348 IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

A Hybrid Soft Computing Technique for Software Fault Prediction

based on Optimal Feature Extraction and Classification

A.Balaram’, and S.Vasundra?

1
Ph.D. Scholar, Department of CSE, INTUA University, Anantapur, Andhra Pradesh, India
balaram.balaram@gmail.com

2
Professor, Department of CSE, INTUA University, Anantapur, Andhra Pradesh, India
vasundras.cse@jntua.ac.in

Abstract

Software fault prediction is a method to compute fault in the
software sections using software properties which helps to
evaluate the quality of software in terms of cost and effort.
Recently, several software fault detection techniques have been
proposed to classifying faulty or non-faulty. However, for such
a person, and most studies have shown the power of predictive
errors in their own databases, the performance of the software is
not consistent. In this paper, we propose a hybrid soft computing
technique for SFP based on optimal feature extraction and
classification (HST-SFP). First, we introduce the bat induced
butterfly optimization (BBO) algorithm for optimal feature
selection among multiple features which compute the most
optimal features and remove unnecessary features. Second, we
develop a layered recurrent neural network (L-RNN) based
classifier for predict the software faults based on their features
which enhance the detection accuracy. Finally, the proposed
HST-SFP technique has the more effectiveness in some
sophisticated technical terms that outperform databases of
probability of detection, accuracy, probability of false alarms,
precision, ROC, F measure and AUC.

Keywords:

software fault, software modules, layered recurrent neural
network, hybrid soft computing, and optimal feature selection

1. Introduction

Software fault prediction (SFP) is typically used to predict
faults in software components.The complexity of the software
has already increased significantly in recent years, making it
almost impossible to detect all failures before moving on. The
global development of computer software led to advances in
computer engineering, artificial intelligence, medicine,
telecommunications, and image processing. If errors are later
detected in the software development cycle, the cost of proper
maintenance will increase significantly, so it is important to
introduce software testing procedures to detect software errors
in a timely manner [1]. Open source software systems are
becoming more and more important these days. Many large
companies invest in open source projects, most of which use this
type of software. As a result, many of these projects have grown
and developed rapidly [2]. However, the quality and reliability
of coding needs to be explored, as open source software is

Manuscript received May 5, 2022
Manuscript revised May 20, 2022

https://doi.org/10.22937 /IJCSNS.2022.22.5.50

usually developed outside of companies - mostly volunteers -
and the development method used is quite different from the
traditional methods used in business software development.
Different types of code scales can be very useful for getting
information about code quality and error correction [3][4].
Software testing activities play an important role in building
reliable systems and utilizing key resources including time and
cost. To increase the efficiency and effectiveness of the test
operations, we should develop a model for predicting which files
will have the highest density in the next version of the system
[5][6]. These files allow testers to predict attempts, quickly
detect errors, and give the rest of the system extra time to check.
Accompanying this list of obvious results are high quality
settings, low error settings, and programs. Misdiagnosis is an
important part of sample research and has been the subject of
many previous studies [7]. These studies typically develop error
prediction models that allow programmers to focus on error code
development measures, thereby improving software quality and
improving resources. Many published models of miscalculations
are complex and varied and do not provide a detailed picture of
current errors [8][9].

Predicting software errors based on digital modeling
techniques is attractive because the software system can select a
certain number of models that accurately reflect the error
generation process[10]. In addition, they have a unique feature
in the number of these models, which allows a certain number of
errors in a certain program module [11]. Numerical models can
be used to identify program modules, i.e. incorrect and incorrect
software. Identifying software modules that cause errors is an
important process as it helps to identify modules that need to be
restored or seriously tested [12]. This way can create more
qualified software products. Software error forecasting is a type
of software that uses significant forecast measurements and
historical error data to predict future scale effects [13][14]. By
considering software error forecasting methods, the project
schedule can be planned more efficiently, especially for
inspection and maintenance activities. Advantages of software
error assessment: Improves the testing process and thus
improves system quality. Using software error prediction at the
design stage, along with class-level measurements, helps to
select the best alternatives. SPF code will reduce the time and
effort spent in the review process [15] [16]. However, SFF does
not occur in the software development process because the
practical use of SFF is impractical. The measurement database
used for the final project is used to explore the machine-based
method during the testing phase and the training phase [17].

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022 349

Therefore, various studies have reached counter-intuitive
conclusions about the most basic and popular concepts of
software engineering [18][19]. Such studies should address the
importance of creating a comprehensive testing platform for the
scientific engineering community. However, these warnings
were clearly ignored. This indicates the lack of empirical
research to evaluate the effectiveness of different software
development and testing methods [20]. For further enhancement
in SPF, a hybrid soft computing technique is proposed using
optimal feature extraction and classification (HST-SFP).

The main contribution of proposed HST-SFP technique is given
as follows:

e First, we introduce the bat induced butterfly
optimization (BBO) algorithm for optimal feature
selection among multiple features which compute the
most optimal features and remove unnecessary
features.

e Second, we develop a layered recurrent neural
network (L-RNN) based classifier for predict the
software faults based on their features which enhance
the detection accuracy.

e Finally, the proposed HST-SFP technique has the
more effectivenessin some sophisticated technical
terms that outperform databases of probability of
detection, accuracy, probability of false alarms,
precision, ROC, F measure and AUC.

The rest of the article is organized as follows: Section 2 describes

the recent works associated to SFP and corresponding techniques.

And the problem methodology and system model of proposed
HST-SFP technique is described in the section 3.Then, Sect. 4
gives the working function of proposed HST-SFP technique with
the proper mathematical analysis. Then, the simulation results of
the proposed and existing methods are in the section 5. Finally,
the conclusion of the paper is explained in Sect. 6.

