
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

419

Manuscript received May 5, 2022
Manuscript revised May 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.5.60

Detection of Phishing Websites by Investigating Their URLs using
LSTM Algorithm

Barah Mohammed Alanzi1 and Diaa Mohammed Uliyan1
Bh.alghassab@gmail.com, d.uliyan@uoh.edu.sa
1College of Computer Science and Engineering,
Department of information and computer science

 University of Hai’l ,Ha’il, Saudi Arabia

Abstract
Phishing is a criminal mechanism that uses both social engineering
and technical tricks to steal consumers' personal identity data and
financial account credentials. As the number of web user's
increases, phishing frauds are gradually increasing. In order to
respond effectively to various phishing mechanism, a proper
understanding of phishing attacks is necessary, and some
appropriate response methods should be utilized. In this paper, the
main aim is to detect a phishing website attack by a suggested
machine learning algorithm. First, we need to update a blacklisted
URLs and IP for antivirus into the database of our method. The
database is known as the "blacklist". Second, to avoid blacklist
attackers, we need to understand how they use creative techniques
to deceive users by modifying the URL to look as legitimate user
via obfuscation and many other simple techniques including fast
blur, where proxies are automatically generated to host a web page;
Algorithm generation of new URLs; etc. A blacklist is a list of
many unsafe websites that are accused of fraud, spreading
malware, or launching any other form of malicious activity.
Having this list is one of the biggest nightmares for website owners
because the websites that became part of this list are no longer
scanned by web crawlers, and there are no backlinks to create these
sites. The first step is to collect benign and phishing URLs. Then,
Host-based, popularity-based, and lexical feature extractions are
applied to create a database of feature values. Finally, the database
is knowledge extracted using various methods of machine learning.
An experimental study was conducted using a deep learning
algorithm, including long-term memory (LSTM). To analyse the
behaviours of these deep learning architectures, extensive
experiments were conducted to examine the effect of parameter
tuning on the performance accuracy of deep learning models. The
experimental results from this paper also show several issues and
suggest future research directions related to deep learning in the
field of phishing detection.
Keywords:
URL; Phishing website; Machine learning; LSTM; RNN.

1. Introduction

With the increase in the number of web users, phishing
attacks are gradually increasing. In order to respond
effectively to various phishing attacks, a proper
understanding of phishing attacks is necessary, and
appropriate response methods should be used.

Online URL reputation services are used to classify
URLs and the classes returned are used as a supplementary
source of information that will enable the system to classify
URLs. The classifier achieves an accuracy of 94-96% by
detecting a large number of phishing hosts, while
maintaining a modest false positive rate. URL groups, URL
categorization, and URL grading mechanisms work in
tandem to give URLs a rank [8].

Using Long-Short-Term Memory (LSTM) provides an
effective solution for detecting phishing sites. The LSTM
algorithm can solve more complex problems compared to
shallow learning algorithms (that is, traditional machine
learning algorithms). Moreover, LSTM can store past
information for a long time, however, Recurrent Neural
Networks (RNN) are not able to do this task for long periods.
LSTMs have an internal state, they are familiar with the
temporal structure of the inputs, and they can model the
parallel chain of inputs separately. As such, we aimed to
combine the power of the LSTM algorithm into a single
model and presented how to implement this integration
effectively [10].

1.1 Research problem

The researcher formulated the research questions
according to the purpose of the study, which are as follows:

1) How does machine learning by detecting URLs
identify phishing sites?

All machine learning models use features - properties or
attributes of data extracted from input data sets to create their
models. In the context of URL classification, there are three
types of features: host-based, lexical, and content-based.
Host-based features are those that identify identity, location,
and other network information about the host. Lexical
features are text properties that are obtained from the URL
itself. Finally, content-based features come from web pages
linked to the same URLs. Content-based features require
more in-depth analysis of the content and are
computationally more expensive. It is also an inherent risk
that our systems could be compromised while exploring web
pages related to the URLs we are trying to rank for. The set
of content-based features is outside the scope of our research,
due to the associated risks and greater time requirements.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

420

2) How to apply ML methods to classify malicious
and legitimate websites?

The researchers examined a variety of techniques to
prevent phishing attacks. Anti-phishing technologies can be
categorized into three categories: email-based, content-
based, and URL-based detection methods. The researchers
used machine learning techniques on feature sets derived
from phishing emails. Other studies in classifiers using
features of URLs and search engine results as a means have
investigated high detection rates while maintaining low false
positive rates. Chandrasekaran et al. Attempting to identify
phishing emails using structural properties. These anti-
phishing techniques are not always applicable because the
methods require phishing emails [13].

The authors developed URL-Net, a CNN-based deep
neural URL discovery network. They argued that current
methods often use Bag of Words (BoW) properties but suffer
from some fundamental limitations, such as a lack of
detection of concatenated concepts in the URL string, a lack
of automatic feature extraction and a failure of properties
that are not actually visible in ephemeral URLs.

The authors developed CNNs and Word CNNs to form
the visual image of the network. In addition, they suggested
modern techniques that were effective in dealing with rare
terms, a prevalent issue in malicious URL detection tasks.
This approach can allow URL-Net to identify embedding's
and use sub-word data from invisible words during the
testing phase.

