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Abstract 
Phishing is a criminal mechanism that uses both social engineering 
and technical tricks to steal consumers' personal identity data and 
financial account credentials. As the number of web user's 
increases, phishing frauds are gradually increasing. In order to 
respond effectively to various phishing mechanism, a proper 
understanding of phishing attacks is necessary, and some 
appropriate response methods should be utilized. In this paper, the 
main aim is to detect a phishing website attack by a suggested 
machine learning algorithm. First, we need to update a blacklisted 
URLs and IP for antivirus into the database of our method. The 
database is known as the "blacklist". Second, to avoid blacklist 
attackers, we need to understand how they use creative techniques 
to deceive users by modifying the URL to look as legitimate user 
via obfuscation and many other simple techniques including fast 
blur, where proxies are automatically generated to host a web page; 
Algorithm generation of new URLs; etc. A blacklist is a list of 
many unsafe websites that are accused of fraud, spreading 
malware, or launching any other form of malicious activity. 
Having this list is one of the biggest nightmares for website owners 
because the websites that became part of this list are no longer 
scanned by web crawlers, and there are no backlinks to create these 
sites. The first step is to collect benign and phishing URLs. Then, 
Host-based, popularity-based, and lexical feature extractions are 
applied to create a database of feature values. Finally, the database 
is knowledge extracted using various methods of machine learning. 
An experimental study was conducted using a deep learning 
algorithm, including long-term memory (LSTM). To analyse the 
behaviours of these deep learning architectures, extensive 
experiments were conducted to examine the effect of parameter 
tuning on the performance accuracy of deep learning models. The 
experimental results from this paper also show several issues and 
suggest future research directions related to deep learning in the 
field of phishing detection. 
Keywords: 
URL; Phishing website; Machine learning; LSTM; RNN.   
 
1.  Introduction 

With the increase in the number of web users, phishing 
attacks are gradually increasing. In order to respond 
effectively to various phishing attacks, a proper 
understanding of phishing attacks is necessary, and 
appropriate response methods should be used. 

Online URL reputation services are used to classify 
URLs and the classes returned are used as a supplementary 
source of information that will enable the system to classify 
URLs. The classifier achieves an accuracy of 94-96% by 
detecting a large number of phishing hosts, while 
maintaining a modest false positive rate. URL groups, URL 
categorization, and URL grading mechanisms work in 
tandem to give URLs a rank [8]. 

Using Long-Short-Term Memory (LSTM) provides an 
effective solution for detecting phishing sites. The LSTM 
algorithm can solve more complex problems compared to 
shallow learning algorithms (that is, traditional machine 
learning algorithms). Moreover, LSTM can store past 
information for a long time, however, Recurrent Neural 
Networks (RNN) are not able to do this task for long periods. 
LSTMs have an internal state, they are familiar with the 
temporal structure of the inputs, and they can model the 
parallel chain of inputs separately. As such, we aimed to 
combine the power of the LSTM algorithm into a single 
model and presented how to implement this integration 
effectively [10].  

1.1 Research problem 

The researcher formulated the research questions 
according to the purpose of the study, which are as follows: 

1) How does machine learning by detecting URLs 
identify phishing sites? 

All machine learning models use features - properties or 
attributes of data extracted from input data sets to create their 
models. In the context of URL classification, there are three 
types of features: host-based, lexical, and content-based. 
Host-based features are those that identify identity, location, 
and other network information about the host. Lexical 
features are text properties that are obtained from the URL 
itself. Finally, content-based features come from web pages 
linked to the same URLs. Content-based features require 
more in-depth analysis of the content and are 
computationally more expensive. It is also an inherent risk 
that our systems could be compromised while exploring web 
pages related to the URLs we are trying to rank for. The set 
of content-based features is outside the scope of our research, 
due to the associated risks and greater time requirements. 
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2) How to apply ML methods to classify malicious 
and legitimate websites? 

The researchers examined a variety of techniques to 
prevent phishing attacks. Anti-phishing technologies can be 
categorized into three categories: email-based, content-
based, and URL-based detection methods. The researchers 
used machine learning techniques on feature sets derived 
from phishing emails. Other studies in classifiers using 
features of URLs and search engine results as a means have 
investigated high detection rates while maintaining low false 
positive rates. Chandrasekaran et al. Attempting to identify 
phishing emails using structural properties. These anti-
phishing techniques are not always applicable because the 
methods require phishing emails [13]. 