2. Related works

Rathore et.al [21] demonstrated a different group
evaluation method which Use the number of errors and the linear
combination rule and the non-linear combination rule total
policies. This review is designed and featured for various
software bugs. Data packets are collected from publicly
accessible databases. They used L (Pred(1)) level predictions and
an absolute scale to estimate the results. The evaluation of the
dimensions of the 1-level analysis and results of the overall
analysis confirm the effectiveness of the submitted system in
estimating the number of errors. Kumar et al., [22] proposed a
framework for identifying valid source code measurements with
the aim of verifying source code measurements and reducing
inappropriate performance and improving the performance of
the incorrect rating model. They present the correlation analysis
and the step-by-step multiplicative linear regression step wise
option to find the correct source code functions for the
computational error. The source code measurements obtained
are considered as the input for creating an error assessment
model using a neural network consisting of five different
learning methods and three different group methods. The
performance of the models can be evaluated using the proposed
cost estimation framework to assess product defects. Arshad et

al., [23] proposed the semi-supervised deep fuzzy c-mean
(DFCM) clustering for software error detection, which is a set of
semi-supervised DFCM clustering and feature summary
methods. The classification evaluates the maximum integrity
between the sample name attributes and the unnamed data, while
the sample is practiced in a quiet database from two deep points
of multiple groups and methods. Arshad et al., [24] proposed two
steps in the technical pre-processing software technical
empirical study of test error model data. In the initial phase, a
new feature based on C-fish clustering (TFCM) semi-supervised
extraction technology was proposed to create new features using
names that enhance the intra-cluster class using multiple deep
clusters of unnamed datasets. DFCM data pre-processing is
processed by locating and embedding the required information
in the data properties. The results show that the DFCM feature
data extraction technology is equivalent to the experimental
models of the test. Riaz et al., [25] proposed KNN sound filter,
which includes two-step pre-processing of data and an easy-to-
use KNN Easy Panel (RKEE) filter before implementation. The
feature is inappropriate for the ranking algorithm to remove
unwanted features. The second step is to cure KNN, which is
hard to understand, when he filters it out by removing everything.
Aziz et al., [26] proposed to explore how hereditary measures
can help predict the impact of software bugs. The model
structure uses artificial neural network (ANN) that uses accuracy,
recall, accuracy, F1 measurements, and true negative rate (TNR)
to measure performance. Comparisons and results show the
acceptable contribution of hereditary measurements to SFP. The
testing community can safely use traditional measurements to
predict software errors.

Further inheritance is not desirable as this may lead to
software errors. Li et al., [27] have proposed a three-way
network is a heavyweight network that integrates developer
contributions, block chains, and employee relationships with
developers and explores their integrated impact on program
quality. File network errors have four dimensions to predict net
bag volumes of partially blown software. In addition, existing
network software is considered to be one of the best ways to
better predict error. The contributions prevent the developer and
also the developer from creating collaborations that actually
predict two networks or intelligent software errors. Bal et al., [28]
proposed explored useful learning methods for precting how
many bugs the software has, for example the intensive learning
machine (ELM). A specific unbalanced learning model used 26
open source collateral software data sets, three prediction
scenarios, internal output, interpolation, and programming. They
conducted tests to predict the number of errors. Aziz et al., [29]
proposed to collecting, organizing, categorizing, and
investigating published fault prediction.The findings include 78
public databases containing 54 inheritance sizes and various
combinations of 10 inheritance sizes, 60% of system size usage
and personal database usage, and numerous studies using
machine learning approaches.

350 IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

Table 1 Research gap summary

Rell Dalasel used Classifier used Parameter improved
21 Number of faults data Linear regression based combination Error rate
rule (LRCR)
22 Software quality ANN Accuracy
23 classification model DFCM clustering Accuracy
24 Software quality DFCM clustering Accuracy
25 NASA and Eclipse KNN rule Aceuracy
26 CK metric dataset N-ANN TNR and TTR
27 Software quality Tri-relation network T measure
28 Number of software Weighted regularization extreme Accuracy
laults learming machine
29 Software mefrics SVM Acauracy
30 Imbalanced data problem Fnhanced binary moth lame Accuracy
31 NASA dataset ML-CNN TNR of CM1
32 Software defect Machine learning algorithm Precision

Tumaret al., [30] proposed Enhanced Binary Moth Flame
Optimization (EBMFO) with Adaptive Synthetic Sampling
(ADASYN) to predict SF. Here, BMFO is used for the
packaging feature of choice and ADASYN on the other hand,
database upgraded databases were launched and prayed for the
unbalanced. This paper describes the possibility of a continuous
binary version coming from two different groups, by changing
the functions to the recommended EPFMFO version. Al Qasem
et al., [31] proposed two deep learning algorithms MLPs and
CNN to tackle the issue which may affect the performance of
both methods. Haouari et al., [32] evaluated 8 immune systems
for software deficiency treatment in three different definitions,
so selected 41 databases associated with 11 Java programs. The
results of the Friedman and Nemenyipostgog tests, no algorithm
have been studied with a call size better than Immuno-1 and
Immuno 99. Wilcoxon test suggest that studies dealing with
internal project deficiencies should evaluate their modeling
conditions.