The main problem addressed in this study is to enhance
user authentication on a website. The research investigates
the potential uses of the input models in detecting phishing
URLs. In particular, the goal here is to develop the model
that will be used to predict whether a website is fraudulent
or legitimate and, if so, to what degree, to improve the
accuracy of phishing URL detection [11].

1.2 Research objectives

The goal of a phishing site is to obtain personal
information without permission, either through extortion or
by visiting a fake web page that looks like the real one,
which asks the user to enter personal information. This
results in information security breaches through
compromises in confidential data where the victim may
suffer financial loss or loss of assets. The attacker may
additionally commit identity theft using the personal details
of the victims. Also, a phishing attack can damage the
reputation of the spoofed financial institution, as customers
lose confidence that their account is secure. Thus, they may
take their habits to another company. Phishing, if not
investigated, can negatively affect an organization's assets,
revenue, customer relationships, or marketing efforts, as
well as a company's image. A phishing attack could cost the
company hundreds of thousands of dollars per attack in
terms of employee time and fraud-related loss [9].

The main objective of this paper is to analyse the
performance of the LSTM algorithm in detecting phishing
activities. This analysis will help organizations or
individuals choose and adopt the appropriate solution
according to their technology needs and specific application
requirements to combat phishing attacks [24].

1.3 Importance of this research

The harmful effects of phishing can be to gain access to
user's confidential details, which can lead to financial losses
to users and even prevent them from accessing their own
accounts. Therefore, in this study, we will identify and
qualify phishing website features to prevent and mitigate the
risks of phishing website.

In addition, this study will make a comparative
evaluation between the techniques of machine learning
algorithms.

Online phishing costs internet users billions of dollars
annually. Scammers steal personal information and financial
account details such as usernames and passwords, leaving
users vulnerable in the online space.

1.4 Limitations and delimitations of the study

Since the problem of phishing takes advantage of human
ignorance or naivety regarding their interaction with
electronic communication channels (such as email, HTTP,
etc.), it is not always easy to solve. All suggested solutions
try to reduce the impact of phishing attacks.

From a high-level perspective, there are generally two
popular proposed solutions to mitigate phishing attacks:

• User education. Humans are taught to try to improve
classification accuracy to correctly identify phishing
messages, and then apply appropriate actions to properly
categorized phishing messages, such as reporting attacks to
system administrators.

• Software improvement. The program was developed to
better categorize phishing messages on behalf of the user, or
to present the information in a more simplified manner.

The main disadvantages of both approaches are:

 • Resistance to training by non-technologists, so training
must be permanent.

• Still, some software solutions depend on the user. If
people ignore the security warnings, the solution may
become useless [15].

Attackers can use technical vulnerabilities to create
socially customized packets (such as using legitimate but
deceptive domain names). Effective mitigation requires
addressing matters on a personal and technical level. Since
phishing attacks aim to exploit vulnerabilities of the user (i.e.
end users), it is difficult to minimize them. For example,
according to the assessment, end users fail to detect 27% of
phishing attacks, even when taught with the best outreach
software. On the other hand, software phishing detection

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

421

techniques are evaluated against phishing attacks, which
makes their performance abnormal by phishing tactics [16].

2. Literature review
The researchers examined a variety of techniques for

preventing phishing attacks. Anti-phishing technologies can
be classified into three categories: email-based, content-
based, and URL-based detection methods. The researchers
used machine learning techniques on feature sets derived
from phishing emails.

Several researchers have analysed the statistics of
suspicious URLs in some way. Our approach borrows
important ideas from previous studies. We are reviewing
previous work on phishing Site discovery using URL
features that motivated our own approach.

Bahnsen et al. (2018) [1] suggested a more effective
method for real-time phishing URL detection. It was
mentioned that there are a lot of anti-phishing methods
appearing, but scammers use diverse and dynamic methods
for scam victims, so a smart and flexible model was needed
to catch a phishing URL. Data mining methods can be used
to promote an active model that contains basic and non-
trivial data that can be backed up from huge data sets using
classification algorithms to name a legitimate URL.

Four different classification algorithms were used to
classify and approximate the data set for its achievement,
accuracy, and several criteria. The experiments were
handled using four different rule-based algorithms to detect
cryptic awareness, from the huge data set to predict a
phishing URL. The rated results paralleled their
performance on the accuracy chart, error rate, time duration,
and total number of component criteria. However, the results
showed that all the selected algorithms complete a higher
expected rate. The rules that were developed demonstrated
the interaction and relationship between URL features which
can help us build frameworks for detecting phishing URLs.
There was a phishing detection form which is good for
preventing users from being deceived by achieving
verification by sending private information.

Preethi, and Velmayil (2019) [2] suggested a method for
analysing phishing URLs using lexical analysis. Suggest a
pre-phishing algorithm which is computerized machine
learning to resolve phishing and non-phishing URLs to
extract safe results.

