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Abstract: The video-assisted human action recognition [1] 
field is one of the most active ones in computer vision research. 
Since the depth data [2] obtained by Kinect cameras has more 
benefits than traditional RGB data, research on human action 
detection has recently increased because of the Kinect camera. 
We conducted a systematic study of strategies for recognizing 
human activity based on deep data in this article. All methods 
are grouped into deep map tactics and skeleton tactics. A 
comparison of some of the more traditional strategies is also 
covered. We then examined the specifics of different depth 
behavior databases and provided a straightforward distinction 
between them. We address the advantages and disadvantages of 
depth and skeleton-based techniques in this discussion.  

Keywords: Depth, action recognition, depth maps, skeleton, 
feature extraction, and classification.   

1.  Introduction 

Human Action Recognition (HAR) has grown in 
importance in computer vision in recent years, and it has 
made considerable strides over the last decade. 
Furthermore, HAR [1] is gaining traction in several 
fields, including Human-Computer Interaction (HCI) [2], 
telemedicine, automation, assistive living, video retrieval, 
and digital surveillance. The primary goal of HAR is to 
automatically interpret and classify the processing 
activities of an undisclosed video. Several forms of apps 
benefit from activity identification from recordings. For 
example, an optical surveillance device [3] with an 
automated action recognition system can aid in the 
prevention of robberies at public locations such as 
airports, metro stations, and bus stops.  

A tremendous amount of research been conducted 
to obtain high-level knowledge of human behavior. HAR 
is described as detecting the behavior of objects or actors 
present in the data for an input image or series of images. 

Based on their sophistication, we split human attitudes 
into four categories: "Gestures," "Acts," "Interactions," 
and "Group Activities." [3] Human body parts such as 
the head and fingers have straightforward gestures [4]. 
Next, movement can be defined as a collection of 
gestures that includes more than one gesture, such as 
tossing, walking, hand-clapping, and so on. On the other 
hand, encounters are human behavior involving at least 
two human beings or things. Interactions include 
handshakes between two people, basketball shooting, 
tennis serving, and so on. Finally, there are more 
individuals involved in the social events. As an example, 
a group of people marching down the street, playing 
cricket, or taking part in another activity. 

The primary role in the HAR phase is to keep track 
of an actor's actions in real-time. This can be 
accomplished by obtaining specific data and categorizing 
them into two groups depending on the data used as 
HAR input. They are focused on vision and distance 
maps. The HAR models in the first group employ 
computer vision methods to analyze visual observations 
obtained from optical sensing devices such as cameras 
and infrared sensors [5]. Even though extensive testing 
has been done on the HAR focused on vision artifacts [6-
8], they have several flaws. These approaches' general 
problems include a wide range of operations, scalability, 
reusability, etc. The computationally typical algorithms 
in signal processing and computer vision require large 
amounts of hardware to be feasible. The data-dependent 
on vision still lacks 3D knowledge [9].  

Due to their ability to provide 3D data, inexpensive 
depth sensors (ex. Microsoft Kinect sensor) have led to 
widespread usage of HAR [10].The Kinect sensors have 
gotten a far and wide relevance in so many commercial 
games since they are modest and can remove the full-
body movements from an overall client. The power of a 
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depth sensor to collect both depth and color information 
simultaneously is its main benefit. Using depth cameras, 
action recognition system realism is improved and issues 

associated with RGB recordings are removed -as can be 
seen in Table 1, the advantages and disadvantages of 
RGB video cameras and depth cameras.  

Table 1: Pros and Cons Comparison Between Different Cameras 

 Depth Cameras RGB video cameras 
 

Pros  
1. Insensitive to texture and color changes. 
2. Easy to operate 
3. Able to deliver a 3D structure of information  
4. inexpensive and widely available 
5. Not sensitive to lighting condition and 
illumination variations  

1. inexpensive and widely available  
2. ensures a rich texture information 
3. easy to operate  

 
 

Cons  

1. No color information  
2. Sensitive to the presence of different objects and 
materials in the FoV.  

1. need the presence of actor or object in the field of view (FoV) 
2. Computer vision algorithms are much more complex to implement 
3. Sensitivity to the calibration of CAM. 
4.Sensitivity to lighting conditions, illumination variations, and cluttered 
backgrounds 

Due to these benefits of depth sensors, so many 
researchers have developed different types of HAR 
models by proposing different computational algorithms 
that consider the depth action videos as input. This paper 
outlines the earlier developed HAR models based on the 
depth action data. Initially, we explore the details of 
different depth action datasets and the generalized 
evaluation metrics. Next, we explore a detailed survey 
over the HAR methods that focused on analyzing depth 
information. Under this depth information, we have 
considered both depth maps and posture data, and finally, 
a simple comparison is outlined at the end of the paper. 

