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Abstract 

Software fault prediction is a method to compute fault in the 
software sections using software properties which helps to 
evaluate the quality of software in terms of cost and effort. 
Recently, several software fault detection techniques have been 
proposed to classifying faulty or non-faulty. However, for such 
a person, and most studies have shown the power of predictive 
errors in their own databases, the performance of the software is 
not consistent. In this paper, we propose a hybrid soft computing 
technique for SFP based on optimal feature extraction and 
classification (HST-SFP). First, we introduce the bat induced 
butterfly optimization (BBO) algorithm for optimal feature 
selection among multiple features which compute the most 
optimal features and remove unnecessary features. Second, we 
develop a layered recurrent neural network (L-RNN) based 
classifier for predict the software faults based on their features 
which enhance the detection accuracy. Finally, the proposed 
HST-SFP technique has the more effectiveness in some 
sophisticated technical terms that outperform databases of 
probability of detection, accuracy, probability of false alarms, 
precision, ROC, F measure and AUC.  
Keywords:  
software fault, software modules, layered recurrent neural 
network, hybrid soft computing, and optimal feature selection 

1. Introduction 

Software fault prediction (SFP) is typically used to predict 
faults in software components.The complexity of the software 
has already increased significantly in recent years, making it 
almost impossible to detect all failures before moving on. The 
global development of computer software led to advances in 
computer engineering, artificial intelligence, medicine, 
telecommunications, and image processing. If errors are later 
detected in the software development cycle, the cost of proper 
maintenance will increase significantly, so it is important to 
introduce software testing procedures to detect software errors 
in a timely manner [1]. Open source software systems are 
becoming more and more important these days. Many large 
companies invest in open source projects, most of which use this 
type of software. As a result, many of these projects have grown 
and developed rapidly [2]. However, the quality and reliability 
of coding needs to be explored, as open source software is 

usually developed outside of companies - mostly volunteers - 
and the development method used is quite different from the 
traditional methods used in business software development. 
Different types of code scales can be very useful for getting 
information about code quality and error correction [3][4]. 
Software testing activities play an important role in building 
reliable systems and utilizing key resources including time and 
cost. To increase the efficiency and effectiveness of the test 
operations, we should develop a model for predicting which files 
will have the highest density in the next version of the system 
[5][6]. These files allow testers to predict attempts, quickly 
detect errors, and give the rest of the system extra time to check. 
Accompanying this list of obvious results are high quality 
settings, low error settings, and programs. Misdiagnosis is an 
important part of sample research and has been the subject of 
many previous studies [7]. These studies typically develop error 
prediction models that allow programmers to focus on error code 
development measures, thereby improving software quality and 
improving resources. Many published models of miscalculations 
are complex and varied and do not provide a detailed picture of 
current errors [8][9]. 

Predicting software errors based on digital modeling 
techniques is attractive because the software system can select a 
certain number of models that accurately reflect the error 
generation process[10]. In addition, they have a unique feature 
in the number of these models, which allows a certain number of 
errors in a certain program module [11]. Numerical models can 
be used to identify program modules, i.e. incorrect and incorrect 
software. Identifying software modules that cause errors is an 
important process as it helps to identify modules that need to be 
restored or seriously tested [12]. This way can create more 
qualified software products. Software error forecasting is a type 
of software that uses significant forecast measurements and 
historical error data to predict future scale effects [13][14]. By 
considering software error forecasting methods, the project 
schedule can be planned more efficiently, especially for 
inspection and maintenance activities. Advantages of software 
error assessment: Improves the testing process and thus 
improves system quality. Using software error prediction at the 
design stage, along with class-level measurements, helps to 
select the best alternatives. SPF code will reduce the time and 
effort spent in the review process [15] [16]. However, SFF does 
not occur in the software development process because the 
practical use of SFF is impractical. The measurement database 
used for the final project is used to explore the machine-based 
method during the testing phase and the training phase [17]. 
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Therefore, various studies have reached counter-intuitive 
conclusions about the most basic and popular concepts of 
software engineering [18][19]. Such studies should address the 
importance of creating a comprehensive testing platform for the 
scientific engineering community. However, these warnings 
were clearly ignored. This indicates the lack of empirical 
research to evaluate the effectiveness of different software 
development and testing methods [20]. For further enhancement 
in SPF, a hybrid soft computing technique is proposed using 
optimal feature extraction and classification (HST-SFP).  