Phishing URLs often contain two connections between
the part of the registered domain level and the method or
reservation level URL. Therefore, applying a URL to
connections describes threading and categorizes using
feature extractor from attributes. Also, these features are
then used in a machine learning method to catch phishing
URLs from an actual data set. Phishing and non-phishing
URLs were categorized by detecting the domain value and
the threshold value for each attribute using decision rating.
This technique was further classified in Mat Lab using three
major classifiers SVM, Random Forest and Naive Bayes to

discover how it works in data set estimation. This paper
suggested that the pre-phishing algorithm for an effective
phishing URL detection system is based on the analysis of
the URL sentence. The Pre-Phish approach was Demo
Phishing, an empirical case study investigated to collect and
evaluate a variety of phishing URL features and patterns,
with all relevant attributes. This was a computerized
machine learning method that relied on the characteristics of
a phishing URL to catch and block phishing URLs and to
provide a high level of security. The same limitations have
been used to create a tool based on a web browser plug-in
that can capture and block phishing URLs in real time and
resolve data mining methods to detect new patterns of
phishing URLs [2].

Ashit Kumar Dutta (2021) [3] proposed study
emphasized the phishing technique, whereby a phishing
URL is seen to include the automatic classification of URLs
in a predefined set of category values based on several
features and a category variable. Machine learning-based
phishing techniques rely on URL functions to gather
information that can help categorize URLs to detect phishing
sites. To combat the ongoing complexity of phishing attacks
and tactics, anti-phishing techniques are essential. The
authors used LSTM technology to identify malicious and
legitimate URLs. The crawler was developed that crawled
8000 URLs from the Alexa Rank portal, and also used the
Phish-tank dataset to measure the efficiency of the proposed
URL detector. The result of this study shows that the
proposed method provides superior results instead of the
current deep learning methods. A total of 8000 malicious
URLs were detected using our suggested URL detector. We
achieved better accuracy and F1 record with limited time.

In the study by researchers Ciza Thomas, Sandhya L. and
Joby James (2013) several features are compared using
different data mining algorithms. The results indicate the
efficiency that can be achieved using lexical features. To
protect end users from visiting these sites, we can attempt to
identify phishing URLs by analyzing lexical and host-based
features. The particular challenge in this area is that
criminals are constantly developing new strategies to
counter our defensive measures. To succeed in this
competition, we need algorithms that constantly adapt to
new examples and features of phishing URLs. Online
learning algorithms provide better learning methods as
compared to batch based learning mechanisms [5].

Purbay M. and Kumar D. (2021) [3] proposed a process
of classifying phishing attacks according to the scammer's
mechanism to trap the alleged users.

Many of these attack methods are master logging tools
and DNS disablement. Social engineering startups include
online blogs, SMS services, social media platforms that use
web services such as Facebook and Instagram, peer-to-peer
file-sharing services, and Voice over Internet Protocol (VoIP)
systems that attackers use to use caller spoofing identifiers.
Each form of phishing differs slightly in how the process is
carried out in order to defraud an unsuspecting consumer.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

422

Phishing attacks occur when an attacker sends a message
containing a link to potential users to direct them to phishing
URLs [4].

3. Methodology
In this study, we use LSTM (Long-Short-Term Memory)

which is an algorithm that is part of the structure of our
scheme that takes the input from a URL as a character
sequence and predicts whether the link is a phishing or a
legitimate website [22].

Long and short-term memory is an adaptive and
recurrent neural network (RNN), in which each neuron is
swapped with a memory cell that is additional to the
conservative neuron on behalf of an internal state.
Multiplexes are also used as gates to control the flow of
information. LSTM layers consist of a set of frequently
linked blocks called memory blocks as shown in Fig. 1.

Each of these blocks contains one or more memory cells
that are connected repeatedly. Hence, a normal LSTM cell
has an input gate that controls the input of data from outside
the cell, which determines whether the cell retains or omits
data in the internal state, and an output gate that prevents or
allows the internal state to be seen from the outside.

The most common is the confusion matrix consisting of
four basic scales: true positive (TP), true negative (TN), false
positive (FP), and false negative (FN).

Standard metrices, such as accuracy, recall, and F1 score
are used in this study to measure the performance of the
proposed solutions.

Furthermore, LSTM modules are known to have the ability
to learn a large-scale dependency from the input sequence.
The LSTM training algorithm uses error gradients to
calculate, and combines iterative real-time learning with
backpropagation.

However, backpropagation is dropped after the first
timestamp because long-term dependencies are handled by
memory blocks, not by backpropagation error gradient flow.
This step also helped make the LSTM directly comparable
to other RNNs in terms of performance because training can
be performed using standard backpropagation over time.

LSTM algorithm architecture: The central components
of the LSTM architecture are the memory cell, which can
maintain its state over time, and the nonlinear gate units,
which regulate the information input and output flow of the
network as shown in Fig. 2. Based on the insights from
secure networks, it is observed that since LSTM neurons
consist of internal cells and gate units, one should look not
only at the output of the neuron but also at the internal
structure to design the original features of the LSTM so that
it can address classification problems [25].

Figure 1. Architecture of the LSTM method – A

Time complexity: In order to calculate the time
complexity of the proposed models, the time complexity of
the DNN and LSTM based model sections must be
calculated separately. For the DNN section, the time
complexity is equal to the sum of the number of parameters
for each layer because the time is dominated by the matrix
multiples of the Multilayer Perception (MLP) layers. As
such, the time complexity of the DNN section is O(4p1),
where 4 is the number of layers and p1 is the average number
of parameters per layer, which depends on the input and
output Rate each layer.

