVO Plus 2TB 

PCIe3x4 M.2 SSD  
o GPU: NVIDIA© RTX 2070 Max-Q 8GB 

GDDR6 
Each benchmark consists of one million iterations of a “get” 
command. 
 With security enabled: 

o A protected node: 
 

 
Fig.14. Security enabled, protected node benchmark 

o A non-protected node: 
 

 
Fig.15. Security enabled, non-protected node benchmark 
 
In Figure 16, We disable the security in the code by 
changing the constant value from true to false in the file 
“include/xdb/constants.hpp”, then recompiling: 
 

 
Fig.16. Disabling security from the code 
  With security disabled: 

o A protected node: 
 

 
Fig.17. Security disabled, protected node benchmark 

o A non-protected node: 

 
Fig.18. Security disabled, non-protected node benchmark 
 
6.1 OBSERVATIONS 

The first benchmark as we can see in figure 14 that the 
“get” command takes about 3751 nanoseconds (about 3.7 
microseconds). The command is executed while the 
security is being enabled in the codebase, and the current 
access trust level is 50 (user “admin”), accessing the 
secured node “users.user_1.username”. This (theoretically) 
should be the slowest scenario in the benchmarks we have 
covered. The second benchmark as shown in Figure 15 
takes on average 3544ns (3.5 microseconds) to execute a get 
command. The command is executed while security is 
enabled, and the current access trust level is 50 (user 
“admin”), accessing the unsecured node 
“users.user_2.username”. This scenario runs 6% faster than 
the previous one because the node we accessed does not 
have a security label to be parsed and checked against. 
The third benchmark (Figure 17) runs with the security 
being disabled in the codebase. The test accesses a node 
with a security label. However, since security is disabled, 
the label is not checked, thus minimizing overhead incurred 
by parsing and comparing. This benchmark averages with 



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022 
 
 

 
 

96

3436 nanoseconds, being approximately 9% faster than the 
first benchmark, and 3.1% faster than the second. The last 
benchmark (Figure 18) runs with the security being disabled 
in the codebase. This benchmark should be the least time-
consuming benchmark since it does not have any security 
checks or security labels. This test averages 3282 
nanoseconds, being 13.6% faster than the first benchmark. 
We can conclude that the added security is worth 
implementing since there is no real performance hit when 
implemented in this project. The additional security makes 
the slight performance decrease acceptable for most cases. 
 
6.2 SPACE ANALYSIS 

As we mentioned in the first section, the space 
overhead of the proposed security implementation is almost 
negligible. The access trust level labels are only added to 
tags that are explicitly secured by the user. In the next 
figures, we show a copy of a database having the security 
tags on, and another with them being taken away.  
 

 
Fig.19. Security tags present 
 

 
Fig.20. Security tags are taken away 
 
 

Conclusion   
 

As we can see, there are no major space-wasting 
structures in the database implementation. The security 
labels take between 20 and 30 additional bytes by each 
secured node, which is negligible given how cheap storage 
is nowadays. This makes our security implementation 
completely feasible for almost every case that requires such 
a security mechanism. 
 
References   
[1] D. SERVOS and S. L. OSBORN, "Current Research and 

Open Problems in Attribute-Based Access Control," ACM 
Computing Surveys, vol. 49, no. 4, 2017.  

[2] Z. Wu, J. Xie, X. Lian and J. Pan, "A privacy protection 
approach for XML-based archives management in a cloud 
environment," The Electronic Library, vol. 37, no. 6, 2019. 

[3] V. Cridlig, R. State and O. Festor, "Secure XML-based 
Network Management in a Multi-source Context," 2006. 

[4] N. Farooqi, "Integrating Trust Notation in XML Database 
Labelling," International Journal of Computer and 
Information Technology, vol. 06, no. 03, 2017.  

[5] S. Firdous and S. B, "EFFICIENT SECURE AND NOVEL 
ACCESS CONTROL MODEL FOR XML-BASED 
EHRS," The International journal of analytical and 
experimental modal analysis, vol. XII, no. XII, pp. 549-
554, 2021.  

[6] K. SEOL, Y.-G. KIM, E. LEE1, Y.-D. SEO and A. D.-K. 
BAIK, "Privacy-Preserving Attribute-Based Access 
Control Model for XML-Based Electronic Health Record 
System," IEEE Access, vol. 6, pp. 9114 - 9128, 2018.  

[7] M. Wanga, S. Huangb, C. Zheng and H. Lib, "XML Privacy 
Preserving Model based on Dynamic Context," 
International Jourmal of performability Engineering , vol. 
14, no. 12, pp. 3206-3219, 2018.  

[8] L. Guoa, J. Wanga and H. Wub, "Application of Secret 
Sharing in XML Protection Mechanism," Procedia 
Computer Science, vol. 107, p. 21 – 26, 2017.  

 