The main contribution of proposed HST-SFP technique is given 
as follows: 

 First, we introduce the bat induced butterfly 
optimization (BBO) algorithm for optimal feature 
selection among multiple features which compute the 
most optimal features and remove unnecessary 
features. 

 Second, we develop a layered recurrent neural 
network (L-RNN) based classifier for predict the 
software faults based on their features which enhance 
the detection accuracy. 

 Finally, the proposed HST-SFP technique has the 
more effectivenessin some sophisticated technical 
terms that outperform databases of probability of 
detection, accuracy, probability of false alarms, 
precision, ROC, F measure and AUC.  

The rest of the article is organized as follows: Section 2 describes 
the recent works associated to SFP and corresponding techniques. 
And the problem methodology and system model of proposed 
HST-SFP technique is described in the section 3.Then, Sect. 4 
gives the working function of proposed HST-SFP technique with 
the proper mathematical analysis. Then, the simulation results of 
the proposed and existing methods are in the section 5. Finally, 
the conclusion of the paper is explained in Sect. 6. 
 
2. Related works 
 

Rathore et.al [21] demonstrated a different group 
evaluation method which Use the number of errors and the linear 
combination rule and the non-linear combination rule total 
policies. This review is designed and featured for various 
software bugs. Data packets are collected from publicly 
accessible databases. They used L (Pred(l)) level predictions and 
an absolute scale to estimate the results. The evaluation of the 
dimensions of the 1-level analysis and results of the overall 
analysis confirm the effectiveness of the submitted system in 
estimating the number of errors. Kumar et al., [22] proposed a 
framework for identifying valid source code measurements with 
the aim of verifying source code measurements and reducing 
inappropriate performance and improving the performance of 
the incorrect rating model. They present the correlation analysis 
and the step-by-step multiplicative linear regression step wise 
option to find the correct source code functions for the 
computational error. The source code measurements obtained 
are considered as the input for creating an error assessment 
model using a neural network consisting of five different 
learning methods and three different group methods. The 
performance of the models can be evaluated using the proposed 
cost estimation framework to assess product defects. Arshad et 

al., [23] proposed the semi-supervised deep fuzzy c-mean 
(DFCM) clustering for software error detection, which is a set of 
semi-supervised DFCM clustering and feature summary 
methods. The classification evaluates the maximum integrity 
between the sample name attributes and the unnamed data, while 
the sample is practiced in a quiet database from two deep points 
of multiple groups and methods. Arshad et al., [24] proposed two 
steps in the technical pre-processing software technical 
empirical study of test error model data. In the initial phase, a 
new feature based on C-fish clustering (TFCM) semi-supervised 
extraction technology was proposed to create new features using 
names that enhance the intra-cluster class using multiple deep 
clusters of unnamed datasets. DFCM data pre-processing is 
processed by locating and embedding the required information 
in the data properties. The results show that the DFCM feature 
data extraction technology is equivalent to the experimental 
models of the test. Riaz et al., [25] proposed KNN sound filter, 
which includes two-step pre-processing of data and an easy-to-
use KNN Easy Panel (RKEE) filter before implementation. The 
feature is inappropriate for the ranking algorithm to remove 
unwanted features. The second step is to cure KNN, which is 
hard to understand, when he filters it out by removing everything. 
Aziz et al., [26] proposed to explore how hereditary measures 
can help predict the impact of software bugs. The model 
structure uses artificial neural network (ANN) that uses accuracy, 
recall, accuracy, F1 measurements, and true negative rate (TNR) 
to measure performance. Comparisons and results show the 
acceptable contribution of hereditary measurements to SFP. The 
testing community can safely use traditional measurements to 
predict software errors.  