3. Problem methodology and System architecture
3.1 Research Gap

Yucalar et al. [33] developed defect predictors for software
quality engineers. It reduces software modules and software
effort required to better detect prediction errors. This study uses
the group algorithm to evaluate the effectiveness of software
error predictions. Proven results based on FM and AUC
operations can be used to predict group algorithms, especially
cyclic forest, with highly developed gaps. The ROF-MLP
combination does not perform better than the original ROF-J48
strategy, and incorrect alarm speeds can be asset. False alarm
speeds for VOT (MLP, NB and LR) decreased by 1.2%
compared to VOT (J48, NB and LR) and increased by 2.7% in
AUC. Due to the large amount of data available from the mining
software history collections, it is possible that the learning
algorithm may have erroneous features (measurements) that are
misleading and reduce its effectiveness. From [21]-[33], several
SFP models have since been proposed for troubleshooting multi-
object problems that predict and localize errors. These

dimensions directly affect the quality of much software.
Measurements of physical properties such as heredity,
polymorphism, and synthesis can be wused to assess
mispronunciation. Many researchers have studied the use of
object-based measurements in predicting software errors. Recent
studies have shown that machine learning techniques are
designed to accurately predict such defects. Meanwhile, the way
in which many independent learners are connected has proven in
many ways that individual models are better. To solve above
problems, we proposed HST-SFP technique which enhance the
detection accuracy and reduce FPR, FNR. The main objectives
of proposed HST-SFP technique are list as follows: to study and
analyze the several SFP techniques, preaching to improve the
performance and reliability of software fault appearance, to
study and analyze the several features for effective prediction,
propose novel optimal feature selection technique to improve the
prediction accuracy, introduce soft computing based classifier to
reduce FPR and FNR and evaluate proposed soft computing
based classifier with different benchmarks.

Fig. 1 System architecture of proposed HST-SFP technique

4. Hybrid soft computing technique for software fault

Software fault datasets
Data preprocessing

Feature extraction
Feature selection using BBO

algorithm

I

Fault classification using L-
RNN classifier

Ty cme

prediction (HST-SFP)

4.1 Feature selection using bat induced butterfly
optimization (BBO)

Feature selection is a preliminary process used to improve
product quality. FS is considered to be an integrated set of
optimizations aimed at finding the optimal subset of properties
in the original database that accurately reflects the original data.
There are two main stages in a typical FS process: (i) finding the
minimum reduction and (ii) evaluating the selected
characteristics. The main challenge is to find out if the best FS
still exists about the properties of the original data.
Providentially, FS is considered a search unit that represents a
subset of the attribute at each point of the search point. For this,
we applied a bat induced butterfly optimization (BBO) for
selecting the optimal feature and for removing unwanted data.

The first change is that we use a certain frequency and sound

instead of a different frequency g, In BBO, each bat is

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022 351

determined by its position y; , velocity U /T . The new solutions

T o T . .
Vi and velocities U/ ; attime step T are given by

Uj =U; " +(y; —»)g ()

@

The global best solution is referred as y*. In this g is equal to 0.5.
To increase demographic diversity the search performance is

improved by Eq. (3)

Yyew = ysTl + G(YSZ - ch) 3)

where G is the mutation weight factor, while s, , S, , Sy are

evenly divided into random numbers. The migration process can

be expressed as follows:
T+ T
yj,z = ysl,z (4)

T+1 . .
where Y iz zth denotes an element of Y atgeneration T+1 it
gives the position of King Butterfly i. Similarly,), , indicates

the zth newly formed stage of the monarch butterfly §, . T'is the

number of the current generation. Monarch butterfly S, is

approximately selected from the sub-population. Here, s can be

calculated as
s = Rand * Peri S
Peri indicates immigration period. Rand is a random number

obtained as a result of consolidated distribution. Or rather, if s>q,

the kth element in the butterfly is the newly formed king

T+1 T
yj,z = ys2,z (6)

where y;:l the newly formed phase of the monarch butterfly

is the return element S, . Monarch butterfly 72 is approximately

selected from the sub-population. If the generated probable
number q is less than or equal to q for all components of the

monarch butterfly, it can be updated as follows:
T+ _ .. T
yj,z - yBest,z (7)

T+l
where) j,: zth denotes an element of), at
generation T+1 gives the position of King Butterfly j.
.. T .
Similarly, Vg, . zth denotes an element of Y g, ., that is Best

King Butterfly in Land 1 and Land 2. T is the number of the
current generation. Or rather, if larger than the Rand P, it can be

upgraded
T+1 T
Vie = Vs ®)

T .
where YVss.z and zth denotes an element of) ;. In this case,

if it is Rand >BAR, it can be updated as follows
T+l T+1
Vie =¥, tax(dy,-0.5) ©

where it indicates butterfly adjustment speed. dyis the

according to the monarch butterfly i Levy calculate this by flight.
dy = Levy(y/) (10)

In Eq. (9), a is the expectation factor is given as Eq. (11)
a=R,, /T (11)

The working function of algorithm 1 represents the function of
the BBO.

Algorithm 1 Optimal feature selection using bat induced

butterfly optimization

352 IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

Input : Velocity
Output : Weight factor

1 Initialize the parameters

2 Compute the new solutions
T _yr7T-1 T _
Uy =U; " +(y; —».)g
3 Improve the performance using

Yew :ysTl +G(Ys€ _Ysg)

4 Compute the migration process using
T+ _ T
Yy jz T Yy sl,z
5 Determine the new population using
T+ _ T
y .z y 52,z
6 Upgrade the position of the butterfly
7 Calculate the levy flight using

dy = Levy(y;)
8 End

4.2 Software fault prediction using LRNN classifier

After feature selection, the data are classified based on
optimal features. The features are classified using LRNN which
enhances the detection accuracy. The LRNN is a pre-defined
number for the number of iterations of the sample, for updated
estimates, which can be repeated using experimental data. When
the algorithm gets the results of the best value and maximum
number of repetitions, then the algorithm is stopped. Otherwise,
it starts a new iteration. Simple network weight repeats and
propagates through the layer of rusty passengers and in the
previous position to implement recurring extra weight additions,
Vv,

x,(T)= g(NET,(T)) (12)

NET;‘(T): zyj(T)uij +0, (13)
J

where n denotes the number of ’state’ nodes and for / output

nodes the i and g are hidden, and J indicates for input nodes. In

the feeder network, the input vector, y, is applied using a weight
layer U. The output of the network is determined by the

condition and the output weight sets Z,

x,(T)= g(NET,(T)) (14)