The time complexity of each layer in the LSTM is O(1)
per weight because the LSTM is local in space and time [26].
Therefore, the time complexity of the LSTM partition is O(w
+ p2), where the total number of all weights in the LSTM
layers and p2 is the number of parameters in the last layer of
the LSTM partition. For the model where BiLSTM is used
instead of LSTM, the time complexity is O(2w + p2) instead
of O(w+p2) because the calculations are done in two
different directions in BiLSTM. Due to the structure of the
hybrid model, when two separate partitions are combined,
two MLP layers are used to obtain the final output value. The
time complexity of this final part is O(2p3), where p3 is the
average number of parameters in these layers. Finally, the
time complexity of the proposed LSTM-based hybrid model
is O(w + 4p1 + p2 + 2p3), which is the sum of the time
complexity of all parts. Although this combination of models
brings an additional cost in terms of time required, the
benefit is outside of these additional cost data sets. We did
not want to include old datasets and our goal was to conduct
experiments in new datasets.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

423

Figure 2. Architecture of the LSTM method - B

3.1 Principles

The proposed framework employs a Recurrent Neural
Network (RNN) variant called the Long Short-Term
Memory (LSTM) to classify malicious and legitimate
website URLs. The RNN implies to broad groups of
networks of a similar structure, where on is finite and the
other is an infinite input. Both network types contain time
dynamic behavior. A recurrent network of finite input is a
directed acyclic graph that can be replaced by a purely
feedforward neural network, whereas a recurrent network of
infinite input is a directed cyclical graph that cannot be
modified. The LSTM is a deep learning method, which
prevents the gradient problem of RNN. The LSTM
comprises multiple gates that are employed to improve the
performance. Each input of the LSTM generates an output
that becomes an input for the following layer.

a. Recurrent Neural Networks

The recurrent neural network is a type of artificial neural
network which uses sequential data or time series data.
These algorithms are typically used for temporal or ordinal
problems such as speech recognition, image captioning,
natural language processing. Similar to the convolutional
neural networks and feedforward neural networks, recurrent
neural networks utilize training data to learn and optimize
the model parameters [30]. The networks’ ability to
memorize distinguishes them from other machine learning
techniques. Such ability is characterized by the way the
previous input is used in calculating the weights, which
influences the current input and output. Therefore, the
recurrent neural network output depends on the sequence of
previous inputs. Similarly, the future input can be helpful in

determining the output of a specific input, but the
unidirectional neural networks cannot account for these
events in their prediction [30]. To better understand the
concept of recurrent neural networks, the below figure
illustrates a simple RNN and how the network can be
unfolded to generate the 3rd output as shown in Fig. 3.

Figure 3. The structure and unfolding of RNN.

As shown in the first part of Fig. 1, the RNN has a
feedback loop which is used to unroll in 3 timesteps to
produce the second part of the figure. Note that the RNN can
be modified to unroll N timesteps as well. While the figure
shows a simple illustration of a very small RNN, the topic of
RNN is vast and discussing it is beyond the scope of our
work. However, we need to discuss the gradient to be able
to understand the downsides of the RNN and how the LSTM
is used to address these issues.

A gradient is a partial derivative with respect to its inputs,
which measures how much the output of a function changes
if you change the inputs a little bit. The gradient can be
thought of as the slope of a function, where the higher the
gradient, the steeper the slope and the faster a model can
learn. However, if the slope is zero, the model stops learning.
Simply put, the gradient measures the change in all weights
with regard to the change in error.

After describing the gradient and what is it used for, we
can now discuss the downsides of the RNN. There are two
main downsides for the RNN, exploding gradients and
vanishing gradients. The exploding gradients happen when
the algorithm, unreasonably, assigns high importance to the
weights. Fortunately, this problem can be mitigated by
truncating or squashing the gradients. Unfortunately, the
vanishing gradients problem is not as easy as the exploding
gradients. The vanishing gradients problem occurs when the
values of the gradients are too small and the model stops
learning or takes too long to learn. The problem lasted for a
while, but it was solved through the concept of LSTM [31].

b. Long Short-Term Memory

Long Short-Term Memory networks (LSTMs) are an
extension for recurrent neural networks, which basically
extends the memory. Therefore, it is well suited to learn from
important experiences that have very long time lags in
between [31]. The units of an LSTM are connected together
to be used as the building blocks of the RNN, which is often
called the LSTM network. However, building the RNN

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

424

using LSTM network enables the RNN to remember inputs
over a long period of time. The LSTM’s ability to remember
is due to the LSTM’s contains an information memory,
which is very similar to the computer’s memory. The LSTM
can read, write and delete information from its memory. The
memory of the LSTM can be described as a gated cell, with
the gate controlling whether or not to store or delete the
information. The gate opens to store the information or
discard the forwarded the information based on the
importance of the information, which happens through
weights. The weights are learned by the algorithm over time,
which simply means the LSTM learns over time what
information are important and what are not.

The LSTM have three gates: input gate, forget gate, and
output gate. These gates control the memory of the LSTM,
where the input gate is responsible of determining whether
or not to let new input in, the delete gate is responsible of
deleting the information if it is not important, and the output
gate allows the information to impact the output at the
current timestep. Fig. 4 illustrates a RNN with its gates.