Further inheritance is not desirable as this may lead to 
software errors. Li et al., [27] have proposed a three-way 
network is a heavyweight network that integrates developer 
contributions, block chains, and employee relationships with 
developers and explores their integrated impact on program 
quality. File network errors have four dimensions to predict net 
bag volumes of partially blown software. In addition, existing 
network software is considered to be one of the best ways to 
better predict error. The contributions prevent the developer and 
also the developer from creating collaborations that actually 
predict two networks or intelligent software errors. Bal et al., [28] 
proposed explored useful learning methods for precting how 
many bugs the software has, for example the intensive learning 
machine (ELM). A specific unbalanced learning model used 26 
open source collateral software data sets, three prediction 
scenarios, internal output, interpolation, and programming. They 
conducted tests to predict the number of errors. Aziz et al., [29] 
proposed to collecting, organizing, categorizing, and 
investigating published fault prediction.The findings include 78 
public databases containing 54 inheritance sizes and various 
combinations of 10 inheritance sizes, 60% of system size usage 
and personal database usage, and numerous studies using 
machine learning approaches.  
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Tumaret al., [30] proposed Enhanced Binary Moth Flame 
Optimization (EBMFO) with Adaptive Synthetic Sampling 
(ADASYN) to predict SF. Here, BMFO is used for the 
packaging feature of choice and ADASYN on the other hand, 
database upgraded databases were launched and prayed for the 
unbalanced. This paper describes the possibility of a continuous 
binary version coming from two different groups, by changing 
the functions to the recommended EPFMFO version. Al Qasem 
et al., [31] proposed two deep learning algorithms MLPs and 
CNN to tackle the issue which may affect the performance of 
both methods. Haouari et al., [32] evaluated 8 immune systems 
for software deficiency treatment in three different definitions, 
so selected 41 databases associated with 11 Java programs. The 
results of the Friedman and Nemenyipostgog tests, no algorithm 
have been studied with a call size better than Immuno-1 and 
Immuno 99. Wilcoxon test suggest that studies dealing with 
internal project deficiencies should evaluate their modeling 
conditions. 
 
 
3. Problem methodology and System architecture 
 
3.1 Research Gap 
 

Yucalar et al. [33] developed defect predictors for software 
quality engineers. It reduces software modules and software 
effort required to better detect prediction errors. This study uses 
the group algorithm to evaluate the effectiveness of software 
error predictions. Proven results based on FM and AUC 
operations can be used to predict group algorithms, especially 
cyclic forest, with highly developed gaps. The ROF-MLP 
combination does not perform better than the original ROF-J48 
strategy, and incorrect alarm speeds can be asset. False alarm 
speeds for VOT (MLP, NB and LR) decreased by 1.2% 
compared to VOT (J48, NB and LR) and increased by 2.7% in 
AUC. Due to the large amount of data available from the mining 
software history collections, it is possible that the learning 
algorithm may have erroneous features (measurements) that are 
misleading and reduce its effectiveness. From [21]-[33], several 
SFP models have since been proposed for troubleshooting multi-
object problems that predict and localize errors. These 

dimensions directly affect the quality of much software. 
Measurements of physical properties such as heredity, 
polymorphism, and synthesis can be used to assess 
mispronunciation. Many researchers have studied the use of 
object-based measurements in predicting software errors. Recent 
studies have shown that machine learning techniques are 
designed to accurately predict such defects. Meanwhile, the way 
in which many independent learners are connected has proven in 
many ways that individual models are better. To solve above 
problems, we proposed HST-SFP technique which enhance the 
detection accuracy and reduce FPR, FNR. The main objectives 
of proposed HST-SFP technique are list as follows: to study and 
analyze the several SFP techniques, preaching to improve the 
performance and reliability of software fault appearance, to 
study and analyze the several features for effective prediction, 
propose novel optimal feature selection technique to improve the 
prediction accuracy, introduce soft computing based classifier to 
reduce FPR and FNR and evaluate proposed soft computing 
based classifier with different benchmarks. 
Fig. 1 System architecture of proposed HST-SFP technique 
 
4. Hybrid soft computing technique for software fault 

prediction (HST-SFP) 
 
4.1 Feature selection using bat induced butterfly 
optimization (BBO) 
 

Feature selection is a preliminary process used to improve 
product quality. FS is considered to be an integrated set of 
optimizations aimed at finding the optimal subset of properties 
in the original database that accurately reflects the original data. 
There are two main stages in a typical FS process: (i) finding the 
minimum reduction and (ii) evaluating the selected 
characteristics. The main challenge is to find out if the best FS 
still exists about the properties of the original data. 
Providentially, FS is considered a search unit that represents a 
subset of the attribute at each point of the search point. For this, 
we applied a bat induced butterfly optimization (BBO) for 
selecting the optimal feature and for removing unwanted data. 