The authors developed URL-Net, a CNN-based deep 
neural URL discovery network. They argued that current 
methods often use Bag of Words (BoW) properties but suffer 
from some fundamental limitations, such as a lack of 
detection of concatenated concepts in the URL string, a lack 
of automatic feature extraction and a failure of properties 
that are not actually visible in ephemeral URLs. 

The authors developed CNNs and Word CNNs to form 
the visual image of the network. In addition, they suggested 
modern techniques that were effective in dealing with rare 
terms, a prevalent issue in malicious URL detection tasks. 
This approach can allow URL-Net to identify embedding's 
and use sub-word data from invisible words during the 
testing phase. 

The main problem addressed in this study is to enhance 
user authentication on a website. The research investigates 
the potential uses of the input models in detecting phishing 
URLs. In particular, the goal here is to develop the model 
that will be used to predict whether a website is fraudulent 
or legitimate and, if so, to what degree, to improve the 
accuracy of phishing URL detection [11]. 

1.2 Research objectives 

The goal of a phishing site is to obtain personal 
information without permission, either through extortion or 
by visiting a fake web page that looks like the real one, 
which asks the user to enter personal information. This 
results in information security breaches through 
compromises in confidential data where the victim may 
suffer financial loss or loss of assets. The attacker may 
additionally commit identity theft using the personal details 
of the victims. Also, a phishing attack can damage the 
reputation of the spoofed financial institution, as customers 
lose confidence that their account is secure. Thus, they may 
take their habits to another company. Phishing, if not 
investigated, can negatively affect an organization's assets, 
revenue, customer relationships, or marketing efforts, as 
well as a company's image. A phishing attack could cost the 
company hundreds of thousands of dollars per attack in 
terms of employee time and fraud-related loss [9]. 

The main objective of this paper is to analyse the 
performance of the LSTM algorithm in detecting phishing 
activities. This analysis will help organizations or 
individuals choose and adopt the appropriate solution 
according to their technology needs and specific application 
requirements to combat phishing attacks [24]. 

1.3 Importance of this research 

The harmful effects of phishing can be to gain access to 
user's confidential details, which can lead to financial losses 
to users and even prevent them from accessing their own 
accounts. Therefore, in this study, we will identify and 
qualify phishing website features to prevent and mitigate the 
risks of phishing website. 

In addition, this study will make a comparative 
evaluation between the techniques of machine learning 
algorithms. 

Online phishing costs internet users billions of dollars 
annually. Scammers steal personal information and financial 
account details such as usernames and passwords, leaving 
users vulnerable in the online space. 

1.4 Limitations and delimitations of the study 

Since the problem of phishing takes advantage of human 
ignorance or naivety regarding their interaction with 
electronic communication channels (such as email, HTTP, 
etc.), it is not always easy to solve. All suggested solutions 
try to reduce the impact of phishing attacks. 

From a high-level perspective, there are generally two 
popular proposed solutions to mitigate phishing attacks: 

•  User education. Humans are taught to try to improve 
classification accuracy to correctly identify phishing 
messages, and then apply appropriate actions to properly 
categorized phishing messages, such as reporting attacks to 
system administrators. 

• Software improvement. The program was developed to 
better categorize phishing messages on behalf of the user, or 
to present the information in a more simplified manner. 

The main disadvantages of both approaches are: 

 • Resistance to training by non-technologists, so training 
must be permanent. 

•  Still, some software solutions depend on the user. If 
people ignore the security warnings, the solution may 
become useless [15]. 

Attackers can use technical vulnerabilities to create 
socially customized packets (such as using legitimate but 
deceptive domain names). Effective mitigation requires 
addressing matters on a personal and technical level. Since 
phishing attacks aim to exploit vulnerabilities of the user (i.e. 
end users), it is difficult to minimize them. For example, 
according to the assessment, end users fail to detect 27% of 
phishing attacks, even when taught with the best outreach 
software. On the other hand, software phishing detection 



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022 
 

 

421

 

techniques are evaluated against phishing attacks, which 
makes their performance abnormal by phishing tactics [16]. 

2. Literature review 
The researchers examined a variety of techniques for 

preventing phishing attacks. Anti-phishing technologies can 
be classified into three categories: email-based, content-
based, and URL-based detection methods. The researchers 
used machine learning techniques on feature sets derived 
from phishing emails. 

Several researchers have analysed the statistics of 
suspicious URLs in some way. Our approach borrows 
important ideas from previous studies. We are reviewing 
previous work on phishing Site discovery using URL 
features that motivated our own approach. 