Figure 4. RNN with its three input gates.

The gates in the LSTM are analog and using sigmoid
functions, meaning they generate a value that ranges from
zero to one. The fact that they are analog enables them to do
backpropagation. The problematic issue of vanishing
gradients is solved through LSTM as it keeps the gradients
steep enough, which keeps the training relatively short and
the accuracy high.

After briefly describing the RNN, the problem of
vanishing gradients, and how the problem is solved using the
LSTM. We now start discussing our proposed design.

3.2 Design

As shown in Fig. 5, we started the process by collecting
and preparing the dataset. The dataset was collected from
Phish-tank [27]. The used dataset contains 194,798 URLs,
of which 97,399 are phishing URLs and the rest is legitimate
ones. The data were then split into training and testing
datasets. The LSTM network was trained using the training
dataset and the performance was evaluated based on the
accuracy. The parameters of the LSTM were then modified

and tuned to improve the performance before deploying it
into the production environment. The classifier can then act
as an intermediary stage between the end user and the
internet. Whenever a request is sent to any URL, the
requested URL is verified using the model and the access is
granted if the requested URL is not a phishing URL, or
blocked if the requested URL is a phishing URL.

Figure 5. Design of the proposed methodology.

Before diving into the details of the LSTM
implementation, we start by discussing the components of
the LSTM network layers. The LSTM is an effective
prediction and classification mode as it generates an output
based on the arbitrary number of implemented steps. The
LSTM model contains five essential components that enable
the model [28].

Cell State (CS) – a cell that accommodate the long- and
short-term memories.

Hidden State (HS) – The output status information that is
used to determine the classification based on the current data,
input data, and a hidden condition. The HS is used to recover
both short-term and long-term memory in order to make the
prediction.

Input Gate (IT) – The total number of the information
that is fed into the cell state. The input gate identifies an input
value for memory alteration. The sigmoid defines the values
that ranges from 0 to 1. Then a tanh function is used to
weight the passed by values to evaluate their significance
from -1 to 1. The below equations represent the input gate
and the cell state, wherein Wn is the weight, HTt-1 is the
previous state of the hidden state, xi is the input, and bn is the
bias vector which need to be learnt during the training phase
[29].

IT = 𝜕(Wn(HTt-1, xi) + bn) (1)

CT = tanh(Wd(HTt-1, xi) + bc) (2)

Forget Gate (FT) – The total number of data that flows
from the current input and past cell state into the present cell
state. This gate is used to filter out the information that needs

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

425

to be discarded from the memory. The sigmoid function is
used to describe it contains (HTt-1). The input values (xi) are
examined and the number of outputs are verified by each cell
state CTt-1.

FT = 𝜕(Wf(HTt-1, xi) + bf) (3)
Output Gate (OT) – The total number of information that

flows into the hidden state. The sigmoid function of this gate
determines which values to let through 0 and 1. The tanh
function presents weightage of the values which are
transferred to determine their degree of importance ranging
from -1 to 1 and multiplied with output of sigmoid [29].

OT = 𝜕(Wo(HTt-1, xi) + bo) (4)

HT = OT * TANH(CT) (5)

3.3 Implementation

The LSTM network is implemented using python with
the help of keras and tensorflow libraries. The LSTM is built
using a sequential model and structured as shown in the
below figure.

As shown in Fig. 6, the first layer in the LSTM is the
input layer, which determines the size and the type of the
input into the LSTM network. The second layer is the
embedding layer, which sets between the input layer and the
LSTM layer. As the LSTM operations are basically floating
additions and multiplications, the embedding layer is used to
generate a vector float point representation of the input URL.
The third layer is the LSTM layer, which utilizes the sigmoid
and the tanh functions to adjust the weights, dropout some
data which are considered irrelevant, and forward the results
into the dropout layer. The fourth layer is the dropout layer,
which controls what data flows into the output layer and
what data are to be removed from the LSTM memory.

Figure 6. The structure of the LSTM network.

The final layer is the Dense layer or the output layer,
which takes the output of the LSTM as an input and
produces the classification of the LSTM network. The
parameters of the designed LSTM network are shown in the
Table 1.

Table 1. LSTM network parameters.

Model Sequential
Embedding Input dimension = 100, output

dimension = 32, input length = 75
LSTM Output = 32, dropout = 0.2, recurrent

dropout = 0.2
Dense Activation = sigmoid, Kernel

regularizer = regularizers.l2(le-4)
Adam optimizer Learning rate = 0.0015, loss =

binary_crossentropy, metrics =
accuracy

4. Discussion and Results
The data set that we used in our research has been well

researched and measured by some researchers. The wiki
accompanying the dataset comes with a data description
document that discusses the data generation strategies taken
by the dataset authors [7].

To update our dataset of new phishing sites, we also
implemented code that extracts the features of new phishing
sites provided by the Phish-Tank website. The dataset
contains about 11,000 samples from websites, and we used
10% of the samples in the testing phase. Every website is
flagged as legitimate or phishing. The features of our dataset
are as follows:

I. Abnormal URL: extracted from WHOIS database.
For a legitimate website, the identity is usually part
of its URL.

II. Website Redirect Count: If the redirect is more than
four times.

III. Web Traffic: This feature measures the popularity of
a site by determining the number of visitors.

IV. Page Rank: Page Rank is a value ranging from 0 to 1.
PageRank aims to measure the importance of a web
page on the Internet.