NET[(T)= Zyj(T)uij +th(T_1)Vih +0,
; [
(15)

The g represents an output function. Everywhere training LRNN
good historical reason 50 processes have been successfully
applied to an image in complex domain lion, and software
running exit prediction degree. LRNN can solve all problems in
all the right ways with weight dynamic memory LRNN. It is time
to copy the data stored in the LRNN. Basically, in the form of a
learning process, the changes above the LRNN apply to a link or
link-feeding feedback. In addition, the school neurological
network is similar to the standard practice of LRNN, but with a
slight twist. This requires a calculation of the output, not just the
current time hierarchy, but one step per season. For this reason,
the output takes place through the lymph nodes or any other or
repetitive response of the network. He memorized the feedback
node values from the previous level. So the new input output data

depends on the current and previous ones. Here, LRNN time T.
An input sequence is given as K = (Kl e K T), the fixed
LRNN is calculated as a hidden vector array
Q = (Ql ,...,QT) and vector sequence output is
X = (Xl ,...,XT)by below equations,

O, = g(ZhKKT +ZQQQT—1 +aQ) (16)

x, =g(Z2,0, +a,) a7

Here, an activation function (sigmoid function) is denoted as
g().As a result, it is necessary to determine the required output

and cost function E of the network.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022 353

Algorithm 2 Fault prediction using LRNN classifier

Input : Number of nodes and vectors

Output : Cost function

1 Initialize the values for the input

2 Determine the weight of the network

NET[(T):Zyj(T)”ij +0[
J

3 Calculate the output function of the network

NET;‘(T):Zyj(T)uij +Z'xh(T_1)vih —1—6?‘
I i

4 Calculate the fixed LRNN fir hidden vectors,
Or = g(ZhKKT + ZQQQT—I + aQ)

5 Compute the general cost function

6 Compute the cost function of the network,

e ;ilm(T)[a(T)-%(T)]z

7 End

The waveform flow rate function in the package of training is
defined as the amount of the output and errors in the output of

the E form:

For j i neuron, the expected output is indicated as gv j and the
weighting coefficient of learning error is represented as n;-

Then, LRNN real output is referred as 0. The cost function is

E :ZZ%(T)[Q‘(T)_OJ'(T)]Z +(1_7)ZZZ/2'1‘
(19)

The regulatory parameter » controls how well the execution of

the penalty period takes effect. The regulation of the parameter

¥ controls the operation of how much they own for the period

he owns the sentence. The reduction is depending on the slope

according to the formula,

& Syl L -,

(20)

The algorithm 2 represents classification of software prediction
using LRNN.

5. Results and Discussion

In this section, we evaluate the performance of proposed
hybrid soft computing technique for software fault prediction
(HST-SFP). The proposed HST-SFP technique is implemented
using Spyder (Python 3.7) with different libraries. The computer
runs Windows 10, has 2 GB of RAM and an Intel i3 core
processor. We used the 10-fold-cross validation through all
experiments. We compare the performance of proposed LRNN
classifier with existing state-of-art ensemble classifiers are
AdaboostM1 (El), Logic Boost (E2), Multiboost AB (E3),
Bagging (E4), Random Forest (ES), Dagging (E6), Rotation
Forest (E7), Stacking (E8), Multi scheme (E9) and Voting (E10).
Because we often have public databases for the use of Turkish,
white and workers' products, NASA has introduced programs,
software programs, processes and applications from the open
source applications of Apache. The description of dataset is
given in Table 1. The performance of proposed LRNN classifier
is evaluate through frequently used performance metrics are PD,
PF, accuracy (A), precession (P), F-measure (F) and AUC. The
detailed description of performance metrics define as follows:

TP

D :—T" Jar @n
+
FP

PF (22)

354 IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

T? +T"
= (23)
T +T"+F? + F"
TP
= (24)
T? + F*
Fo 2x PDx P 25)
PD+P

where TP, T", FP and F" defines the True Positive, True Negative,

False Positive and FalseNegative.
Table 1 Dataset description
Troject name Number of atributes Number of modules Number of groups,
s eSS e i
aré 29 101 1
cml 21 498 2
jml 21 10885 2
kel 95 145 2
me2 40 161 2
Pcl 21 1109 2
Pc3 21 1563 2
Interface 23 27 3
ivy2 0 23 352 3
jedit 4 3 23 538 3
lucene 2 4 23 341 3
Serapion 23 a7 3
tomcat 23 855 3
workflow 21 427 3
Table 2 Probabilry ofdereerion companson of proposed and evising techniques
Darasets Exictng ensenpleclasifers Proposed clssifer

BB B M E K EF K B E0 IRW

s 04790 681 310 669 9% BT MI o690 859 8T
i 06 01 WY NS N4 HT M) 6 N 85 86
ol B8 84 B3 K2 86 BT WY a6 e Wy 419

jnt BH Tl B OWL WS MY M2 W02 B0 ey 4
kel 36 ML 918 ML MY W4 @6 869 %0 M5 %03
e B 0 MT 669 h) 8B4 626 ol TSI B 8
Rl 94 929 807 4 64 B6 M OTRE 6RT A5 8RS
R 864 M6 MY B0 M0 M6 %Y B 4 N5 Wl

inlercale By OB R4 63 RET MY 6D MY 69 M2 909
il 0 M3 O860 84 M9 6 86T WE A9 94 686 9IS
jeit 43 mhT WA TR T96 ME 918 MY RTR G 913
heee 24 658 661 MO 664 B0 M AT GR6 G652 04
Ripion 80284 ™Y N0 B8 BI BT 26 MY By 908
toment 86810 8T 8T B2 M4 MOOM OB M1 RO
warkllow 66 664 My L1 %D Tel WA 9 664 AT
Average W4 808 08 M6 e T0 W3 e WA T B9