The first change is that we use a certain frequency and sound 

instead of a different frequency jg . In BBO, each bat is 
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determined by its position
T
jy  , velocity

T
jU . The new solutions 

T
jy  and velocities 

T
jU  at time step T are given by 
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The global best solution is referred as y∗. In this g is equal to 0.5. 

To increase demographic diversity the search performance is 

improved by Eq. (3) 
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T
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where G is the mutation weight factor, while 1s  , 2s , 3s  are 

evenly divided into random numbers. The migration process can 

be expressed as follows: 

T
zs

T
zj yy ,1
1

, 
    (4) 

where 
1

,
T
zjy  zth denotes an element of jy  at generation T+1 it 

gives the position of King Butterfly i. Similarly, 
T

zsy ,1  indicates 

the zth newly formed stage of the monarch butterfly 1s . T is the 

number of the current generation. Monarch butterfly 1s  is 

approximately selected from the sub-population. Here, s can be 

calculated as 

PeriRands     (5) 

Peri indicates immigration period. Rand is a random number 

obtained as a result of consolidated distribution. Or rather, if s>q, 

the kth element in the butterfly is the newly formed king 

T
zs

T
zj yy ,2
1

, 
    (6) 

where 
1

,
T
zjy  the newly formed phase of the monarch butterfly 

is the return element 2s . Monarch butterfly r2 is approximately 

selected from the sub-population. If the generated probable 

number q is less than or equal to q for all components of the 

monarch butterfly, it can be updated as follows: 

T
zBest

T
zj yy ,
1

, 
    (7) 

where 
1

,
T
zjy  zth denotes an element of iy  at 

generation T+1 gives the position of King Butterfly j. 

Similarly, 
T

zBesty ,  zth denotes an element of Besty  that is Best 

King Butterfly in Land 1 and Land 2. T is the number of the 

current generation. Or rather, if larger than the Rand P, it can be 

upgraded 

T
zs

T
zj yy ,3
1

, 
    (8) 

where 
T

zsy ,3  and zth denotes an element of 3sy .  In this case, 

if it is Rand >BAR, it can be updated as follows 

)5.0(1
,

1
,  

z
T

zi
T

zi dyyy    (9) 

where it indicates butterfly adjustment speed. dy is the 

according to the monarch butterfly i Levy calculate this by flight. 

)( T
iyLevydy     (10) 

In Eq. (9), α is the expectation factor is given as Eq. (11) 

2/TRMax     (11) 

The working function of algorithm 1 represents the function of 

the BBO.  

Algorithm 1 Optimal feature selection using bat induced 

butterfly optimization 
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Input           : Velocity  

Output        : Weight factor 

 1 Initialize the parameters 

 2 Compute the new solutions 

gyyUU T
j

T
j

T
j )( *

1  
  

 3 Improve the performance using  

)( 321
T

s
T

s
T
sNEW YYGyY    

  

 4 Compute the migration process using 

T
zs

T
zj yy ,1
1

, 
 

 5 Determine the new population using 

T
zs

T
zj yy ,2
1

, 
 

 6 Upgrade the position of the butterfly 

 7 Calculate the levy flight using 

)( T
iyLevydy   

 8 End  

 

 

4.2 Software fault prediction using LRNN classifier 

After feature selection, the data are classified based on 
optimal features. The features are classified using LRNN which 
enhances the detection accuracy. The LRNN is a pre-defined 
number for the number of iterations of the sample, for updated 
estimates, which can be repeated using experimental data. When 
the algorithm gets the results of the best value and maximum 
number of repetitions, then the algorithm is stopped. Otherwise, 
it starts a new iteration. Simple network weight repeats and 
propagates through the layer of rusty passengers and in the 
previous position to implement recurring extra weight additions, 
V, 