Bahnsen et al. (2018) [1] suggested a more effective 
method for real-time phishing URL detection. It was 
mentioned that there are a lot of anti-phishing methods 
appearing, but scammers use diverse and dynamic methods 
for scam victims, so a smart and flexible model was needed 
to catch a phishing URL. Data mining methods can be used 
to promote an active model that contains basic and non-
trivial data that can be backed up from huge data sets using 
classification algorithms to name a legitimate URL.  

Four different classification algorithms were used to 
classify and approximate the data set for its achievement, 
accuracy, and several criteria. The experiments were 
handled using four different rule-based algorithms to detect 
cryptic awareness, from the huge data set to predict a 
phishing URL. The rated results paralleled their 
performance on the accuracy chart, error rate, time duration, 
and total number of component criteria. However, the results 
showed that all the selected algorithms complete a higher 
expected rate. The rules that were developed demonstrated 
the interaction and relationship between URL features which 
can help us build frameworks for detecting phishing URLs. 
There was a phishing detection form which is good for 
preventing users from being deceived by achieving 
verification by sending private information.  

Preethi, and Velmayil (2019) [2] suggested a method for 
analysing phishing URLs using lexical analysis. Suggest a 
pre-phishing algorithm which is computerized machine 
learning to resolve phishing and non-phishing URLs to 
extract safe results. 

Phishing URLs often contain two connections between 
the part of the registered domain level and the method or 
reservation level URL. Therefore, applying a URL to 
connections describes threading and categorizes using 
feature extractor from attributes. Also, these features are 
then used in a machine learning method to catch phishing 
URLs from an actual data set. Phishing and non-phishing 
URLs were categorized by detecting the domain value and 
the threshold value for each attribute using decision rating. 
This technique was further classified in Mat Lab using three 
major classifiers SVM, Random Forest and Naive Bayes to 

discover how it works in data set estimation. This paper 
suggested that the pre-phishing algorithm for an effective 
phishing URL detection system is based on the analysis of 
the URL sentence. The Pre-Phish approach was Demo 
Phishing, an empirical case study investigated to collect and 
evaluate a variety of phishing URL features and patterns, 
with all relevant attributes. This was a computerized 
machine learning method that relied on the characteristics of 
a phishing URL to catch and block phishing URLs and to 
provide a high level of security. The same limitations have 
been used to create a tool based on a web browser plug-in 
that can capture and block phishing URLs in real time and 
resolve data mining methods to detect new patterns of 
phishing URLs [2]. 

Ashit Kumar Dutta (2021) [3] proposed study 
emphasized the phishing technique, whereby a phishing 
URL is seen to include the automatic classification of URLs 
in a predefined set of category values based on several 
features and a category variable. Machine learning-based 
phishing techniques rely on URL functions to gather 
information that can help categorize URLs to detect phishing 
sites. To combat the ongoing complexity of phishing attacks 
and tactics, anti-phishing techniques are essential. The 
authors used LSTM technology to identify malicious and 
legitimate URLs. The crawler was developed that crawled 
8000 URLs from the Alexa Rank portal, and also used the 
Phish-tank dataset to measure the efficiency of the proposed 
URL detector. The result of this study shows that the 
proposed method provides superior results instead of the 
current deep learning methods. A total of 8000 malicious 
URLs were detected using our suggested URL detector. We 
achieved better accuracy and F1 record with limited time.  

In the study by researchers Ciza Thomas, Sandhya L. and 
Joby James (2013) several features are compared using 
different data mining algorithms. The results indicate the 
efficiency that can be achieved using lexical features. To 
protect end users from visiting these sites, we can attempt to 
identify phishing URLs by analyzing lexical and host-based 
features. The particular challenge in this area is that 
criminals are constantly developing new strategies to 
counter our defensive measures. To succeed in this 
competition, we need algorithms that constantly adapt to 
new examples and features of phishing URLs. Online 
learning algorithms provide better learning methods as 
compared to batch based learning mechanisms [5]. 

Purbay M. and Kumar D. (2021) [3] proposed a process 
of classifying phishing attacks according to the scammer's 
mechanism to trap the alleged users. 

Many of these attack methods are master logging tools 
and DNS disablement. Social engineering startups include 
online blogs, SMS services, social media platforms that use 
web services such as Facebook and Instagram, peer-to-peer 
file-sharing services, and Voice over Internet Protocol (VoIP) 
systems that attackers use to use caller spoofing identifiers. 
Each form of phishing differs slightly in how the process is 
carried out in order to defraud an unsuspecting consumer. 
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Phishing attacks occur when an attacker sends a message 
containing a link to potential users to direct them to phishing 
URLs [4].  