5.1 Comparative analysis for Probability of detection

Table 2 describes the probability of detection comparison of
proposed LRNN predictors and existing state-of-art ensemble
predictors are AdaboostM1 (E1), Logic Boost (E2), Multiboost
AB (E3), Bagging (E4), Random Forest (ES), Dagging (E6),
Rotation Forest (E7), Stacking (E8), Multi scheme (E9) and
Voting (E10). From the Table, we observe that the detection
probability of proposed LRNN predictor is very high compare to
the existing ensemble predictors. Fig. 2 shows the average
detection probability comparison of proposed and existing
predictors. It is represents the average detection probability of
projected LRNN predictor is 10.5%, 10.1%, 21.2%, 11.4%,
12.5%, 19.9%, 12.9%, 14.9%, 18% and 12.8% higher than the
existing state-of-art ensemble predictors are E1, E2, E3, E4, ES,
Eo6, E7, E8, E9 and E10 respectively.

5.2 Comparative analysis for Probability of false alarm
Table 3 describes the probability of false alarm comparison of
proposed LRNN predictors and existing state-of-art ensemble
predictors are AdaboostM1 (E1), Logic Boost (E2), Multiboost
AB (E3), Bagging (E4), Random Forest (ES), Dagging (E6),
Rotation Forest (E7), Stacking (E8), Multi scheme (E9) and
Voting (E10). From the Table, we observe that the probability of
false alarm of proposed LRNN predictor is very high compare to
the existing ensemble predictors. Fig. 3 shows the average
probability of false alarm comparison of proposed and existing
predictors. It is clearly depicts the average probability of false
alarm of proposed LRNN predictor is 11.49%, 11.4%, 21.1%,
21.8%, 1 0.74% , 11.9%, 10.24%, 11.23%, 21.19% and 11.8%
higher than the existing state-of-art ensemble predictors are E1,
E2, E3, E4, ES, E6, E7, E8, E9 and E10 respectively.

5.3 Comparative analysis for Accuracy

Table 4 describes the accuracy comparison of proposed LRNN
predictors and existing state-of-art ensemble predictors are
AdaboostM1 (E1), Logic Boost (E2), Multiboost AB (E3),
Bagging (E4), Random Forest (E5), Dagging (E6), Rotation
Forest (E7), Stacking (E8), Multi scheme (E9) and Voting (E10).
From the Table, we observe that the accuracy of proposed LRNN
predictor is very high compare to the existing ensemble
predictors. Fig. 4 shows the average accuracy comparison of
proposed and existing predictors. It is denotes the average
accuracy of specified LRNN predictor are 16.28%, 10.19%,
19.07%, 19.4%, 18.05%, 16.64%, 19.4%, 11.1%, 13.5% and
20.8% higher than the existing state-of-art ensemble predictors
are E1, E2, E3, E4, ES, E6, E7, E8, E9 and E10 respectively.

Avg. Probability of detection (%)

AB BG DG MAB LB ROF ST RF MS VOT LRNN
Classifiers

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022 355

Fig. 2 Comparison probability of detection for proposed and
existing detectors

Avg. Probability of false alarm (%)

AB BG DG MAB LB ROF ST RF MS VOT LRNN
Classifiers

Fig. 3 Comparison probability of false alarm for proposed and
existing detectors

‘Table 3Probability of false alarm comparison of proposed and existing techniques

Datasets Existing ensample classifiers Proposed classifier
F1 F2 F3 R4 ES E6 __F7__E8 _E9 FEI0__ TRNN
ais 728 641 771 876 681 626 864 97 876 728 693
ar6 786 786 918 765 783 702 859 49 765 783 718
eml 918 918 780 849 855 869 845 86 849 852 709
jm1 547 9L8 908 28 732 641 726 918 806 7.1 0.0
kel 897 669 918 783 918 786 658 547 858 918 689
me2 849 924 669 852 669 91§ 802 97 756 780 68§
Pel 784 876 924 771 924 547 886 849 936 908 693
P 6.9 765 §7.6 918 §7.6 8.7 666 784 667 8.7 6.9
intercafe 924 869 765 780 765 849 824 876 914 849 701
ivy2_0 864 641 7RG 908 849 R4 806 765 897 667 683
jedit 4.3 859 786 918 918 762 824 858 349 849 914 694
Tucene 2 4 845 918 S47 669 702 806 756 824 876 864 698
scrapion 726 547 897 924 869 858 936 06 765 743 708
tomeat 658 669 49 8.6 6Ll 756 667 858 89 7.0 703
workflow 802 924 784 765 921 936 914 729 98 93 G99
Average 790 790 82 825 796 786 804 812 ¥2 302 6938
Table 4Accuracy comparison of proposed and existing techniques
Datasets Existing ensample classitiers Proposed classifier
£l F2 E3 B4 ES T6 _ET 8 E9 El0_ LRNN
ars 852 810 693 G669 G4l 728 667 789 707 G613 975
ar6 770 38 924 786 783 914 8§52 S0 655 973
eml 918 852 876 918 852 864 771 644 689 976
jm1 780 782 765 9Ls 7.1 728 918 638 625 988
kel 198 728 770 819 669 918 783 T80 753 S66 979
728 783 918 762 728 753 852 653 838 819 987
783 852 780 664 783 669 771 728 852 688 969
852 771 908 852 852 924 918 783 782 914 971
771 918 641 771 771 876 TR0 852 728 864 965
918 852 786 918 918 765 08 771 611 819 973
Jedit1_3 780 771 918 780 780 849 611 918 K19 688 962
Incene_2_4 908 918 918 810 667 762 786 Ol8 688 694 964
serapion 667 780 669 838 914 664 918 780 694 ISl 974
tomeat 914 716 918 852 %64 T30 9L8 9L U1 T80 97.3
workflow 864 853 780 782 728 693 669 O0l8 541 810 975
Average 780 814 804 807 795 783 807 823 705 731 974