Accordingly, the remainder of the paper is 
organized as follows; section 2 explains the information 
of different kinds of depth action datasets. Section 3 
explores the complete details of the state of the art survey, 
and finally, the conclusions are provided in section 4. 

2. Depth action datasets  

The development of many depth action datasets 
has aided research on HAR using RGB-D sensors. These 
datasets are generated using Microsoft Kinect sensors, a 
unique sensor (called depth sensors). The descriptions of 

the most often used datasets are seen in Table.2. Most of 
the datasets deliver the essential information captured 
with the help of the RDG-D device, i.e., depth and color 
frames and posture data. In the posture data, the action 
video is represented in spatial coordinates. The usual 
range of actions of all these datasets is observed as 10 to 
20, and the average number of subjects or actors 
employed to construct is approximately 10. Instead of 
capturing each action only once, most of the datasets 
acquired the actions after making the actors carry out 
each action 2 to 3 iterations. The primary purpose behind 
the construction of these datasets is twofold; (1) Human-
Computer Interaction and (2) Daily Activity (DA). The 
datasets focused on the HCI-based applications may 
consist of a sidekick, draw a circle, and draw across. 
They are generally acquired in a simple background 
even though they are most challenging due to the similar 
characteristics in many gestures. 

On the other hand, the datasets that focused on 
the DA may include drinking, eating, walking, running, 
etc. Further, in some datasets, they were acquired from 
real-time scenarios due to which some kind of occlusions 
will appear and have complex backgrounds. The figure 
shows examples of RGB and depth images as well as 
skeleton action samples collected from different datasets. 
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Fig.1 Samples of different actions data formats (a) RGB, (b) Depth and (c) Skeleton

Table 2: List of Datasets That Are Focused On The Depth Information 

Name Year 
Acquired 

Number of 
Actors used  

Number of 
actions  

Application 
type  

Data 
format  

Number of 
times 

Number of 
samples 

NTURGBD+ 
[11] 

2016 40  60  DA/HCI RGB, 
Depth, 

Skeleton  

- 56880 

UTD-MHAD 
[12]  

2015 8 27 HCI RGB, 
Depth, 

Skeleton 

4 861 

KARD [13] 2014 10 18 DA/HCI RGB, 
Depth, 

Skeleton 

3 540 

UPCV Action 
[14] 

2014 20 10 DA Skeleton - - 

3D Online 
Action [15] 

2014 24 7 DA RGB, 
Depth, 

Skeleton 

- - 

IAS-Lab Action 
[16] 

2013 12 15 DA RGB, 
Depth, 

Skeleton 

3 540 

WorkoutSu-10 
Gesture [17]  

2013 15 10 DA Depth, 
Skeleton 

10 1500 

Berkeley 
MHAD [18] 

2013 12 11 HCI RGB, 
Depth 

5 660 

CAD-120 [19] 2013 4 10 DA RGB, 
Depth, 

Skeleton 

- 120 

MSR Action 
Pairs [20]  

2013 10 6 DA Depth 3 180 

LIRIS Human 
Activities [21] 

2012 21 10 DA RGB, 
Depth 

- 49 

ACT4 Dataset 
[22] 

2012 24 14 DA RGB, 
Depth 

1 6844 

Florence 3D 
action [23] 

2012 10 9 DA RB, 
Skeleton 

2 or 3 215 

MSR Daily 
Activity [24] 

2012 10 16 DA RGB, 
Depth, 

Skeleton 

2 320 

G3D [25] 2012 10 20 HCI RGB, 
Depth, 

Skeleton 

3 - 

UTKinect 
Action [26] 

2012 10 10 DA/HCI RGB, 
Depth, 

Skeleton 

2 or 3 200 

MSR Gesture 
3D [27] 

2012 10 12 HCI Depth 2 or 3 336 

CAD-60 [28] 2012 4 12 DA RGB, 
Depth, 

Skeleton 

- 60 

DHA [29] 2012 21 23 DA/HCI Depth - 483 
MSR Action 3D 

[30] 
2010 10 20 HCI Depth, 

Skeleton 
2 or 3 567 
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3. Literature Survey 

The general model of HAR is employed in three 
phases: feature extraction, dimensionality reduction, and 
classification [4]. The model tries to extract the features 
from input action data in the feature extraction phases. 
These features describe the action present in the input 
action image or video in a compact representation such 
that the system can understand. Next, in the 
dimensionality reduction phase, the size of the feature 
vector is reduced, and finally, in the classification phase, 
a classifier is modeled to classify the actions. Among the 
three steps, feature extraction is the most important, and 
most researchers only concentrated on this aspect. As a 
result, we divide the current approaches into categories 
depending on the function used. We also differentiated 

the approaches based on the data type they have 
considered due to the sophisticated quality of depth 
sensor data. (1) The two types of approaches are (1) 
depth map-based approaches and (2) skeleton-based 
approaches.Table.3 presents a list of various behavior 
recognition processes. 