V. HTTPS Token: Spoof the https token in the URL. For
example, http://https-www-mellat-phish.ir

VI. DNS record: DNS record exists.

VII. Request URL: The request URL checks whether
external objects in a web page such as images, videos,
and sounds have been downloaded from another
domain.

VIII. Anchor URL: A link is an element specified by the
<a> tag. This feature is treated exactly as the request
URL.

IX. Get an IP address: If an IP address is used instead of
a domain name in the URL, such as
http://217.102.24.235/sample.html.

X. URL length: Scammers can use a long URL to hide
the suspicious part in the address bar.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

426

The proposed framework was developed in Python 3.0
using Jupyter notebook software with the support of Numpy,
Sci-Kit Learn, Tensorflow, and Keras. To evaluate our
proposed framework, we extracted a dataset from the Phish-
tank database. The parameters of the training phase of the
proposed framework are shown in Table 1. We used a
learning rate of 0.0015, which was obtained by sweeping the
design space and selecting the best value.

In order to analyze the results of our proposed framework,
we used the following metrics:

1) Accuracy: is the percentage of correctly classified
URLs.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
் ା ்ே

்ାிାிேା்ே
 (6)

2) Recall: is the total number of phishing URLs that are
correctly classified.

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
்

்ା ிே
 (7)

3) Precision: is the number of correctly predicted
phishing URLs.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
்

்ା ி
 (8)

4) F-measure: is the weighted harmonic mean of the
precision and recall of the test. The best value will be
at 1 and worst at 0 value.

𝐹 െ𝑀𝑒𝑎𝑠𝑢𝑟𝑒 ൌ
ଶ ൈ௦ ൈோ

௦ାோ
 (9)

We trained our model using 5 epochs, and we report the
results of each epoch as shown in Table 2.

Table 2. The results of the training phase by epoch.

Epoch Time Loss Accuracy
1 195s 0.3562 0.8442
2 192s 0.2709 0.8889
3 194s 0.2415 0.9012
4 195s 0.2224 0.9101
5 191s 0.2104 0.9151

As shown in Table 2, the accuracy of our proposed
framework improved by 4.4% from epoch 1 into epoch 2.
However, the accuracy improvement decreases to reach 0.5%
between epochs 4 and 5. Similarly, the loss decreases by 8.5%
between epoch 1 and epoch 2, but drops to a small decrease
of 1.2% between epochs 4 and 5. On the other hand, the time
to finish running each epoch is slightly affected and hovers
around 195 seconds. While the time required by each epoch
is expected to be the same, the framework was run on a
laptop with the support of Intel® Core™ i7-7700HQ CPU
@ 2.8Ghz and 16 GBs of RAM. The Laptop was running
multiple applications and have a shared environment as
expected, therefore; the time variation can be explained by

having a different process interrupting the process, cache
misses, processes scheduling… etc.

To test the trained model of our proposed framework, we
split the collected dataset into 75% training and 25% for
testing. Using the testing part of the dataset, our model
reported a loss of 0.1887 and an accuracy of 0.9257. As the
results of the testing shows, the performance of our trained
model is better than the results reported by the last training
epoch. Therefore, we started a sensitivity analysis in which
we varied the number of epochs used to train our model and
we report the results as shown in Table 3.

Table 3. The performance of our proposed framework with
different epochs.

of
epochs

Time of
last epoch

Loss of last
epoch

Accuracy of
last epoch

1 180s 0.3581 0.8440
2 176s 0.2711 0.8886
3 178s 0.2403 0.9026
4 181s 0.2224 0.9100
5 181s 0.2107 0.9153
6 183s 0.2018 0.9193
7 184s 0.1944 0.9221
8 174s 0.1897 0.9246
9 176s 0.187 0.9250
10 176s 0.1829 0.9276

As the results in Table 3 shows, increasing the number
of epochs can increase the framework’s accuracy and
decrease the loss. However, the returns of increasing the
number of epochs are diminishing when the number of
epochs increases, as we can see from the table, increasing
the number of epochs from 9 to 10 increased the accuracy by
0.26% only, and dropped the loss by 0.39% only. Thus. We
stopped our sensitivity analysis on the number of epochs at
10 epochs. Testing the trained model at 10 epochs, reported
an event better results, which achieved an accuracy of 93.45%
and a loss of 16.71%.

To further analyze the results and tune our trained model,
we varied the learning rate parameter as shown in the below
Table 4.

Table 4. Accuracy with respect to different learning
rates.

of
epochs

LR =
0.0015

LR =
0.0001

LR =
0.002

1 0.8440 0.7712 0.8522
2 0.8886 0.8189 0.8964
3 0.9026 0.8289 0.901
4 0.9100 0.8376 0.9160
5 0.9153 0.8439 0.9203
6 0.9193 0.8497 0.9234
7 0.9221 0.8547 0.9258
8 0.9246 0.8589 0.9279

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

427

9 0.9250 0.8627 0.9293
10 0.9276 0.8672 0.9307

As we can notice from Table 4, a learning rate of 0.002
achieved the highest accuracy which reached to 93.07%.