3. Methodology 
In this study, we use LSTM (Long-Short-Term Memory) 

which is an algorithm that is part of the structure of our 
scheme that takes the input from a URL as a character 
sequence and predicts whether the link is a phishing or a 
legitimate website [22]. 

Long and short-term memory is an adaptive and 
recurrent neural network (RNN), in which each neuron is 
swapped with a memory cell that is additional to the 
conservative neuron on behalf of an internal state. 
Multiplexes are also used as gates to control the flow of 
information. LSTM layers consist of a set of frequently 
linked blocks called memory blocks as shown in Fig. 1. 

Each of these blocks contains one or more memory cells 
that are connected repeatedly. Hence, a normal LSTM cell 
has an input gate that controls the input of data from outside 
the cell, which determines whether the cell retains or omits 
data in the internal state, and an output gate that prevents or 
allows the internal state to be seen from the outside. 

The most common is the confusion matrix consisting of 
four basic scales: true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN). 

Standard metrices, such as accuracy, recall, and F1 score 
are used in this study to measure the performance of the 
proposed solutions.  

Furthermore, LSTM modules are known to have the ability 
to learn a large-scale dependency from the input sequence. 
The LSTM training algorithm uses error gradients to 
calculate, and combines iterative real-time learning with 
backpropagation. 

However, backpropagation is dropped after the first 
timestamp because long-term dependencies are handled by 
memory blocks, not by backpropagation error gradient flow. 
This step also helped make the LSTM directly comparable 
to other RNNs in terms of performance because training can 
be performed using standard backpropagation over time. 

LSTM algorithm architecture: The central components 
of the LSTM architecture are the memory cell, which can 
maintain its state over time, and the nonlinear gate units, 
which regulate the information input and output flow of the 
network as shown in Fig. 2. Based on the insights from 
secure networks, it is observed that since LSTM neurons 
consist of internal cells and gate units, one should look not 
only at the output of the neuron but also at the internal 
structure to design the original features of the LSTM so that 
it can address classification problems [25]. 

 

Figure 1. Architecture of the LSTM method – A 

 

Time complexity: In order to calculate the time 
complexity of the proposed models, the time complexity of 
the DNN and LSTM based model sections must be 
calculated separately. For the DNN section, the time 
complexity is equal to the sum of the number of parameters 
for each layer because the time is dominated by the matrix 
multiples of the Multilayer Perception (MLP) layers. As 
such, the time complexity of the DNN section is O(4p1), 
where 4 is the number of layers and p1 is the average number 
of parameters per layer, which depends on the input and 
output Rate each layer. 

The time complexity of each layer in the LSTM is O(1) 
per weight because the LSTM is local in space and time [26]. 
Therefore, the time complexity of the LSTM partition is O(w 
+ p2), where the total number of all weights in the LSTM 
layers and p2 is the number of parameters in the last layer of 
the LSTM partition. For the model where BiLSTM is used 
instead of LSTM, the time complexity is O(2w + p2) instead 
of O(w+p2) because the calculations are done in two 
different directions in BiLSTM. Due to the structure of the 
hybrid model, when two separate partitions are combined, 
two MLP layers are used to obtain the final output value. The 
time complexity of this final part is O(2p3), where p3 is the 
average number of parameters in these layers. Finally, the 
time complexity of the proposed LSTM-based hybrid model 
is O(w + 4p1 + p2 + 2p3), which is the sum of the time 
complexity of all parts. Although this combination of models 
brings an additional cost in terms of time required, the 
benefit is outside of these additional cost data sets. We did 
not want to include old datasets and our goal was to conduct 
experiments in new datasets. 
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Figure 2. Architecture of the LSTM method - B 

 

3.1 Principles 

The proposed framework employs a Recurrent Neural 
Network (RNN) variant called the Long Short-Term 
Memory (LSTM) to classify malicious and legitimate 
website URLs. The RNN implies to broad groups of 
networks of a similar structure, where on is finite and the 
other is an infinite input. Both network types contain time 
dynamic behavior. A recurrent network of finite input is a 
directed acyclic graph that can be replaced by a purely 
feedforward neural network, whereas a recurrent network of 
infinite input is a directed cyclical graph that cannot be 
modified. The LSTM is a deep learning method, which 
prevents the gradient problem of RNN. The LSTM 
comprises multiple gates that are employed to improve the 
performance. Each input of the LSTM generates an output 
that becomes an input for the following layer.  