5.4 Comparative analysis for Precession

Table 5 describes the precession comparison of proposed LRNN
predictors and existing state-of-art ensemble predictors are
AdaboostM1 (E1), Logic Boost (E2), Multiboost AB (E3),
Bagging (E4), Random Forest (ES), Dagging (E6), Rotation
Forest (E7), Stacking (E8), Multi scheme (E9) and Voting (E10).
From the Table, we observe that the precession of proposed
LRNN predictor is very high compare to the existing ensemble
predictors. Fig. 5 shows the average precession comparison of
proposed and existing predictors. It describes the average
precession of projected LRNN predictor is 18.68%, 30.03%,
25.58%, 19.68%, 17.61%, 13.68%, 50.83%, 17.57%, 26.69%
and 17.13% higher than the existing state-of-art ensemble

predictors are E1, E2, E3, E4, ES, E6, E7, ES, E9 and E10
respectively.

Avg. Accuracy (%)

AB BG DG MAB LB ROF ST RF MS VOT LRNN
Classifiers

Fig. 4 Comparison accuracy for proposed and existing detectors
5.5 Comparative analysis for F-measure

Table 6 describes the F-measure comparison of proposed LRNN
predictors and existing state-of-art ensemble predictors are
AdaboostM1 (E1), Logic Boost (E2), Multiboost AB (E3),
Bagging (E4), Random Forest (ES), Dagging (E6), Rotation
Forest (E7), Stacking (E8), Multi scheme (E9) and Voting (E10).
From the Table, we observe that the precession of proposed
LRNN F-measure is very high compare to the existing ensemble
predictors. Fig. 6 shows the average F-measure comparison of
proposed and existing predictors. It describes the average
precession of projected LRNN predictor is 12.5%, 15.35%,
10.90%, 14.57%, 10.56%, 10.12%, 21.46%, 11.54%, 12.2% and
10.45% higher than the existing state-of-art ensemble predictors
are E1, E2, E3, E4, ES, E6, E7, E8, E9 and E10 respectively.

Avg. Precession (%)

AB BG DG MAB LB ROF ST RF MS VOT LRNN
Classifiers

Fig. 5 Comparison precession of detection for proposed and
existing detectors

5.6 Comparative analysis for Area under curve

Table 7 describes the area under curve comparison of proposed
LRNN predictors and existing state-of-art ensemble predictors
are AdaboostM1 (E1), Logic Boost (E2), Multiboost AB (E3),
Bagging (E4), Random Forest (ES), Dagging (E6), Rotation
Forest (E7), Stacking (E8), Multi scheme (E9) and Voting (E10).
From the Table, we observe that the area under curve of
proposed LRNN F-measure is very high compare to the existing
ensemble predictors. Fig. 6 shows the average area under curve
comparison of proposed and existing predictors. It describes the
average precession of projected LRNN predictor is 11.67%,
12.34%, 17.04%, 14.12%, 17.13%, 16.12%, 15.46%, 36.9%,
26.06% and 36.72% higher than the existing state-of-art

356 IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

ensemble predictors are E1, E2, E3, E4, E5, E6, E7, E8, E9 and
E10 respectively.

‘Table SPiecession comparison of proposed and existing techniques

Datascs Existing ensample classifiers Proposcd classifier
El E2 E3 E4 ES E6 E7 E8 E9 EI0 LRNN
ars 853 66.9 80.4 859 805 725 859 674 767 49.1 959
ab 673 9241 593 827 705 889 £6.5 655 191 391 95.6
cml 771 87.6 24 652 818 615 700 843 39.1 480 963
jml 7.9 76.5 7.3 742 787 805 8.8 819 480 486 96.4
kel 87.0 849 673 820 632 713 725 761 486 499 969
me2 7440 85.3 771 673 740 674 8.9 76.7 49.9 80.5 97.1
Pl 85.9 673 729 771 674 853 615 491 673 713 958
Pc3 8.7 771 87.0 729 655 673 €0.5 391 771 674 96.3
intercafe 65.2 729 7140 870 813 771 713 480 729 853 96.5
ivy2 0 742 87.0 859 744 819 729 674 486 87.0 767 96.7
Jedit 1.3 82.0 7140 827 859 761 87.0 65.5 199 714 191 973
Tucene 2 4 93.6 86.0 65.2 827 767 793 843 174 859 391 972
scrapion 66.7 752 81.8 652 674 859 819 497 827 480 96.5
tomcat 91.4 68.1 8.7 742 655 563 6.1 49.1 652 48.6 96.4
workflow 86.4 80.4 63.2 820 843 782 79.2 487 739 499 97.0
Average 794 788 74.6 772 745 754 760 567 66.5 56.7 96.5

Table 6F-measure comparison of proposed and existing techniques

Datasets Existing ensample classifiers Proposed classifier
El E2 E3 E4 ES E6 E7 E8 E9 EI0 LRNN
ars 801 728 883 778 824 790 681 81O 701 864 T42
a6 765 783 806 794 806 8.1 783 838 810 824 856
cml 85.5 852 853 853 858 854 855 852 863 850 834
jml 727 7 T30 756 6l T2 782 790 767 T8I
kel 920 918 836 936 936 941 918 941 904 91T 854
me2 655 780 688 699 667 690 547 669 634 L6 T34
Pel 897 908 987 898 914 929 897 924 9Ll 913 843
Pc3 819 855 813 89 864 866 849 .6 869 8.8 85
intercafe 859 784 784 830 859 830 T84 765 859 859 869
ivy2.0 842 833 860 835 845 860 834 849 854 865 885
Jjedit 4 3 68.6 74.1 69.1 682 726 752 336 762 725 700 878
lucene 24 626 446 696 639 658 681 446 664 696 688 856
serapion 702 711 839 800 802 804 T49 700 832 725 893
tomeat 869 867 881 867 886 .9 867 867 8.6 889 8.7
workflow 641 464 631 615 666 664 348 641 535 615 873
Average 786 761 801 768 804 808 706 796 789 805 829