    TNETgTx ii     (12) 

    
m

j
iijji uTyTNET    (13) 

where n denotes the number of ’state’ nodes and for l output 

nodes the i and g are hidden, and J indicates for input nodes. In 

the feeder network, the input vector, y, is applied using a weight 

layer U. The output of the network is determined by the 

condition and the output weight sets Z, 

    TNETgTx ii     (14) 

      iih

m

j

n

h
hijji vTxuTyTNET    1  

 (15) 

The g represents an output function.  Everywhere training LRNN 

good historical reason 50 processes have been successfully 

applied to an image in complex domain lion, and software 

running exit prediction degree. LRNN can solve all problems in 

all the right ways with weight dynamic memory LRNN. It is time 

to copy the data stored in the LRNN. Basically, in the form of a 

learning process, the changes above the LRNN apply to a link or 

link-feeding feedback. In addition, the school neurological 

network is similar to the standard practice of LRNN, but with a 

slight twist. This requires a calculation of the output, not just the 

current time hierarchy, but one step per season. For this reason, 

the output takes place through the lymph nodes or any other or 

repetitive response of the network. He memorized the feedback 

node values from the previous level. So the new input output data 

depends on the current and previous ones. Here, LRNN time T. 

An input sequence is given as  TKKK ,...,1 , the fixed 

LRNN is calculated as a hidden vector array 

 TQQQ ,...,1 and vector sequence output is

 TXXX ,...,1 by below equations, 

 QTQQThKT aQZKZgQ  1  (16) 

 xTxhT aQZgx     (17) 

Here, an activation function (sigmoid function) is denoted as 

g().As a result, it is necessary to determine the required output 

and cost  function E of the network.   
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Algorithm 2 Fault prediction using LRNN classifier   

Input          : Number of nodes and vectors  

Output       : Cost function 

1 Initialize the values for the input 

2 Determine the weight of the network  

    
m

j
iijji uTyTNET    

  

3 Calculate the output function of the network  

      iih

m

j

n

h
hijji vTxuTyTNET    1

  

4 Calculate the fixed LRNN fir hidden vectors, 

 QTQQThKT aQZKZgQ  1  

5 Compute the general cost function  

6 Compute the cost function of the network, 

      2
3

1

ToTTE jj
T j

j  


  

7 End  

The waveform flow rate function in the package of training is 

defined as the amount of the output and errors in the output of 

the E form: 

      2
3

1

ToTTE jj
T j

j  


  (18) 

For 
thj  neuron, the expected output is indicated as j  and the 

weighting coefficient of learning error is represented as j . 

Then, LRNN real output is referred as jo . The cost function is  
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j
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The regulatory parameter  controls how well the execution of 

the penalty period takes effect. The regulation of the parameter 

  controls the operation of how much they own for the period 

he owns the sentence. The reduction is depending on the slope 

according to the formula,  

           qp
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j
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T j
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TO
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z
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122
3

1

 

 (20) 

The algorithm 2 represents classification of software prediction 

using LRNN.  

5. Results and Discussion 

In this section, we evaluate the performance of proposed 
hybrid soft computing technique for software fault prediction 
(HST-SFP). The proposed HST-SFP technique is implemented 
using Spyder (Python 3.7) with different libraries. The computer 
runs Windows 10, has 2 GB of RAM and an Intel i3 core 
processor. We used the 10-fold-cross validation through all 
experiments. We compare the performance of proposed LRNN 
classifier with existing state-of-art ensemble classifiers are 
AdaboostM1 (E1), Logic Boost (E2), Multiboost AB (E3), 
Bagging (E4), Random Forest (E5), Dagging (E6), Rotation 
Forest (E7), Stacking (E8), Multi scheme (E9) and Voting (E10). 
Because we often have public databases for the use of Turkish, 
white and workers' products, NASA has introduced programs, 
software programs, processes and applications from the open 
source applications of Apache. The description of dataset is 
given in Table 1. The performance of proposed LRNN classifier 
is evaluate through frequently used performance metrics are PD, 
PF, accuracy (A), precession (P), F-measure (F) and AUC. The 
detailed description of performance metrics define as follows: 

np

p

FT

T
PD


    (21) 

np

p

TF

F
PF


    (22) 
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npnp

np

FFTT

TT
A




   (23) 

pp

p

FT

T
P


     (24) 

PPD

PPD
F





2

   (25) 

where Tp, Tn, Fp and Fn defines the True Positive, True Negative, 

False Positive and FalseNegative. 