a. Recurrent Neural Networks  

The recurrent neural network is a type of artificial neural 
network which uses sequential data or time series data. 
These algorithms are typically used for temporal or ordinal 
problems such as speech recognition, image captioning, 
natural language processing. Similar to the convolutional 
neural networks and feedforward neural networks, recurrent 
neural networks utilize training data to learn and optimize 
the model parameters [30]. The networks’ ability to 
memorize distinguishes them from other machine learning 
techniques. Such ability is characterized by the way the 
previous input is used in calculating the weights, which 
influences the current input and output. Therefore, the 
recurrent neural network output depends on the sequence of 
previous inputs. Similarly, the future input can be helpful in 

determining the output of a specific input, but the 
unidirectional neural networks cannot account for these 
events in their prediction [30]. To better understand the 
concept of recurrent neural networks, the below figure 
illustrates a simple RNN and how the network can be 
unfolded to generate the 3rd output as shown in Fig. 3. 

Figure 3. The structure and unfolding of RNN. 

As shown in the first part of Fig. 1, the RNN has a 
feedback loop which is used to unroll in 3 timesteps to 
produce the second part of the figure. Note that the RNN can 
be modified to unroll N timesteps as well. While the figure 
shows a simple illustration of a very small RNN, the topic of 
RNN is vast and discussing it is beyond the scope of our 
work. However, we need to discuss the gradient to be able 
to understand the downsides of the RNN and how the LSTM 
is used to address these issues. 

A gradient is a partial derivative with respect to its inputs, 
which measures how much the output of a function changes 
if you change the inputs a little bit. The gradient can be 
thought of as the slope of a function, where the higher the 
gradient, the steeper the slope and the faster a model can 
learn. However, if the slope is zero, the model stops learning. 
Simply put, the gradient measures the change in all weights 
with regard to the change in error. 

After describing the gradient and what is it used for, we 
can now discuss the downsides of the RNN. There are two 
main downsides for the RNN, exploding gradients and 
vanishing gradients. The exploding gradients happen when 
the algorithm, unreasonably, assigns high importance to the 
weights. Fortunately, this problem can be mitigated by 
truncating or squashing the gradients. Unfortunately, the 
vanishing gradients problem is not as easy as the exploding 
gradients. The vanishing gradients problem occurs when the 
values of the gradients are too small and the model stops 
learning or takes too long to learn. The problem lasted for a 
while, but it was solved through the concept of LSTM [31]. 

b. Long Short-Term Memory 

Long Short-Term Memory networks (LSTMs) are an 
extension for recurrent neural networks, which basically 
extends the memory. Therefore, it is well suited to learn from 
important experiences that have very long time lags in 
between [31]. The units of an LSTM are connected together 
to be used as the building blocks of the RNN, which is often 
called the LSTM network. However, building the RNN 
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using LSTM network enables the RNN to remember inputs 
over a long period of time. The LSTM’s ability to remember 
is due to the LSTM’s contains an information memory, 
which is very similar to the computer’s memory. The LSTM 
can read, write and delete information from its memory. The 
memory of the LSTM can be described as a gated cell, with 
the gate controlling whether or not to store or delete the 
information. The gate opens to store the information or 
discard the forwarded the information based on the 
importance of the information, which happens through 
weights. The weights are learned by the algorithm over time, 
which simply means the LSTM learns over time what 
information are important and what are not. 

The LSTM have three gates: input gate, forget gate, and 
output gate. These gates control the memory of the LSTM, 
where the input gate is responsible of determining whether 
or not to let new input in, the delete gate is responsible of 
deleting the information if it is not important, and the output 
gate allows the information to impact the output at the 
current timestep. Fig. 4 illustrates a RNN with its gates. 

 

Figure 4. RNN with its three input gates. 

 

The gates in the LSTM are analog and using sigmoid 
functions, meaning they generate a value that ranges from 
zero to one. The fact that they are analog enables them to do 
backpropagation. The problematic issue of vanishing 
gradients is solved through LSTM as it keeps the gradients 
steep enough, which keeps the training relatively short and 
the accuracy high. 

After briefly describing the RNN, the problem of 
vanishing gradients, and how the problem is solved using the 
LSTM. We now start discussing our proposed design. 

