
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

348

Manuscript received May 5, 2022
Manuscript revised May 20, 2022

https://doi.org/10.22937/IJCSNS.2022.22.5.50

A Hybrid Soft Computing Technique for Software Fault Prediction

based on Optimal Feature Extraction and Classification

A.Balaram1, and S.Vasundra2

1
Ph.D. Scholar, Department of CSE, JNTUA University, Anantapur, Andhra Pradesh, India

balaram.balaram@gmail.com
2

Professor, Department of CSE, JNTUA University, Anantapur, Andhra Pradesh, India
vasundras.cse@jntua.ac.in

Abstract

Software fault prediction is a method to compute fault in the
software sections using software properties which helps to
evaluate the quality of software in terms of cost and effort.
Recently, several software fault detection techniques have been
proposed to classifying faulty or non-faulty. However, for such
a person, and most studies have shown the power of predictive
errors in their own databases, the performance of the software is
not consistent. In this paper, we propose a hybrid soft computing
technique for SFP based on optimal feature extraction and
classification (HST-SFP). First, we introduce the bat induced
butterfly optimization (BBO) algorithm for optimal feature
selection among multiple features which compute the most
optimal features and remove unnecessary features. Second, we
develop a layered recurrent neural network (L-RNN) based
classifier for predict the software faults based on their features
which enhance the detection accuracy. Finally, the proposed
HST-SFP technique has the more effectiveness in some
sophisticated technical terms that outperform databases of
probability of detection, accuracy, probability of false alarms,
precision, ROC, F measure and AUC.
Keywords:
software fault, software modules, layered recurrent neural
network, hybrid soft computing, and optimal feature selection

1. Introduction

Software fault prediction (SFP) is typically used to predict
faults in software components.The complexity of the software
has already increased significantly in recent years, making it
almost impossible to detect all failures before moving on. The
global development of computer software led to advances in
computer engineering, artificial intelligence, medicine,
telecommunications, and image processing. If errors are later
detected in the software development cycle, the cost of proper
maintenance will increase significantly, so it is important to
introduce software testing procedures to detect software errors
in a timely manner [1]. Open source software systems are
becoming more and more important these days. Many large
companies invest in open source projects, most of which use this
type of software. As a result, many of these projects have grown
and developed rapidly [2]. However, the quality and reliability
of coding needs to be explored, as open source software is

usually developed outside of companies - mostly volunteers -
and the development method used is quite different from the
traditional methods used in business software development.
Different types of code scales can be very useful for getting
information about code quality and error correction [3][4].
Software testing activities play an important role in building
reliable systems and utilizing key resources including time and
cost. To increase the efficiency and effectiveness of the test
operations, we should develop a model for predicting which files
will have the highest density in the next version of the system
[5][6]. These files allow testers to predict attempts, quickly
detect errors, and give the rest of the system extra time to check.
Accompanying this list of obvious results are high quality
settings, low error settings, and programs. Misdiagnosis is an
important part of sample research and has been the subject of
many previous studies [7]. These studies typically develop error
prediction models that allow programmers to focus on error code
development measures, thereby improving software quality and
improving resources. Many published models of miscalculations
are complex and varied and do not provide a detailed picture of
current errors [8][9].

Predicting software errors based on digital modeling
techniques is attractive because the software system can select a
certain number of models that accurately reflect the error
generation process[10]. In addition, they have a unique feature
in the number of these models, which allows a certain number of
errors in a certain program module [11]. Numerical models can
be used to identify program modules, i.e. incorrect and incorrect
software. Identifying software modules that cause errors is an
important process as it helps to identify modules that need to be
restored or seriously tested [12]. This way can create more
qualified software products. Software error forecasting is a type
of software that uses significant forecast measurements and
historical error data to predict future scale effects [13][14]. By
considering software error forecasting methods, the project
schedule can be planned more efficiently, especially for
inspection and maintenance activities. Advantages of software
error assessment: Improves the testing process and thus
improves system quality. Using software error prediction at the
design stage, along with class-level measurements, helps to
select the best alternatives. SPF code will reduce the time and
effort spent in the review process [15] [16]. However, SFF does
not occur in the software development process because the
practical use of SFF is impractical. The measurement database
used for the final project is used to explore the machine-based
method during the testing phase and the training phase [17].

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

349

Therefore, various studies have reached counter-intuitive
conclusions about the most basic and popular concepts of
software engineering [18][19]. Such studies should address the
importance of creating a comprehensive testing platform for the
scientific engineering community. However, these warnings
were clearly ignored. This indicates the lack of empirical
research to evaluate the effectiveness of different software
development and testing methods [20]. For further enhancement
in SPF, a hybrid soft computing technique is proposed using
optimal feature extraction and classification (HST-SFP).