‘Table 7AUC comparison of proposed and existing techniques

Datascts Existing ensample classificrs Proposed classificr
El E2 E3 B4 ES E6 E7 E8 E9 EI0 IRWN
ars 808 795 844 790 804 853 366 777 707 786 712
aré 588 687 69.3 499 593 673 402 639 507 656 724
cml 700 734 551 712 724 TI1 490 7236 644 T4l 736
jml 70 T4 51T 689 713 M9 M1 TL8 68 721 89
kel 755 n7 79.1 688 674 870 391 812 753 757 86.6
me2 5901 691 681 634 655 7440 480 699 613 758 869
Pel 803 827 569 748 813 859 486 813 655 812 878
Pc3 782 820 548 93 8L9 87 499 7T 689 M2 8554
intercafe 761 174 554 707 761 652 174 658 625 565 836
ivy2 0 873 499 676 807 767 742 497 769 566 765 849
jedit 4.3 801 819 767 793 805 820 491 833 819 806 859
cene 24 664 502 A5 685 705 767 487 T2 688 866 867
serapion 818 423 835 887 818 849 414 78T 694 73T 839
tomeat 777 50.1 62.6 709 787 8Ll 48.6 781 751 81O 8.8
workflow 643 508 642 645 632 687 476 624 54l 665 769
Average T 629 669 722 40 776 442 Al 659 45 867

g

Avg. F-measure (%)
&

AB BG DG MAB LB ROF ST RF MS VOT LRNN
Classifiers

Fig. 6 Comparison F-measure for proposed and existing
detectors

Avg. Area Under Curve (%)

AB BG DG MAB LB ROF ST RF MS VOT LRNN
Classifiers

Fig. 7 Comparison AUC for proposed and existing detectors

6. Conclusion

Background: We have proposed a hybrid soft computing
technique for SFP based on optimal feature extraction and
classification (HST-SFP). Contributions: A bat induced
butterfly optimization (BBO) algorithm for optimal feature
selection among multiple features which compute the most
optimal features and remove unnecessary features. A Layered
Recurrent Neural Network (L-RNN) based classifier is used to
predict the software faults based on their features which enhance
the detection accuracy. Findings: The average detection
probability of proposed LRNN detector is 14.42% higher than
the existing state-of-art detectors. The average probability of
false alarm of proposed LRNN detector is 14.49% higher than
the existing state-of-art detectors. The average accuracy of
proposed LRNN detector is 16.54% higher than the existing
state-of-art detectors. The average precession of proposed
LRNN detector is 23.76% higher than the existing state-of-art
detectors. The average F-measure of proposed LRNN detector is
12.97% higher than the existing state-of-art detectors. The
average precession of proposed LRNN detector is 20.35% higher
than the existing state-of-art detectors. Summary: From
simulation results, we observe the proposed HST-SFP technique
has the more effectiveness exceeds any sophisticated
technologies for databases in terms of Probability of Detection,
Probability of False Alarms, Accuracy, Precision, F- Measure,
and AUC.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022 357

Acknowledgment

Authors thank, Dr.C,Shoba bindu (Director ,R&D) JNT
University Anantapuramu for providing a assistance to establish
working environment in the lab to carry out my present research.

References

(1]

(4]

(5]

[9]

[10]

(1]

[12]

[13]
[14]

[15]

[16]

[17]

Dejaeger, K., Verbraken, T. and Baesens, B., 2012. Toward
comprehensible software fault prediction models using bayesian
network classifiers. [EEE ~ Transactions — on Software
Engineering, 39(2), pp.237-257.

Gyimothy, T., Ferenc, R. and Siket, I., 2005. Empirical validation
of object-oriented metrics on open source software for fault
prediction. [EEE Transactions on Software engineering, 31(10),
pp.897-910.

Ostrand, T.J., Weyuker, E.J. and Bell, R.M., 2005. Predicting the
location and number of faults in large software systems. /EEE
Transactions on Software Engineering, 31(4), pp.340-355.

Hall, T., Beecham, S., Bowes, D., Gray, D. and Counsell, S., 2011.
A systematic literature review on fault prediction performance in
software engineering. [EEE Transactions — on Software
Engineering, 38(6), pp.1276-1304.

Moeyersoms, J., de Fortuny, E.J., Dejaeger, K., Baesens, B. and
Martens, D., 2015. Comprehensible software fault and effort
prediction: A data mining approach. Journal of Systems and
Software, 100, pp.80-90.

Jin, C. and Jin, S.W., 2015. Prediction approach of software fault-
proneness based on hybrid artificial neural network and quantum
particle swarm optimization. Applied Soft Computing, 35, pp.717-
725.

Catal, C. and Diri, B., 2009. Investigating the effect of dataset size,
metrics sets, and feature selection techniques on software fault
prediction problem. Information Sciences, 179(8), pp.1040-1058.
Malhotra, R., 2015. A systematic review of machine learning
techniques for software fault prediction. Applied Soft
Computing, 27, pp.504-518

Mahajan, R., Gupta, S.K. and Bedi, R.K., 2015. Design of software
fault prediction model using BR technique. Procedia Computer
Science, 46, pp.849-858.

Rathore, S.S. and Kumar, S., 2015. Predicting number of faults in
software system using genetic programming. Procedia Computer
Science, 62, pp.303-311.