3.2 Design 

As shown in Fig. 5, we started the process by collecting 
and preparing the dataset. The dataset was collected from 
Phish-tank [27]. The used dataset contains 194,798 URLs, 
of which 97,399 are phishing URLs and the rest is legitimate 
ones. The data were then split into training and testing 
datasets. The LSTM network was trained using the training 
dataset and the performance was evaluated based on the 
accuracy. The parameters of the LSTM were then modified  

and tuned to improve the performance before deploying it 
into the production environment. The classifier can then act 
as an intermediary stage between the end user and the 
internet. Whenever a request is sent to any URL, the 
requested URL is verified using the model and the access is 
granted if the requested URL is not a phishing URL, or 
blocked if the requested URL is a phishing URL. 

 

Figure 5. Design of the proposed methodology. 

 

Before diving into the details of the LSTM 
implementation, we start by discussing the components of 
the LSTM network layers. The LSTM is an effective 
prediction and classification mode as it generates an output 
based on the arbitrary number of implemented steps. The 
LSTM model contains five essential components that enable 
the model [28]. 

Cell State (CS) – a cell that accommodate the long- and 
short-term memories. 

Hidden State (HS) – The output status information that is 
used to determine the classification based on the current data, 
input data, and a hidden condition. The HS is used to recover 
both short-term and long-term memory in order to make the 
prediction. 

Input Gate (IT) – The total number of the information 
that is fed into the cell state. The input gate identifies an input 
value for memory alteration. The sigmoid defines the values 
that ranges from 0 to 1. Then a tanh function is used to 
weight the passed by values to evaluate their significance 
from -1 to 1. The below equations represent the input gate 
and the cell state, wherein Wn is the weight, HTt-1 is the 
previous state of the hidden state, xi is the input, and bn is the 
bias vector which need to be learnt during the training phase 
[29]. 

IT = 𝜕(Wn(HTt-1, xi) + bn)                                                       (1) 

CT = tanh(Wd(HTt-1, xi) + bc)                                                     (2) 

 

Forget Gate (FT) – The total number of data that flows 
from the current input and past cell state into the present cell 
state. This gate is used to filter out the information that needs 
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to be discarded from the memory. The sigmoid function is 
used to describe it contains (HTt-1). The input values (xi) are 
examined and the number of outputs are verified by each cell 
state CTt-1. 

FT = 𝜕(Wf(HTt-1, xi) + bf)                                                       (3) 
Output Gate (OT) – The total number of information that 

flows into the hidden state. The sigmoid function of this gate 
determines which values to let through 0 and 1. The tanh 
function presents weightage of the values which are 
transferred to determine their degree of importance ranging 
from -1 to 1 and multiplied with output of sigmoid [29]. 

OT = 𝜕(Wo(HTt-1, xi) + bo)                                                          (4) 

HT = OT * TANH(CT)                                                                         (5) 

3.3 Implementation 

The LSTM network is implemented using python with 
the help of keras and tensorflow libraries. The LSTM is built 
using a sequential model and structured as shown in the 
below figure. 

As shown in Fig. 6, the first layer in the LSTM is the 
input layer, which determines the size and the type of the 
input into the LSTM network. The second layer is the 
embedding layer, which sets between the input layer and the 
LSTM layer. As the LSTM operations are basically floating 
additions and multiplications, the embedding layer is used to 
generate a vector float point representation of the input URL. 
The third layer is the LSTM layer, which utilizes the sigmoid 
and the tanh functions to adjust the weights, dropout some 
data which are considered irrelevant, and forward the results 
into the dropout layer. The fourth layer is the dropout layer, 
which controls what data flows into the output layer and 
what data are to be removed from the LSTM memory. 

 

Figure 6. The structure of the LSTM network. 

 

The final layer is the Dense layer or the output layer, 
which takes the output of the LSTM as an input and  
produces the classification of the LSTM network. The 
parameters of the designed LSTM network are shown in the 
Table 1. 

 

 

Table 1. LSTM network parameters. 

Model Sequential 
Embedding Input dimension = 100, output 

dimension = 32, input length = 75 
LSTM Output = 32, dropout = 0.2, recurrent 

dropout = 0.2 
Dense Activation = sigmoid, Kernel 

regularizer = regularizers.l2(le-4) 
Adam optimizer Learning rate = 0.0015, loss = 

binary_crossentropy, metrics = 
accuracy 

4. Discussion and Results 
The data set that we used in our research has been well 

researched and measured by some researchers. The wiki 
accompanying the dataset comes with a data description 
document that discusses the data generation strategies taken 
by the dataset authors [7]. 