The main contribution of proposed HST-SFP technique is given
as follows:

 First, we introduce the bat induced butterfly
optimization (BBO) algorithm for optimal feature
selection among multiple features which compute the
most optimal features and remove unnecessary
features.

 Second, we develop a layered recurrent neural
network (L-RNN) based classifier for predict the
software faults based on their features which enhance
the detection accuracy.

 Finally, the proposed HST-SFP technique has the
more effectivenessin some sophisticated technical
terms that outperform databases of probability of
detection, accuracy, probability of false alarms,
precision, ROC, F measure and AUC.

The rest of the article is organized as follows: Section 2 describes
the recent works associated to SFP and corresponding techniques.
And the problem methodology and system model of proposed
HST-SFP technique is described in the section 3.Then, Sect. 4
gives the working function of proposed HST-SFP technique with
the proper mathematical analysis. Then, the simulation results of
the proposed and existing methods are in the section 5. Finally,
the conclusion of the paper is explained in Sect. 6.

2. Related works

Rathore et.al [21] demonstrated a different group
evaluation method which Use the number of errors and the linear
combination rule and the non-linear combination rule total
policies. This review is designed and featured for various
software bugs. Data packets are collected from publicly
accessible databases. They used L (Pred(l)) level predictions and
an absolute scale to estimate the results. The evaluation of the
dimensions of the 1-level analysis and results of the overall
analysis confirm the effectiveness of the submitted system in
estimating the number of errors. Kumar et al., [22] proposed a
framework for identifying valid source code measurements with
the aim of verifying source code measurements and reducing
inappropriate performance and improving the performance of
the incorrect rating model. They present the correlation analysis
and the step-by-step multiplicative linear regression step wise
option to find the correct source code functions for the
computational error. The source code measurements obtained
are considered as the input for creating an error assessment
model using a neural network consisting of five different
learning methods and three different group methods. The
performance of the models can be evaluated using the proposed
cost estimation framework to assess product defects. Arshad et

al., [23] proposed the semi-supervised deep fuzzy c-mean
(DFCM) clustering for software error detection, which is a set of
semi-supervised DFCM clustering and feature summary
methods. The classification evaluates the maximum integrity
between the sample name attributes and the unnamed data, while
the sample is practiced in a quiet database from two deep points
of multiple groups and methods. Arshad et al., [24] proposed two
steps in the technical pre-processing software technical
empirical study of test error model data. In the initial phase, a
new feature based on C-fish clustering (TFCM) semi-supervised
extraction technology was proposed to create new features using
names that enhance the intra-cluster class using multiple deep
clusters of unnamed datasets. DFCM data pre-processing is
processed by locating and embedding the required information
in the data properties. The results show that the DFCM feature
data extraction technology is equivalent to the experimental
models of the test. Riaz et al., [25] proposed KNN sound filter,
which includes two-step pre-processing of data and an easy-to-
use KNN Easy Panel (RKEE) filter before implementation. The
feature is inappropriate for the ranking algorithm to remove
unwanted features. The second step is to cure KNN, which is
hard to understand, when he filters it out by removing everything.
Aziz et al., [26] proposed to explore how hereditary measures
can help predict the impact of software bugs. The model
structure uses artificial neural network (ANN) that uses accuracy,
recall, accuracy, F1 measurements, and true negative rate (TNR)
to measure performance. Comparisons and results show the
acceptable contribution of hereditary measurements to SFP. The
testing community can safely use traditional measurements to
predict software errors.

Further inheritance is not desirable as this may lead to
software errors. Li et al., [27] have proposed a three-way
network is a heavyweight network that integrates developer
contributions, block chains, and employee relationships with
developers and explores their integrated impact on program
quality. File network errors have four dimensions to predict net
bag volumes of partially blown software. In addition, existing
network software is considered to be one of the best ways to
better predict error. The contributions prevent the developer and
also the developer from creating collaborations that actually
predict two networks or intelligent software errors. Bal et al., [28]
proposed explored useful learning methods for precting how
many bugs the software has, for example the intensive learning
machine (ELM). A specific unbalanced learning model used 26
open source collateral software data sets, three prediction
scenarios, internal output, interpolation, and programming. They
conducted tests to predict the number of errors. Aziz et al., [29]
proposed to collecting, organizing, categorizing, and
investigating published fault prediction.The findings include 78
public databases containing 54 inheritance sizes and various
combinations of 10 inheritance sizes, 60% of system size usage
and personal database usage, and numerous studies using
machine learning approaches.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