3.1 Depth map-based approaches   

Methods based on depth maps take depth maps 
as input and extract either global or local features from a 
space-time volume. Comparatively to visual data, depth 
maps provide action information that is not affected by 
lighting. However, designing efficient and effective 
depth map-based representations to recognize actions is 
challenging. A few examples of depth maps can be seen 
in Figure 2. 

      

      

Fig.2 Images of golf-swing maps (above) and high waves (below) from the MSR action 3D dataset 

Li et al. [30] studied human action recognition 
from depth maps. In this method, the authors employed 
encoding the actions in the expandable graphical model 
through bag-of-points to formulate an action graph [31]. 
Every node of this graph describes a salient posture 
represented through a small set of 3D points sampled 
from depth maps. The shape of the action is described by 
3D points and the statistical distribution is described by 
Gaussian Mixture Models (GMM). An experiment is 
conducted on the MSR Action 3D data set.  

Nevertheless, [30] has one major drawback: it 
loses spatial context information. In addition, because the 
occlusions are different from side to top angles, the 
reliability of the actions is less. Due to this problem, 
sampling interest points becomes very difficult for other 
persons' given actions. Space-Time Occupancy Patterns 
(STOPs) were developed by Vieira et al. [32], a new 

action descriptor to address the problem. In depth action 
videos, a 4D time-space grid is presented. Based on a 
saturation scheme, the human silhouette's moving parts 
were emphasized by boosting the positions of sparse 
cells. Experiments are conducted.  

Next, Wang et al. [33] focused on the issue of 
noise and occlusion in-depth charts, and to solve it, they 
turned the 3D action series into a 4D form and added a 
pattern called the Random Occupancy Pattern (ROP). 
ROPs are derived from 4D sub-volumes that are 
uniformly sampled at various positions and sizes. Since 
this approach removes characteristics wider, it is less 
susceptible to noise and occlusions. In addition, to 
improve recognition accuracy, this approach used a 
sparse coding scheme [34] and weighted random 
sampling. MSR Action 3D dataset is used to carry out 
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the experiments, and the results are comparable to those 
of [30] and [31]. 

Jalal A et al. [35] used depth silhouettes and R-
transform [36] to characterize the action based on the 
performance of outlines in action identification. Random 
Transform is used in the feature extraction process to 
render the device scale and translation invariant for a 
given depth silhouette. After Principal Component 
Analysis (PCA) and Linear Discriminate Analysis (LDA) 
have been used for dimensionality reduction, one 
prominent action descriptor is extracted using LDA. As a 
final step, a Hidden Markov Model is used to classify 
actions. 

Through Depth Motion Maps (DMM), Yang et 
al. [37] have developed a novel action descriptor that 
captures the temporal energies of sequences. This 
method involves projecting depth maps onto orthogonal 
planes and transforming the projected images into 
normalized images. Each map is given a binary map 
dependent on thresholding, then added together to form 
DMM. The Histogram of Directed Gradients (HOG) is 
computed for each DMM. SVM algorithm is employed 
for classification. The significant advantage of DMM is 
its less complexity when compared with other 
methods.Using the MSR Action 3D dataset, experiments 
are conducted. 

In a similar way, Chen et al. [38] extracted 
features from depth action videos using Local Binary 
Patterns (LBPs) after projecting the video from three 
views: front, rear, and top. This is achieved using the 
Kernel-Based Extreme Learning Machine (KELM) [49]. 
Feature-based fusion, and judgment-based fusion, have 
also proven to be useful components of this technique at 
the fusion stage. When the LBP features are merged at 
the function point, the softmax rule is used to combine 
the classification scores at the decision phase. 
Furthermore, the DMMs were created by the same 
source, Chen et al. [39], at the section stage, where the 
depth video sequence is segmented into multiple 
overlapping segments. After that, DMM is used to 
classify each element, and LBP extracts position rotation 
invariant information. Fisher kernel generates a compact 
function vector for each operation in the final level. For 
action grouping, ELM is used. 