To update our dataset of new phishing sites, we also 
implemented code that extracts the features of new phishing 
sites provided by the Phish-Tank website. The dataset 
contains about 11,000 samples from websites, and we used 
10% of the samples in the testing phase. Every website is 
flagged as legitimate or phishing. The features of our dataset 
are as follows: 

I. Abnormal URL: extracted from WHOIS database. 
For a legitimate website, the identity is usually part 
of its URL. 

II. Website Redirect Count: If the redirect is more than 
four times. 

III. Web Traffic: This feature measures the popularity of 
a site by determining the number of visitors. 

IV. Page Rank: Page Rank is a value ranging from 0 to 1. 
PageRank aims to measure the importance of a web 
page on the Internet. 

V. HTTPS Token: Spoof the https token in the URL. For 
example, http://https-www-mellat-phish.ir 

VI. DNS record: DNS record exists. 

VII. Request URL: The request URL checks whether 
external objects in a web page such as images, videos, 
and sounds have been downloaded from another 
domain. 

VIII. Anchor URL: A link is an element specified by the 
<a> tag. This feature is treated exactly as the request 
URL. 

IX. Get an IP address: If an IP address is used instead of 
a domain name in the URL, such as 
http://217.102.24.235/sample.html. 

X. URL length: Scammers can use a long URL to hide 
the suspicious part in the address bar. 
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The proposed framework was developed in Python 3.0 
using Jupyter notebook software with the support of Numpy, 
Sci-Kit Learn, Tensorflow, and Keras. To evaluate our 
proposed framework, we extracted a dataset from the Phish-
tank database. The parameters of the training phase of the 
proposed framework are shown in Table 1. We used a 
learning rate of 0.0015, which was obtained by sweeping the 
design space and selecting the best value. 

In order to analyze the results of our proposed framework, 
we used the following metrics: 

1) Accuracy: is the percentage of correctly classified 
URLs. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
் ା ்ே

்ାிାிேା்ே
                              (6) 

2) Recall: is the total number of phishing URLs that are 
correctly classified. 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ  
்

்ା ிே
                                                (7) 

3) Precision: is the number of correctly predicted 
phishing URLs. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ  
்

்ା ி
                                          (8) 

4) F-measure: is the weighted harmonic mean of the 
precision and recall of the test. The best value will be 
at 1 and worst at 0 value.  

𝐹 െ𝑀𝑒𝑎𝑠𝑢𝑟𝑒 ൌ  
ଶ ൈ௦ ൈோ

௦ାோ
              (9) 

We trained our model using 5 epochs, and we report the 
results of each epoch as shown in Table 2. 

Table 2. The results of the training phase by epoch. 

Epoch Time Loss Accuracy 
1 195s 0.3562 0.8442 
2 192s 0.2709 0.8889 
3 194s 0.2415 0.9012 
4 195s 0.2224 0.9101 
5 191s 0.2104 0.9151 

 

As shown in Table 2, the accuracy of our proposed 
framework improved by 4.4% from epoch 1 into epoch 2. 
However, the accuracy improvement decreases to reach 0.5% 
between epochs 4 and 5. Similarly, the loss decreases by 8.5% 
between epoch 1 and epoch 2, but drops to a small decrease 
of 1.2% between epochs 4 and 5. On the other hand, the time 
to finish running each epoch is slightly affected and hovers 
around 195 seconds. While the time required by each epoch 
is expected to be the same, the framework was run on a 
laptop with the support of Intel® Core™ i7-7700HQ CPU 
@ 2.8Ghz and 16 GBs of RAM. The Laptop was running 
multiple applications and have a shared environment as 
expected, therefore; the time variation can be explained by 

having a different process interrupting the process, cache 
misses, processes scheduling… etc.  

To test the trained model of our proposed framework, we 
split the collected dataset into 75% training and 25% for 
testing. Using the testing part of the dataset, our model 
reported a loss of 0.1887 and an accuracy of 0.9257. As the 
results of the testing shows, the performance of our trained 
model is better than the results reported by the last training 
epoch. Therefore, we started a sensitivity analysis in which 
we varied the number of epochs used to train our model and 
we report the results as shown in Table 3. 

Table 3. The performance of our proposed framework with 
different epochs. 