350

Tumaret al., [30] proposed Enhanced Binary Moth Flame
Optimization (EBMFO) with Adaptive Synthetic Sampling
(ADASYN) to predict SF. Here, BMFO is used for the
packaging feature of choice and ADASYN on the other hand,
database upgraded databases were launched and prayed for the
unbalanced. This paper describes the possibility of a continuous
binary version coming from two different groups, by changing
the functions to the recommended EPFMFO version. Al Qasem
et al., [31] proposed two deep learning algorithms MLPs and
CNN to tackle the issue which may affect the performance of
both methods. Haouari et al., [32] evaluated 8 immune systems
for software deficiency treatment in three different definitions,
so selected 41 databases associated with 11 Java programs. The
results of the Friedman and Nemenyipostgog tests, no algorithm
have been studied with a call size better than Immuno-1 and
Immuno 99. Wilcoxon test suggest that studies dealing with
internal project deficiencies should evaluate their modeling
conditions.

3. Problem methodology and System architecture

3.1 Research Gap

Yucalar et al. [33] developed defect predictors for software
quality engineers. It reduces software modules and software
effort required to better detect prediction errors. This study uses
the group algorithm to evaluate the effectiveness of software
error predictions. Proven results based on FM and AUC
operations can be used to predict group algorithms, especially
cyclic forest, with highly developed gaps. The ROF-MLP
combination does not perform better than the original ROF-J48
strategy, and incorrect alarm speeds can be asset. False alarm
speeds for VOT (MLP, NB and LR) decreased by 1.2%
compared to VOT (J48, NB and LR) and increased by 2.7% in
AUC. Due to the large amount of data available from the mining
software history collections, it is possible that the learning
algorithm may have erroneous features (measurements) that are
misleading and reduce its effectiveness. From [21]-[33], several
SFP models have since been proposed for troubleshooting multi-
object problems that predict and localize errors. These

dimensions directly affect the quality of much software.
Measurements of physical properties such as heredity,
polymorphism, and synthesis can be used to assess
mispronunciation. Many researchers have studied the use of
object-based measurements in predicting software errors. Recent
studies have shown that machine learning techniques are
designed to accurately predict such defects. Meanwhile, the way
in which many independent learners are connected has proven in
many ways that individual models are better. To solve above
problems, we proposed HST-SFP technique which enhance the
detection accuracy and reduce FPR, FNR. The main objectives
of proposed HST-SFP technique are list as follows: to study and
analyze the several SFP techniques, preaching to improve the
performance and reliability of software fault appearance, to
study and analyze the several features for effective prediction,
propose novel optimal feature selection technique to improve the
prediction accuracy, introduce soft computing based classifier to
reduce FPR and FNR and evaluate proposed soft computing
based classifier with different benchmarks.
Fig. 1 System architecture of proposed HST-SFP technique

4. Hybrid soft computing technique for software fault

prediction (HST-SFP)

4.1 Feature selection using bat induced butterfly
optimization (BBO)

Feature selection is a preliminary process used to improve
product quality. FS is considered to be an integrated set of
optimizations aimed at finding the optimal subset of properties
in the original database that accurately reflects the original data.
There are two main stages in a typical FS process: (i) finding the
minimum reduction and (ii) evaluating the selected
characteristics. The main challenge is to find out if the best FS
still exists about the properties of the original data.
Providentially, FS is considered a search unit that represents a
subset of the attribute at each point of the search point. For this,
we applied a bat induced butterfly optimization (BBO) for
selecting the optimal feature and for removing unwanted data.

The first change is that we use a certain frequency and sound

instead of a different frequency jg . In BBO, each bat is

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

351

determined by its position
T
jy , velocity

T
jU . The new solutions

T
jy and velocities

T
jU at time step T are given by

gyyUU T
j

T
j

T
j)(*

1
 (1)

T
j

T
j

T
j Uyy 1

 (2)

The global best solution is referred as y∗. In this g is equal to 0.5.