The below table shows a comparison between our
proposed framework and other frameworks, which used
different machine learning techniques to detect phishing
websites.

Table 5. Performance comparison between different
schemes.

Method Accuracy TP rate FP rate F-
measure

Our
framework

93.45% 95.07% 4.9% 93.31%

DNN [32] 88.77% 85.83% 14.17% -

DNN With
GA [32]

91.13% 90.79% 9.21% -

Decision
Table [33]

92.24% 93.2% 6.8% -

Naïve
Bayes [33]

92.98% 93% 7% -

ANN-MLP
[34]

87.61% - - -

As shown in Table 5, our proposed framework has a
better performance than other machine learning techniques.
We observe that the Naïve Bayes classifier proposed in [33]
has the closest accuracy to our proposed framework, which
has an accuracy that is 0.5% below the accuracy of our
proposed framework. To have a better understanding of our
results we show the confusion matrix of our evaluation in
Table 6.

Table 6. The confusion matrix of our proposed framework.

 Predictive

Positive Negative

Actual Positive 91.60% 4.74%

Negative 8.39% 95.25%

 Table 6 shows the confusion matrix of our proposed
framework, we can observe that our scheme has a higher
accuracy in correctly detecting legitimate websites. On the
other hand, our framework has an accuracy of 91.6% in
detecting a phishing URL when it is actually a phishing URL.

 Host-based features explain “where” phishing sites are
hosted, “who” they are managed by, and “how” they are
managed. We use these features because phishing websites
may be hosted at less reputable hosting centers, on machines
that are not usual web hosts, or through non-reputable
registrars.

 Using lexical features, we were able to achieve a
detection accuracy/success rate of 91.5% for splitting the test
at 60%. When using 90% of the data set, we obtained 92.55%
detection accuracy. In MATLAB, using a regression tree, we
obtained 90.25% detection accuracy when 60% of the data
set was used for the test and 87.26% detection accuracy
when 90% of the data was used for the test.

5. Conclusion
The proposed framework is an effective technique that

addresses the detection of phishing websites by relying on
the website’s URL. The framework is built using the Long
Short-Term Memory algorithm, which improves the
Recurrent Neural Networks by solving the diminishing
gradients problem. While the problem of phishing cannot be
completely removed, however; it can be significantly
mitigated by two main ways. First, improving and
implementing smart anti-phishing techniques. Second,
educating the end users on how fraudulent phishing websites
can be detected and identified. To counter the novel and
complex phishing attacks and tactics, ML anti-phishing
techniques are of extreme importance. In this work, we
employed LSTM technique to distinguish malicious and
legitimate websites. We used Phish-tank dataset to measure
the efficiency of the proposed framework. The results of our
evaluation shows that the proposed method presents superior
results. A dataset of 194,798 URLs, of which 97,399 are
phishing URLs and the rest is legitimate ones. Our
framework achieved a very high accuracy in detecting the
phishing websites.

6. REFERENCES
[1] Bahnsen et al. (2018), How to Detect Phishing Website

Using Three Model Ensemble Classification.
[2] Preethi, V., Velmayil, G. (2019). Automated phishing

website detection using URL features and machine
learning technique, International Journal of
Engineering and Techniques ,2(5), 107–15. Retrieved
1 Dec 2019, from http://www.ijetjournal.org.

[3] Ashit Kumar Dutta (2021), Detecting phishing
websites using machine learning technique, PLOS
ONE | https://doi.org/10.1371/journal.pone.0258361
October 11, 2021.

[4] Gunter Ollmann, “The Phishing Guide Understanding
& Preventing Phishing Attacks”, IBM-Internet
Security Systems, 2012.

[5] Sandhya L., Ciza Thomas, Joby James (2013).
Detection of phishing URLs using machine learning
techniques, International Conference on Control
Communication and Computing (ICCC). Publication at:
https://www.researchgate.net/publication/269032183.
December 2013.

[6] Purbay M., Kumar D (2021), “Split Behavior of Super
vised Machine Learning Algorithms for Phishing URL
Detection”, Lecture Notes in Electrical Engineering,
vol.683, https://doi.org/10.1007/978-981-15-6840-
4_40.

[7] Mohammad R., Thabtah F. (2016) McCluskey L ,
(2015) Phishing websites dataset. Available:
https://archive.ics.uci.edu/ml/datasets/Phishing+Webs
ites Accessed January.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.5, May 2022

428

[8] Adebowale MA, Lwin KT, Sanchez E, and Hossain
MA (2019) . Intelligent web-phishing detection and
protection scheme using integrated features of Images,
frames and text. Expert Systems with Applications, 115:
300-313. https://doi.org/10.1016/j.eswa.2018.07.067

[9] Al-diabat,M. (2016).Detection and Prediction of
Phishing Websites using Classification Mining
Techniques. International Journal of Computer
Applications,147(5) .

[10] APWG (2019). 2nd quarter 2019: Phishing activity
trends report.
Anti-Phishing Working Group.
https://doi.org/10.1016/S1361-3723(19)30025-9.