# of 
epochs 

Time of 
last epoch 

Loss of last 
epoch 

Accuracy of 
last epoch 

1 180s 0.3581 0.8440 
2 176s 0.2711 0.8886 
3 178s 0.2403 0.9026 
4 181s 0.2224 0.9100 
5 181s 0.2107 0.9153 
6 183s 0.2018 0.9193 
7 184s 0.1944 0.9221 
8 174s 0.1897 0.9246 
9 176s 0.187 0.9250 
10 176s 0.1829 0.9276 
 

As the results in Table 3 shows, increasing the number 
of epochs can increase the framework’s accuracy and 
decrease the loss. However, the returns of increasing the 
number of epochs are diminishing when the number of 
epochs increases, as we can see from the table, increasing 
the number of epochs from 9 to 10 increased the accuracy by 
0.26% only, and dropped the loss by 0.39% only. Thus. We 
stopped our sensitivity analysis on the number of epochs at 
10 epochs. Testing the trained model at 10 epochs, reported 
an event better results, which achieved an accuracy of 93.45% 
and a loss of 16.71%. 

To further analyze the results and tune our trained model, 
we varied the learning rate parameter as shown in the below 
Table 4. 

Table 4. Accuracy with respect to different learning 
rates. 

# of 
epochs 

LR = 
0.0015 

LR = 
0.0001 

LR = 
0.002 

1 0.8440 0.7712 0.8522 
2 0.8886 0.8189 0.8964 
3 0.9026 0.8289 0.901 
4 0.9100 0.8376 0.9160 
5 0.9153 0.8439 0.9203 
6 0.9193 0.8497 0.9234 
7 0.9221 0.8547 0.9258 
8 0.9246 0.8589 0.9279 
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9 0.9250 0.8627 0.9293 
10 0.9276 0.8672 0.9307 

 

As we can notice from Table 4, a learning rate of 0.002 
achieved the highest accuracy which reached to 93.07%.  

The below table shows a comparison between our 
proposed framework and other frameworks, which used 
different machine learning techniques to detect phishing 
websites. 

Table 5. Performance comparison between different 
schemes. 

Method Accuracy TP rate FP rate F-
measure 

Our 
framework 

93.45% 95.07% 4.9% 93.31% 

DNN [32] 88.77% 85.83% 14.17% - 

DNN With 
GA [32] 

91.13% 90.79% 9.21% - 

Decision 
Table [33] 

92.24% 93.2% 6.8% - 

Naïve 
Bayes [33] 

92.98% 93% 7% - 

ANN-MLP 
[34] 

87.61% - - - 

As shown in Table 5, our proposed framework has a 
better performance than other machine learning techniques. 
We observe that the Naïve Bayes classifier proposed in [33] 
has the closest accuracy to our proposed framework, which 
has an accuracy that is 0.5% below the accuracy of our 
proposed framework. To have a better understanding of our 
results we show the confusion matrix of our evaluation in 
Table 6. 

Table 6. The confusion matrix of our proposed framework. 

 Predictive 

Positive Negative 

Actual Positive 91.60% 4.74% 

Negative 8.39% 95.25% 

 Table 6 shows the confusion matrix of our proposed 
framework, we can observe that our scheme has a higher 
accuracy in correctly detecting legitimate websites. On the 
other hand, our framework has an accuracy of 91.6% in 
detecting a phishing URL when it is actually a phishing URL. 

 Host-based features explain “where” phishing sites are 
hosted, “who” they are managed by, and “how” they are 
managed. We use these features because phishing websites 
may be hosted at less reputable hosting centers, on machines 
that are not usual web hosts, or through non-reputable 
registrars. 

 Using lexical features, we were able to achieve a 
detection accuracy/success rate of 91.5% for splitting the test 
at 60%. When using 90% of the data set, we obtained 92.55% 
detection accuracy. In MATLAB, using a regression tree, we 
obtained 90.25% detection accuracy when 60% of the data 
set was used for the test and 87.26% detection accuracy 
when 90% of the data was used for the test. 

5. Conclusion 
The proposed framework is an effective technique that 

addresses the detection of phishing websites by relying on 
the website’s URL. The framework is built using the Long 
Short-Term Memory algorithm, which improves the 
Recurrent Neural Networks by solving the diminishing 
gradients problem. While the problem of phishing cannot be 
completely removed, however; it can be significantly 
mitigated by two main ways. First, improving and 
implementing smart anti-phishing techniques. Second, 
educating the end users on how fraudulent phishing websites 
can be detected and identified. To counter the novel and 
complex phishing attacks and tactics, ML anti-phishing 
techniques are of extreme importance. In this work, we 
employed LSTM technique to distinguish malicious and 
legitimate websites. We used Phish-tank dataset to measure 
the efficiency of the proposed framework. The results of our 
evaluation shows that the proposed method presents superior 
results. A dataset of 194,798 URLs, of which 97,399 are 
phishing URLs and the rest is legitimate ones. Our 
framework achieved a very high accuracy in detecting the 
phishing websites. 
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