To increase demographic diversity the search performance is

improved by Eq. (3)

)(321

T
s

T
s

T
sNEW YYGyY (3)

where G is the mutation weight factor, while 1s , 2s , 3s are

evenly divided into random numbers. The migration process can

be expressed as follows:

T
zs

T
zj yy ,1
1

,
 (4)

where
1

,
T
zjy zth denotes an element of jy at generation T+1 it

gives the position of King Butterfly i. Similarly,
T

zsy ,1 indicates

the zth newly formed stage of the monarch butterfly 1s . T is the

number of the current generation. Monarch butterfly 1s is

approximately selected from the sub-population. Here, s can be

calculated as

PeriRands (5)

Peri indicates immigration period. Rand is a random number

obtained as a result of consolidated distribution. Or rather, if s>q,

the kth element in the butterfly is the newly formed king

T
zs

T
zj yy ,2
1

,
 (6)

where
1

,
T
zjy the newly formed phase of the monarch butterfly

is the return element 2s . Monarch butterfly r2 is approximately

selected from the sub-population. If the generated probable

number q is less than or equal to q for all components of the

monarch butterfly, it can be updated as follows:

T
zBest

T
zj yy ,
1

,
 (7)

where
1

,
T
zjy zth denotes an element of iy at

generation T+1 gives the position of King Butterfly j.

Similarly,
T

zBesty , zth denotes an element of Besty that is Best

King Butterfly in Land 1 and Land 2. T is the number of the

current generation. Or rather, if larger than the Rand P, it can be

upgraded

T
zs

T
zj yy ,3
1

,
 (8)

where
T

zsy ,3 and zth denotes an element of 3sy . In this case,

if it is Rand >BAR, it can be updated as follows

)5.0(1
,

1
,

z
T

zi
T

zi dyyy (9)

where it indicates butterfly adjustment speed. dy is the

according to the monarch butterfly i Levy calculate this by flight.

)(T
iyLevydy (10)

In Eq. (9), α is the expectation factor is given as Eq. (11)

2/TRMax (11)

The working function of algorithm 1 represents the function of

the BBO.

Algorithm 1 Optimal feature selection using bat induced

butterfly optimization

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

352

Input : Velocity

Output : Weight factor

 1 Initialize the parameters

 2 Compute the new solutions

gyyUU T
j

T
j

T
j)(*

1

 3 Improve the performance using

)(321
T

s
T

s
T
sNEW YYGyY

 4 Compute the migration process using

T
zs

T
zj yy ,1
1

,

 5 Determine the new population using

T
zs

T
zj yy ,2
1

,

 6 Upgrade the position of the butterfly

 7 Calculate the levy flight using

)(T
iyLevydy

 8 End

4.2 Software fault prediction using LRNN classifier

After feature selection, the data are classified based on
optimal features. The features are classified using LRNN which
enhances the detection accuracy. The LRNN is a pre-defined
number for the number of iterations of the sample, for updated
estimates, which can be repeated using experimental data. When
the algorithm gets the results of the best value and maximum
number of repetitions, then the algorithm is stopped. Otherwise,
it starts a new iteration. Simple network weight repeats and
propagates through the layer of rusty passengers and in the
previous position to implement recurring extra weight additions,
V,

 TNETgTx ii (12)

m

j
iijji uTyTNET (13)

where n denotes the number of ’state’ nodes and for l output

nodes the i and g are hidden, and J indicates for input nodes. In

the feeder network, the input vector, y, is applied using a weight

layer U. The output of the network is determined by the

condition and the output weight sets Z,

 TNETgTx ii (14)

 iih

m

j

n

h
hijji vTxuTyTNET 1

 (15)

The g represents an output function. Everywhere training LRNN

good historical reason 50 processes have been successfully

applied to an image in complex domain lion, and software

running exit prediction degree. LRNN can solve all problems in

all the right ways with weight dynamic memory LRNN. It is time

to copy the data stored in the LRNN. Basically, in the form of a

learning process, the changes above the LRNN apply to a link or

link-feeding feedback. In addition, the school neurological

network is similar to the standard practice of LRNN, but with a

slight twist. This requires a calculation of the output, not just the

current time hierarchy, but one step per season. For this reason,

the output takes place through the lymph nodes or any other or

repetitive response of the network. He memorized the feedback

node values from the previous level. So the new input output data

depends on the current and previous ones. Here, LRNN time T.

An input sequence is given as TKKK ,...,1 , the fixed

LRNN is calculated as a hidden vector array

 TQQQ ,...,1 and vector sequence output is

 TXXX ,...,1 by below equations,

 QTQQThKT aQZKZgQ 1 (16)

 xTxhT aQZgx (17)

Here, an activation function (sigmoid function) is denoted as

g().As a result, it is necessary to determine the required output

and cost function E of the network.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

353

Algorithm 2 Fault prediction using LRNN classifier

Input : Number of nodes and vectors

Output : Cost function

1 Initialize the values for the input

2 Determine the weight of the network

m

j
iijji uTyTNET

3 Calculate the output function of the network

 iih

m

j

n

h
hijji vTxuTyTNET 1

4 Calculate the fixed LRNN fir hidden vectors,

 QTQQThKT aQZKZgQ 1

5 Compute the general cost function

6 Compute the cost function of the network,

 2
3

1

ToTTE jj
T j

j

7 End

The waveform flow rate function in the package of training is

defined as the amount of the output and errors in the output of

the E form:

 2
3

1

ToTTE jj
T j

j

 (18)

For
thj neuron, the expected output is indicated as j and the

weighting coefficient of learning error is represented as j .