[11] Abdelhamid, N., Thabtah, F. and Abdel-Jaber, H.
(2017). Phishing detection: A recent intelligent
machine learning comparison based on models
content and features. In IEEE International Conference
on Intelligence and Security Informatics (ISI), 22–77,
China:IEEE.

[12] Aburrous, M., Hossain, M., Dahal, K., Thabtah, F.
(2010). Experimental case studies for investigating e-
banking phishing techniques and attack strategies.
cognitive computation, 2(3),242-253.

[13] Dou Z, Khalil I, Khreishah A, Al-Fuqaha A, and
Guizani M (2017). Systematization of knowledge (sok):
A systematic review of software-based web phishing
detection. IEEE Communications Surveys and
Tutorials, 19(4): 2797-2819.
https://doi.org/10.1109/COMST.2017.2752087

[14] Dunlop M, Groat S, and Shelly D (2014). Goldphish:
Using images for content-based phishing analysis. In
the 5th International Conference on Internet
Monitoring and Protection, IEEE, Barcelona, Spain:
123-128. https://doi.org/10.1109/ICIMP.2010.24.

[15] Nirmal K, Janet B, and Kumar R (2015). Phishing-the
threat that still exists. In the International Conference
on Computing and Communications Technologies,
IEEE, Chennai, India: 139-143.
https://doi.org/10.1109/ICCCT2.2015.7292734.

[16] Opara C, Wei B, and Chen Y (2019). HTMLPhish:
Enabling accurate phishing web page detection by
applying deep learning techniques on HTML analysis.
Available online at: https://bit.ly/2zV0ymk.

[17] JainA.K., Gupta B.B. (2018) “PHISH-SAFE:URL
Features Based Phishing Detection System Using
Machine Learning”, CyberSecurity. Advances
inIntelligent Systems and Computing,
vol.729,https://doi.org/10.1007/978-981-10-8536-
9_44.

[18] Luke ,I. (2020).The 5 most common types of phishing
attack.[online] Retrieved 1 March 2020, from
https://www.itgovernance.eu/blog/en/the-5-most-
common-types-of-phishing-attack.

[19] Adebowale MA, Lwin KT, Hossain MA (2020)
Intelligent phishing detection scheme using deep
learning algorithms. J En-terprise Inf Manag.

[20] Akinyelu AA (2019) Machine learning and nature
inspired based phishing detection: a literature survey.
Int J Artif Intell Tools 28(05):1930002.

[21] Wei, W.; Ke, Q.; Nowak, J.; Korytkowski, M.; Scherer,
R.; Wo´zniak, M. (2020) Accurate and fast URL
phishing detector: A convolutional neural network
approach. Comput. Netw, 178, 107275. [CrossRef]

[22] Chen, D.; Wawrzynski, P.; Lv, Z. (2021) Cyber
security in smart cities: A review of deep learning-
based applications and case studies.Sustain. Cities Soc.
66, 102655. [CrossRef]

[23] Al-Ahmadi, S. PDMLP: Phishing Detection Using
Multilayer Perceptron. Int. J. Netw. Secur. Its Appl.
2020, 12. SSRN:3624621. Available online (accessed
on 12 May 2021) :
https://papers.ssrn.com/abstract=3624621.

[24] Ahmad, R.; Alsmadi, I. (2021) Machine learning
approaches to IoT security: A systematic literature
review. Internet Things , 14, 100365.

[25] Dargan S, Kumar M, Ayyagari MR, Kumar G (2020)
A survey of deep learning and its applications: a new
paradigm to machine learning. Arch Comput Methods
Eng 27(4):1071–1092

[26] Hao S, Ge FX, Li Y, Jiang J (2020) Multisensor bearing
fault diagnosis based on one-dimensional
convolutional long short-term memory networks.
Measurement 159:107802

[27] Phishtank website,” https://phishtank.org/”, accessed:
2022-02-06

[28] Dutta, Ashit Kumar. (2021) "Detecting phishing
websites using machine learning technique." PloS one
16, no. 10: e0258361.

[29] LSTM structure and gates,”
https://www.pluralsight.com/guides/introduction-to-
lstm-units-in-rnn”, accessed: 2022-02-06.

[30] Recurrent Neural Networks,”
https://www.ibm.com/cloud/learn/recurrent-neural-
networks”, accessed: 2022-02-06.

[31] A guide to RNN understanding,”
https://builtin.com/data-science/recurrent-neural-
networks-and-lstm”, accessed: 2022-02-06.

[32] 32. Ali, Waleed, and Adel A. Ahmed. (2019) "Hybrid
intelligent phishing website prediction using deep
neural networks with genetic algorithm-based feature
selection and weighting." IET Information Security 13,
no. 6: 659-669.

[33] Abdulrahman, Musbau Dogo, John K. Alhassan,
Olawale Surajudeen Adebayo, Joseph Adebayo
Ojeniyi, and Morufu Olalere. (2019) "Phishing attack
detection based on random forest with wrapper feature
selection method.".

[34] Ferreira, Ricardo Pinto, Andréa Martiniano, Domingos
Napolitano, Marcio Romero, Dacyr Dante De Oliveira
Gatto, Edquel Bueno Prado Farias, and Renato José
Sassi. (2018) "Artificial neural network for websites
classification with phishing characteristics."