M. A1-Faris et al. [40] introduced a newfound 
variant of DMM called "Fuzzy weighted multi-resolution 
DMMs (FWMDMMs)" that focuses on segmentation and 
motion detail. By segmenting the temporal action frames 
at various stages, this model centered on developing 
multiple DMMs at multiple levels. The weight function 

was used in three orientations for finding the meaning 
after the DMMs were represented: linear, reverse, and 
central. Finally, the FWMDMMs are fed into a deep 
CNN model for classification.A new approach, referred 
to as MFSS (Multilevel Frame Select Sampling) has 
been proposed by Xu Weiyao et al. [42] to produce three 
stages of temporal samples based on the depth of the 
input sequence.Secondly, they are represented using 
Motion and Static Mapping (MSM), Block-based & LBP 
representations, and Fisher kernel representations. For 
action classification, KELM has been effective. Wu Li et 
al. [43] extended the LBP to "Discriminative Completed 
LBP (DiscLBP)." Two classifiers were proposed: 
collaborative representation classification (CRC) and 
DMM-assisted behavior identification (DMM). 

It was proposed by Kim D et al. [44] to 
represent depth action maps compactly. To generate the 
side view, the depth action picture from the front view is 
first processed. Following that, two additional 
descriptors, "Depth Motion Appearance (DMA)" and 
"Depth Motion History (DMH)," is used to characterize 
both the side and front views of the action picture. For 
action labeling, an SVM classifier is used. Finally, the 
operation is defined using HOG. On the other hand, prior 
depth charts did not consider the various motions of body 
pieces.  

Using depth maps and Local Gradient Auto-
correlations (GLAC) [47], Chen et al. introduce yet 
another HAR framework. DMMs of depth action images 
were used for this method to derive shift-invariant image 
features. GLAC's main accomplishment is the capability 
to generate 2nd-order gradients which are capable of 
exploring the rich information about edge features.  The 
final step in action classification is the use of ELM, a 
single hidden layer feed-forward neural network [48], 
after concatenating GLAC and DMM features. A new 
feature extraction method called Space-time 
Autocorrelation of Gradients (STCOG) in 3D space was 
introduced by Chen et al. [50] in order to improve the 
further recognition performance.  In this method, initially, 
the DMMs are computed to transform the depth image 
into shape and motion cues. The next step is to extract 
features based on auto-correlation data of image local 
gradients [51], which can compensate for the loss of 
temporal information in DMMs. 

Liu H et al. [52] came up with another method 
to deal with the loss of temporal information in DMMs. 
As described in [53], Hierarchical Depth Motion Maps 
(HDMM) are used for feature extraction and 
classification using Convolutional Neural Networks 
(CNNs). The novelty of this approach is to create the 
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mimics of an action image in the view of camera 
rotations. Secondly, HDMM can be used to extract the 
body's shape and movement at different time scales.The 
3 CNNs are used for three views (front, side, and top) 
projected onto the orthogonal planes.  

As part of the new HON4D action descriptor 
[54], Prefer ad Liu leverages depth maps to create an 
action descriptor. HON4D describes the action of 
obtaining the surface normal orientation distribution in a 
4D volume of spatial coordinates, time, and depth using 
Histograms. To create the HON4D, the 4D space is first 
quantized using vertices from a regular polychoric. The 
quantization is then used to find the most discriminative 
and dense area using a novel discriminatory density 
measure. Data from the MSR Action 3D dataset is used 
to conduct experiments. 

The authors of Zhang et al. [55] proposed to 
represent human action using 4D spatial-temporal 
features along with the depth maps. The 4D feature 
vector is generated by combining the geometric and 
visual components weighted linearly. This is done by 
concatenating the per-pixel responses with gradients 
contained within the Spatio-temporal window. K-means 
are used to cluster the function vectors for dimensionality 
reduction. They used the Latent Dirichlet Allocation 
(LDA) [57] model to forecast events, and Gibbs 
sampling [56] was used for preliminary estimation and 
inference. Based on 198 short video clips of six types of 
actions, they validated the algorithm with a self-collected 
dataset. 

 

3.2 Skeleton Based Approaches  

The real inspiration for the skeleton-based 
activity recognition was initiated by Johansson [58], 
which demonstrated that the alone joint positions could 
recognize the large set of actions. Unlike the methods 
that focused on the depth data, most of the skeleton-
based approaches explicitly model the temporal 
dynamics. The fundamental explanation for this 
significance is their natural skeleton correspondence over 
time, which was difficult to achieve with depth-based 
results. There are three methods to obtain skeleton data 
in general:  (1) Single view depth maps, (2) Multi-view 
color images, and (3) Active Motion Capture (MoCAP) 
[59, 60]. The significant difference between the skeleton 
data acquired through these models is embedded noise. 
Compared to the first two models, the skeleton data 
obtained through MoCAP is cleaner. When correlated to 
the remaining two, the multi-view setup is generally 
employed to acquire color images, and thus, they 
produce skeletons those have more stability than the 
monocular depth maps. In earlier, most of the action 
recognition methods were employed over the multi-view 
skeleton data and MoCAP data while the recent works 
focused on the skeleton data from monocular depth maps, 
because the setup is very simple. In the following section, 
we discuss different action recognition methods those are 
developed based on skeleton data. Figure.3 shows some 
examples of skeleton images.     