Then, LRNN real output is referred as jo . The cost function is

n

j

m

i
jijj

T j
j zToTTE

1 1

22
3

1

1

 (19)

The regulatory parameter controls how well the execution of

the penalty period takes effect. The regulation of the parameter

 controls the operation of how much they own for the period

he owns the sentence. The reduction is depending on the slope

according to the formula,

 qp
qp

j
jj

T j
j

qp

z
Z

TO
ToTT

z

E

122
3

1

 (20)

The algorithm 2 represents classification of software prediction

using LRNN.

5. Results and Discussion

In this section, we evaluate the performance of proposed
hybrid soft computing technique for software fault prediction
(HST-SFP). The proposed HST-SFP technique is implemented
using Spyder (Python 3.7) with different libraries. The computer
runs Windows 10, has 2 GB of RAM and an Intel i3 core
processor. We used the 10-fold-cross validation through all
experiments. We compare the performance of proposed LRNN
classifier with existing state-of-art ensemble classifiers are
AdaboostM1 (E1), Logic Boost (E2), Multiboost AB (E3),
Bagging (E4), Random Forest (E5), Dagging (E6), Rotation
Forest (E7), Stacking (E8), Multi scheme (E9) and Voting (E10).
Because we often have public databases for the use of Turkish,
white and workers' products, NASA has introduced programs,
software programs, processes and applications from the open
source applications of Apache. The description of dataset is
given in Table 1. The performance of proposed LRNN classifier
is evaluate through frequently used performance metrics are PD,
PF, accuracy (A), precession (P), F-measure (F) and AUC. The
detailed description of performance metrics define as follows:

np

p

FT

T
PD

 (21)

np

p

TF

F
PF

 (22)

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

354

npnp

np

FFTT

TT
A

 (23)

pp

p

FT

T
P

 (24)

PPD

PPD
F

2

 (25)

where Tp, Tn, Fp and Fn defines the True Positive, True Negative,

False Positive and FalseNegative.

5.1 Comparative analysis for Probability of detection

Table 2 describes the probability of detection comparison of
proposed LRNN predictors and existing state-of-art ensemble
predictors are AdaboostM1 (E1), Logic Boost (E2), Multiboost
AB (E3), Bagging (E4), Random Forest (E5), Dagging (E6),
Rotation Forest (E7), Stacking (E8), Multi scheme (E9) and
Voting (E10). From the Table, we observe that the detection
probability of proposed LRNN predictor is very high compare to
the existing ensemble predictors. Fig. 2 shows the average
detection probability comparison of proposed and existing
predictors. It is represents the average detection probability of
projected LRNN predictor is 10.5%, 10.1%, 21.2%, 11.4%,
12.5%, 19.9%, 12.9%, 14.9%, 18% and 12.8% higher than the
existing state-of-art ensemble predictors are E1, E2, E3, E4, E5,
E6, E7, E8, E9 and E10 respectively.

5.2 Comparative analysis for Probability of false alarm
Table 3 describes the probability of false alarm comparison of
proposed LRNN predictors and existing state-of-art ensemble
predictors are AdaboostM1 (E1), Logic Boost (E2), Multiboost
AB (E3), Bagging (E4), Random Forest (E5), Dagging (E6),
Rotation Forest (E7), Stacking (E8), Multi scheme (E9) and
Voting (E10). From the Table, we observe that the probability of
false alarm of proposed LRNN predictor is very high compare to
the existing ensemble predictors. Fig. 3 shows the average
probability of false alarm comparison of proposed and existing
predictors. It is clearly depicts the average probability of false
alarm of proposed LRNN predictor is 11.49%, 11.4%, 21.1%,
21.8%, 1 0.74% , 11.9%, 10.24%, 11.23%, 21.19% and 11.8%
higher than the existing state-of-art ensemble predictors are E1,
E2, E3, E4, E5, E6, E7, E8, E9 and E10 respectively.