 

 

5.1 Comparative analysis for Probability of detection 

Table 2 describes the probability of detection comparison of 
proposed LRNN predictors and existing state-of-art ensemble 
predictors are AdaboostM1 (E1), Logic Boost (E2), Multiboost 
AB (E3), Bagging (E4), Random Forest (E5), Dagging (E6), 
Rotation Forest (E7), Stacking (E8), Multi scheme (E9) and 
Voting (E10). From the Table, we observe that the detection 
probability of proposed LRNN predictor is very high compare to 
the existing ensemble predictors. Fig. 2 shows the average 
detection probability comparison of proposed and existing 
predictors. It is represents the average detection probability of 
projected LRNN predictor is 10.5%, 10.1%, 21.2%, 11.4%, 
12.5%, 19.9%, 12.9%, 14.9%, 18% and 12.8% higher than the 
existing state-of-art ensemble predictors are E1, E2, E3, E4, E5, 
E6, E7, E8, E9 and E10 respectively.  
 
5.2 Comparative analysis for Probability of false alarm 
Table 3 describes the probability of false alarm comparison of 
proposed LRNN predictors and existing state-of-art ensemble 
predictors are AdaboostM1 (E1), Logic Boost (E2), Multiboost 
AB (E3), Bagging (E4), Random Forest (E5), Dagging (E6), 
Rotation Forest (E7), Stacking (E8), Multi scheme (E9) and 
Voting (E10). From the Table, we observe that the probability of 
false alarm of proposed LRNN predictor is very high compare to 
the existing ensemble predictors. Fig. 3 shows the average 
probability of false alarm comparison of proposed and existing 
predictors. It is clearly depicts the average probability of false 
alarm of proposed LRNN predictor is 11.49%, 11.4%, 21.1%, 
21.8%, 1 0.74% , 11.9%, 10.24%, 11.23%, 21.19% and 11.8% 
higher than the existing state-of-art ensemble predictors are E1, 
E2, E3, E4, E5, E6, E7, E8, E9 and E10 respectively.  

5.3 Comparative analysis for Accuracy 

Table 4 describes the accuracy comparison of proposed LRNN 
predictors and existing state-of-art ensemble predictors are 
AdaboostM1 (E1), Logic Boost (E2), Multiboost AB (E3), 
Bagging (E4), Random Forest (E5), Dagging (E6), Rotation 
Forest (E7), Stacking (E8), Multi scheme (E9) and Voting (E10). 
From the Table, we observe that the accuracy of proposed LRNN 
predictor is very high compare to the existing ensemble 
predictors. Fig. 4 shows the average accuracy comparison of 
proposed and existing predictors. It is denotes the average 
accuracy of specified LRNN predictor are 16.28%, 10.19%, 
19.07%, 19.4%, 18.05%, 16.64%, 19.4%, 11.1%, 13.5% and 
20.8% higher than the existing state-of-art ensemble predictors 
are E1, E2, E3, E4, E5, E6, E7, E8, E9 and E10 respectively. 
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Fig. 2 Comparison probability of detection for proposed and 
existing detectors  

 

Fig. 3 Comparison probability of false alarm for proposed and 
existing detectors  

 

 

5.4 Comparative analysis for Precession 

Table 5 describes the precession comparison of proposed LRNN 
predictors and existing state-of-art ensemble predictors are 
AdaboostM1 (E1), Logic Boost (E2), Multiboost AB (E3), 
Bagging (E4), Random Forest (E5), Dagging (E6), Rotation 
Forest (E7), Stacking (E8), Multi scheme (E9) and Voting (E10). 
From the Table, we observe that the precession of proposed 
LRNN predictor is very high compare to the existing ensemble 
predictors. Fig. 5 shows the average precession comparison of 
proposed and existing predictors. It describes the average 
precession of projected LRNN predictor is 18.68%, 30.03%, 
25.58%, 19.68%, 17.61%, 13.68%, 50.83%, 17.57%, 26.69% 
and 17.13% higher than the existing state-of-art ensemble 

predictors are E1, E2, E3, E4, E5, E6, E7, E8, E9 and E10 
respectively.  