Arar, O.F. and Ayan, K., 2016. Deriving thresholds of software
metrics to predict faults on open source software: Replicated case
studies. Expert Systems with Applications, 61, pp.106-121.
Chatterjee, S. and Roy, A., 2014. Web software fault prediction
under fuzzy environment using MODULO-M multivariate
overlapping fuzzy clustering algorithm and newly proposed
revised prediction algorithm. Applied Soft Computing, 22, pp.372-
396.

Vandecruys, O., Martens, D.,

Baesens, B., Mues, C., De Backer, M. and Haesen, R., 2008.
Mining software repositories for comprehensible software fault
prediction models. Journal of Systems and software, 81(5),
pp-823-839.

Binkley, D., Feild, H., Lawrie, D. and Pighin, M., 2009. Increasing
diversity: Natural language measures for software fault
prediction. Journal of Systems and Software, 82(11), pp.1793-
1803.

Hu, Q.P., Xie, M., Ng, S.H. and Levitin, G., 2007. Robust recurrent
neural network modeling for software fault detection and
correction prediction. Reliability ~ Engineering & System
Safety, 92(3), pp.332-340.

Zhao, Y., Yang, Y., Lu, H., Zhou, Y., Song, Q. and Xu, B., 2015.
An empirical analysis of package-modularization metrics:

[18]

[19]

[20]

[21

—

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Implications for software fault-proneness. Information and
Software Technology, 57, pp.186-203.

Gao, K. and Khoshgoftaar, T.M., 2007. A comprehensive
empirical study of count models for software fault prediction. IEEE
Transactions on Reliability, 56(2), pp.223-236.

Erturk, E. and Sezer, E.A., 2015. A comparison of some soft
computing methods for software fault prediction. Expert systems
with applications, 42(4), pp.1872-1879.

Erturk, E. and Sezer, E.A., 2016. Iterative software fault prediction
with a hybrid approach. Applied Soft Computing, 49, pp.1020-
1033.

Fenton, N.E. and Ohlsson, N., 2000. Quantitative analysis of faults
and failures in a complex software system. IEEE Transactions on
Software engineering, 26(8), pp.797-814.

Rathore, S.S. and Kumar, S., 2017. Towards an ensemble based
system for predicting the number of software faults. Expert
Systems with Applications, 82, pp.357-382.

Kumar, L., Misra, S. and Rath, S.K., 2017. An empirical analysis
of the effectiveness of software metrics and fault prediction model
for identifying faulty classes. Computer standards & interfaces, 53,
pp.1-32.

Arshad, A., Riaz, S., Jiao, L. and Murthy, A., 2018. Semi-
supervised deep fuzzy c-mean clustering for software fault
prediction. IEEE Access, 6, pp.25675-25685.

Arshad, A., Riaz, S., Jiao, L. and Murthy, A., 2018. The empirical
study of semi-supervised deep fuzzy c-mean clustering for
software fault prediction. [EEE Access, 6, pp.47047-47061.

Riaz, S., Arshad, A. and Jiao, L., 2018. Rough noise-filtered easy
ensemble for software fault prediction. leee Access, 6, pp.46886-
46899.

Aziz, S.R., Khan, T. and Nadeem, A., 2019. Experimental
validation of inheritance Metrics’ impact on software fault
prediction. [EEE Access, 7, pp.85262-85275.

Li, Y., Wong, W.E., Lee, S.Y. and Wotawa, F., 2019. Using Tri-
Relation Networks for Effective Software Fault-Proneness
Prediction. IEEE Access, 7, pp.63066-63080.

Bal, P.R. and Kumar, S., 2020. WR-ELM: Weighted
Regularization Extreme Learning Machine for Imbalance Learning
in Software Fault Prediction. [EEE Transactions on
Reliability, 69(4), pp.1355-1375.

Aziz, S.R., Khan, T.A. and Nadeem, A., 2020. Efficacy of
Inheritance Aspect in Software Fault Prediction—A Survey
Paper. [EEE Access, 8, pp.170548-170567.

Tumar, I., Hassouneh, Y., Turabieh, H. and Thaher, T., 2020.
Enhanced binary moth flame optimization as a feature selection
algorithm to predict software fault prediction. [EEE Access, 8,
pp-8041-8055.

Al Qasem, O., Akour, M. and Alenezi, M., 2020. The influence of
deep learning algorithms factors in software fault prediction. /EEE
Access, 8, pp.63945-63960.

Haouari, A.T., Souici-Meslati, L., Atil, F. and Meslati, D., 2020.
Empirical comparison and evaluation of Artificial Immune
Systems in inter-release software fault prediction. Applied Soft
Computing, 96, p.106686.

Yucalar, F., Ozcift, A., Borandag, E. and Kilinc, D., 2020.
Multiple-classifiers in software quality engineering: Combining
predictors to improve software fault prediction ability. Engineering
Science and Technology, an International Journal, 23(4), pp.938-
950.

358 IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

Mr. A. Balaram working as
Associate Professor in the Dept.
of Computer Science and
Engineering, CMR Institute of
Technology, Hyderabad. He
Obtained his M. Tech from
JNTUA University and B. Tech
from JNTUH University India.
Pursuing Ph.D. in JNTUA
University Anantapur. He has more than 15 years of
teaching experience He has published 22 international
Journals, 9 conferences and 1 book chapter. And having
two patents. His research interests are Software
Engineering, Network Security and Cryptography,
Machine Learning, Cloud Computing.

Dr.S.Vasundra, Professor of
Department of Computer
Science and Engineering and
NSS Coordinator, INT
University, Anantapuramu.She
obtained her M.Techand
Ph.D.degree from JNTUA
University and B.E degree from
Gulbarga University. She has
published more than 59 international journals, 21
conferences, and 1 textbook. And also having three
Patents. Her research interests include Mobile Ad hoc
Networks, Computer Networks, and Big Data, data
mining, cloud computing.