5.3 Comparative analysis for Accuracy

Table 4 describes the accuracy comparison of proposed LRNN
predictors and existing state-of-art ensemble predictors are
AdaboostM1 (E1), Logic Boost (E2), Multiboost AB (E3),
Bagging (E4), Random Forest (E5), Dagging (E6), Rotation
Forest (E7), Stacking (E8), Multi scheme (E9) and Voting (E10).
From the Table, we observe that the accuracy of proposed LRNN
predictor is very high compare to the existing ensemble
predictors. Fig. 4 shows the average accuracy comparison of
proposed and existing predictors. It is denotes the average
accuracy of specified LRNN predictor are 16.28%, 10.19%,
19.07%, 19.4%, 18.05%, 16.64%, 19.4%, 11.1%, 13.5% and
20.8% higher than the existing state-of-art ensemble predictors
are E1, E2, E3, E4, E5, E6, E7, E8, E9 and E10 respectively.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

355

Fig. 2 Comparison probability of detection for proposed and
existing detectors

Fig. 3 Comparison probability of false alarm for proposed and
existing detectors

5.4 Comparative analysis for Precession

Table 5 describes the precession comparison of proposed LRNN
predictors and existing state-of-art ensemble predictors are
AdaboostM1 (E1), Logic Boost (E2), Multiboost AB (E3),
Bagging (E4), Random Forest (E5), Dagging (E6), Rotation
Forest (E7), Stacking (E8), Multi scheme (E9) and Voting (E10).
From the Table, we observe that the precession of proposed
LRNN predictor is very high compare to the existing ensemble
predictors. Fig. 5 shows the average precession comparison of
proposed and existing predictors. It describes the average
precession of projected LRNN predictor is 18.68%, 30.03%,
25.58%, 19.68%, 17.61%, 13.68%, 50.83%, 17.57%, 26.69%
and 17.13% higher than the existing state-of-art ensemble

predictors are E1, E2, E3, E4, E5, E6, E7, E8, E9 and E10
respectively.

Fig. 4 Comparison accuracy for proposed and existing detectors

5.5 Comparative analysis for F-measure

Table 6 describes the F-measure comparison of proposed LRNN
predictors and existing state-of-art ensemble predictors are
AdaboostM1 (E1), Logic Boost (E2), Multiboost AB (E3),
Bagging (E4), Random Forest (E5), Dagging (E6), Rotation
Forest (E7), Stacking (E8), Multi scheme (E9) and Voting (E10).
From the Table, we observe that the precession of proposed
LRNN F-measure is very high compare to the existing ensemble
predictors. Fig. 6 shows the average F-measure comparison of
proposed and existing predictors. It describes the average
precession of projected LRNN predictor is 12.5%, 15.35%,
10.90%, 14.57%, 10.56%, 10.12%, 21.46%, 11.54%, 12.2% and
10.45% higher than the existing state-of-art ensemble predictors
are E1, E2, E3, E4, E5, E6, E7, E8, E9 and E10 respectively.

Fig. 5 Comparison precession of detection for proposed and
existing detectors
5.6 Comparative analysis for Area under curve
Table 7 describes the area under curve comparison of proposed
LRNN predictors and existing state-of-art ensemble predictors
are AdaboostM1 (E1), Logic Boost (E2), Multiboost AB (E3),
Bagging (E4), Random Forest (E5), Dagging (E6), Rotation
Forest (E7), Stacking (E8), Multi scheme (E9) and Voting (E10).
From the Table, we observe that the area under curve of
proposed LRNN F-measure is very high compare to the existing
ensemble predictors. Fig. 6 shows the average area under curve
comparison of proposed and existing predictors. It describes the
average precession of projected LRNN predictor is 11.67%,
12.34%, 17.04%, 14.12%, 17.13%, 16.12%, 15.46%, 36.9%,
26.06% and 36.72% higher than the existing state-of-art

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

356

ensemble predictors are E1, E2, E3, E4, E5, E6, E7, E8, E9 and
E10 respectively.