 

Fig. 4 Comparison accuracy for proposed and existing detectors  
 

5.5 Comparative analysis for F-measure 
 
Table 6 describes the F-measure comparison of proposed LRNN 
predictors and existing state-of-art ensemble predictors are 
AdaboostM1 (E1), Logic Boost (E2), Multiboost AB (E3), 
Bagging (E4), Random Forest (E5), Dagging (E6), Rotation 
Forest (E7), Stacking (E8), Multi scheme (E9) and Voting (E10). 
From the Table, we observe that the precession of proposed 
LRNN F-measure is very high compare to the existing ensemble 
predictors. Fig. 6 shows the average F-measure comparison of 
proposed and existing predictors. It describes the average 
precession of projected LRNN predictor is 12.5%, 15.35%, 
10.90%, 14.57%, 10.56%, 10.12%, 21.46%, 11.54%, 12.2% and 
10.45% higher than the existing state-of-art ensemble predictors 
are E1, E2, E3, E4, E5, E6, E7, E8, E9 and E10 respectively. 

 
Fig. 5 Comparison precession of detection for proposed and 
existing detectors  
5.6 Comparative analysis for Area under curve 
Table 7 describes the area under curve comparison of proposed 
LRNN predictors and existing state-of-art ensemble predictors 
are AdaboostM1 (E1), Logic Boost (E2), Multiboost AB (E3), 
Bagging (E4), Random Forest (E5), Dagging (E6), Rotation 
Forest (E7), Stacking (E8), Multi scheme (E9) and Voting (E10). 
From the Table, we observe that the area under curve of 
proposed LRNN F-measure is very high compare to the existing 
ensemble predictors. Fig. 6 shows the average area under curve 
comparison of proposed and existing predictors. It describes the 
average precession of projected LRNN predictor is 11.67%, 
12.34%, 17.04%, 14.12%, 17.13%, 16.12%, 15.46%, 36.9%, 
26.06% and 36.72% higher than the existing state-of-art 
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ensemble predictors are E1, E2, E3, E4, E5, E6, E7, E8, E9 and 
E10 respectively.  

 

 

 

 

Fig. 6 Comparison F-measure for proposed and existing 
detectors 

 

Fig. 7 Comparison AUC for proposed and existing detectors 

6. Conclusion  

Background: We have proposed a hybrid soft computing 
technique for SFP based on optimal feature extraction and 
classification (HST-SFP). Contributions: A bat induced 
butterfly optimization (BBO) algorithm for optimal feature 
selection among multiple features which compute the most 
optimal features and remove unnecessary features. A Layered 
Recurrent Neural Network (L-RNN) based classifier is used to 
predict the software faults based on their features which enhance 
the detection accuracy. Findings: The average detection 
probability of proposed LRNN detector is 14.42% higher than 
the existing state-of-art detectors. The average probability of 
false alarm of proposed LRNN detector is 14.49% higher than 
the existing state-of-art detectors. The average accuracy of 
proposed LRNN detector is 16.54% higher than the existing 
state-of-art detectors. The average precession of proposed 
LRNN detector is 23.76% higher than the existing state-of-art 
detectors. The average F-measure of proposed LRNN detector is 
12.97% higher than the existing state-of-art detectors. The 
average precession of proposed LRNN detector is 20.35% higher 
than the existing state-of-art detectors. Summary: From 
simulation results, we observe the proposed HST-SFP technique 
has the more effectiveness exceeds any sophisticated 
technologies for databases in terms of Probability of Detection, 
Probability of False Alarms, Accuracy, Precision, F- Measure, 
and AUC.  
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