Fig. 6 Comparison F-measure for proposed and existing
detectors

Fig. 7 Comparison AUC for proposed and existing detectors

6. Conclusion

Background: We have proposed a hybrid soft computing
technique for SFP based on optimal feature extraction and
classification (HST-SFP). Contributions: A bat induced
butterfly optimization (BBO) algorithm for optimal feature
selection among multiple features which compute the most
optimal features and remove unnecessary features. A Layered
Recurrent Neural Network (L-RNN) based classifier is used to
predict the software faults based on their features which enhance
the detection accuracy. Findings: The average detection
probability of proposed LRNN detector is 14.42% higher than
the existing state-of-art detectors. The average probability of
false alarm of proposed LRNN detector is 14.49% higher than
the existing state-of-art detectors. The average accuracy of
proposed LRNN detector is 16.54% higher than the existing
state-of-art detectors. The average precession of proposed
LRNN detector is 23.76% higher than the existing state-of-art
detectors. The average F-measure of proposed LRNN detector is
12.97% higher than the existing state-of-art detectors. The
average precession of proposed LRNN detector is 20.35% higher
than the existing state-of-art detectors. Summary: From
simulation results, we observe the proposed HST-SFP technique
has the more effectiveness exceeds any sophisticated
technologies for databases in terms of Probability of Detection,
Probability of False Alarms, Accuracy, Precision, F- Measure,
and AUC.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

357

Acknowledgment

Authors thank, Dr.C,Shoba bindu (Director ,R&D) JNT
University Anantapuramu for providing a assistance to establish
working environment in the lab to carry out my present research.

References

[1] Dejaeger, K., Verbraken, T. and Baesens, B., 2012. Toward

comprehensible software fault prediction models using bayesian
network classifiers. IEEE Transactions on Software
Engineering, 39(2), pp.237-257.

[2] Gyimóthy, T., Ferenc, R. and Siket, I., 2005. Empirical validation
of object-oriented metrics on open source software for fault
prediction. IEEE Transactions on Software engineering, 31(10),
pp.897-910.

[3] Ostrand, T.J., Weyuker, E.J. and Bell, R.M., 2005. Predicting the
location and number of faults in large software systems. IEEE
Transactions on Software Engineering, 31(4), pp.340-355.

[4] Hall, T., Beecham, S., Bowes, D., Gray, D. and Counsell, S., 2011.
A systematic literature review on fault prediction performance in
software engineering. IEEE Transactions on Software
Engineering, 38(6), pp.1276-1304.

[5] Moeyersoms, J., de Fortuny, E.J., Dejaeger, K., Baesens, B. and
Martens, D., 2015. Comprehensible software fault and effort
prediction: A data mining approach. Journal of Systems and
Software, 100, pp.80-90.

[6] Jin, C. and Jin, S.W., 2015. Prediction approach of software fault-
proneness based on hybrid artificial neural network and quantum
particle swarm optimization. Applied Soft Computing, 35, pp.717-
725.

[7] Catal, C. and Diri, B., 2009. Investigating the effect of dataset size,
metrics sets, and feature selection techniques on software fault
prediction problem. Information Sciences, 179(8), pp.1040-1058.

[8] Malhotra, R., 2015. A systematic review of machine learning
techniques for software fault prediction. Applied Soft
Computing, 27, pp.504-518

[9] Mahajan, R., Gupta, S.K. and Bedi, R.K., 2015. Design of software
fault prediction model using BR technique. Procedia Computer
Science, 46, pp.849-858.

[10] Rathore, S.S. and Kumar, S., 2015. Predicting number of faults in
software system using genetic programming. Procedia Computer
Science, 62, pp.303-311.

[11] Arar, Ö.F. and Ayan, K., 2016. Deriving thresholds of software
metrics to predict faults on open source software: Replicated case
studies. Expert Systems with Applications, 61, pp.106-121.

[12] Chatterjee, S. and Roy, A., 2014. Web software fault prediction
under fuzzy environment using MODULO-M multivariate
overlapping fuzzy clustering algorithm and newly proposed
revised prediction algorithm. Applied Soft Computing, 22, pp.372-
396.

[13] Vandecruys, O., Martens, D.,
[14] Baesens, B., Mues, C., De Backer, M. and Haesen, R., 2008.

Mining software repositories for comprehensible software fault
prediction models. Journal of Systems and software, 81(5),
pp.823-839.

[15] Binkley, D., Feild, H., Lawrie, D. and Pighin, M., 2009. Increasing
diversity: Natural language measures for software fault
prediction. Journal of Systems and Software, 82(11), pp.1793-
1803.

[16] Hu, Q.P., Xie, M., Ng, S.H. and Levitin, G., 2007. Robust recurrent
neural network modeling for software fault detection and
correction prediction. Reliability Engineering & System
Safety, 92(3), pp.332-340.

[17] Zhao, Y., Yang, Y., Lu, H., Zhou, Y., Song, Q. and Xu, B., 2015.
An empirical analysis of package-modularization metrics:

Implications for software fault-proneness. Information and
Software Technology, 57, pp.186-203.

[18] Gao, K. and Khoshgoftaar, T.M., 2007. A comprehensive
empirical study of count models for software fault prediction. IEEE
Transactions on Reliability, 56(2), pp.223-236.

[19] Erturk, E. and Sezer, E.A., 2015. A comparison of some soft
computing methods for software fault prediction. Expert systems
with applications, 42(4), pp.1872-1879.

[20] Erturk, E. and Sezer, E.A., 2016. Iterative software fault prediction
with a hybrid approach. Applied Soft Computing, 49, pp.1020-
1033.

[21] Fenton, N.E. and Ohlsson, N., 2000. Quantitative analysis of faults
and failures in a complex software system. IEEE Transactions on
Software engineering, 26(8), pp.797-814.

[22] Rathore, S.S. and Kumar, S., 2017. Towards an ensemble based
system for predicting the number of software faults. Expert
Systems with Applications, 82, pp.357-382.

[23] Kumar, L., Misra, S. and Rath, S.K., 2017. An empirical analysis
of the effectiveness of software metrics and fault prediction model
for identifying faulty classes. Computer standards & interfaces, 53,
pp.1-32.

[24] Arshad, A., Riaz, S., Jiao, L. and Murthy, A., 2018. Semi-
supervised deep fuzzy c-mean clustering for software fault
prediction. IEEE Access, 6, pp.25675-25685.

[25] Arshad, A., Riaz, S., Jiao, L. and Murthy, A., 2018. The empirical
study of semi-supervised deep fuzzy c-mean clustering for
software fault prediction. IEEE Access, 6, pp.47047-47061.

[26] Riaz, S., Arshad, A. and Jiao, L., 2018. Rough noise-filtered easy
ensemble for software fault prediction. Ieee Access, 6, pp.46886-
46899.

[27] Aziz, S.R., Khan, T. and Nadeem, A., 2019. Experimental
validation of inheritance Metrics’ impact on software fault
prediction. IEEE Access, 7, pp.85262-85275.

[28] Li, Y., Wong, W.E., Lee, S.Y. and Wotawa, F., 2019. Using Tri-
Relation Networks for Effective Software Fault-Proneness
Prediction. IEEE Access, 7, pp.63066-63080.

[29] Bal, P.R. and Kumar, S., 2020. WR-ELM: Weighted
Regularization Extreme Learning Machine for Imbalance Learning
in Software Fault Prediction. IEEE Transactions on
Reliability, 69(4), pp.1355-1375.

[30] Aziz, S.R., Khan, T.A. and Nadeem, A., 2020. Efficacy of
Inheritance Aspect in Software Fault Prediction—A Survey
Paper. IEEE Access, 8, pp.170548-170567.

[31] Tumar, I., Hassouneh, Y., Turabieh, H. and Thaher, T., 2020.
Enhanced binary moth flame optimization as a feature selection
algorithm to predict software fault prediction. IEEE Access, 8,
pp.8041-8055.

[32] Al Qasem, O., Akour, M. and Alenezi, M., 2020. The influence of
deep learning algorithms factors in software fault prediction. IEEE
Access, 8, pp.63945-63960.

[33] Haouari, A.T., Souici-Meslati, L., Atil, F. and Meslati, D., 2020.
Empirical comparison and evaluation of Artificial Immune
Systems in inter-release software fault prediction. Applied Soft
Computing, 96, p.106686.

[34] Yucalar, F., Ozcift, A., Borandag, E. and Kilinc, D., 2020.
Multiple-classifiers in software quality engineering: Combining
predictors to improve software fault prediction ability. Engineering
Science and Technology, an International Journal, 23(4), pp.938-
950.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

358

Mr. A. Balaram working as
Associate Professor in the Dept.
of Computer Science and
Engineering, CMR Institute of
Technology, Hyderabad. He
Obtained his M. Tech from
JNTUA University and B. Tech
from JNTUH University India.
Pursuing Ph.D. in JNTUA

University Anantapur. He has more than 15 years of
teaching experience He has published 22 international
Journals, 9 conferences and 1 book chapter. And having
two patents. His research interests are Software
Engineering, Network Security and Cryptography,
Machine Learning, Cloud Computing.

Dr.S.Vasundra, Professor of
Department of Computer
Science and Engineering and
NSS Coordinator, JNT
University, Anantapuramu.She
obtained her M.Techand
Ph.D.degree from JNTUA
University and B.E degree from
Gulbarga University. She has

published more than 59 international journals, 21
conferences, and 1 textbook. And also having three
Patents. Her research interests include Mobile Ad hoc
Networks, Computer Networks, and Big Data, data
mining, cloud computing.