 

Fig.3 examples of skeleton action images from MSR Action 3D dataset, draw tick (top) and draw cross (bottom)  

As a result of projecting the 3D joint trajectory 
onto low-dimensional space, Campbell [61] and Bobick 

[62] represented human motion as curves. This phase 
space is defined independently of the body's position in 
relation to each axis. In the phase space, an action is 
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represented with a curve while the static is represented as 
a single point. An action feature is represented after the 
projection of curves those are learned from multiple 2D 
spaces through supervised learning. But, due to the 
consideration of an action as a simple curve and curve 
fitting problem, only few types of actions those have 
simple movements are only recognized. Since phase 
space representation is invariant across scales and views, 
they are scale and view invariant. 

Histogram of 3D Joint Locations (HOJ3D) 
proposed as a new feature descriptor by Xia et al. [26] to 
consider Hip center as a root and encode the spatial 
occupancy information.They proposed a new method in 
which the hip center serves as an origin point for a new 
version of a spherical coordinate system, segmenting the 
3D space into multiple bins. However, this method is not 
focused on the computation of radial distance which 
makes the system not scale invariant. Unlike the 
Actionlet ensemble [24], for the estimation of spatial 
occupancy, this method employed probabilistic voting. 
LDA is adopted for dimensionality reduction, Vector 
Quantization is adopted for normalization and discrete 
HMM is used to model action dynamics followed by 
action recognition. For experimental validation, they 
have considered their own dataset along with MSR 
Action 3D dataset. However, the heavy dependency on 
the hip center may affect the recognition accuracy when 
the actor is not facing towards camera. In Jinag et al. 's 
paper [62], they propose Skelton context to be the 
invariant to the absolute body orientation and position. A 
multi-scale pairwise position distribution for each joint in 
the skeleton is extracted to quantify correspondence 
between postures. Bag-of-words be evaluated by the 
Conditional Random Fields (CRFs). On the other hand, 
[26, 62] assumes that the original joints of the skeleton 
run parallel to the ground. 

Due to the lack of motion hierarchy, the above-
mentioned methods are having limitation for multiple 
human actions. To solve this issue, Koppula et al. [19, 63] 
mainly focused on the Human-object interactions. They 
used the markov random field (MRF) to analyse the 
action video chain, which had two types of nodes: sub-
activity nodes and object nodes, with the edges between 
nodes representing the interaction between objects and 
sub-activities. Both types of nodes have their own set of 
characteristics. The feature defied for objects is oriented 
to the object's location and its displacements within a 
temporal segment. These are tracked through SIFT 
tracker. Next, the feature of sub-activity is evaluated 
from the skeleton data acquired from skeleton tracker on 
RGBD video. For experimental validation, they have 

considered their own dataset called as Cornell 120 along 
with Cornell 60 dataset [64].   

Sung et al. [28, 65] also employed the action 
hierarchy model of a maximum Entropy Markov Model 
of two layers (MEMM). In this method, two types of 
nodes are defined, one for the representation of sub-
activities and another for the representation of complex 
activities. Every action is analyzed using four different 
features, namely (1) body posture converted into a local 
coordinate system (2) hand positions relative to the head 
and torso (3) joint motion with a temporal sliding 
window and (4) images and point clouds with 
HyperObject Geometry. GMM is used for action 
recognition and for the experiments; they have used their 
own dataset.    

 Along with point cloud information, Wang et al. 
[24] used the skeleton information. There is a rule of 
thumb that some actions will vary when they are 
performed in the presence of an object, and in that case 
just using the skeleton data will not suffice. To solve this 
issue, they have introduced a novel actionlet ensemble 
which captures the intra-class variances through Local 
Occupancy pattern (LOP). On the basis of the 3D point 
cloud surrounding a given joint, LOP features are 
evaluated. In order to derive the Fourier Temporal 
Pyramid features at every joint, the authors concatenated 
both features and then used Short Fourier Transform. 
The MSR Action 3D dataset, the CMU MoCap dataset, 
and the MSR Daily Activity dataset were used as 
experimental validation data for action classification.  

The skeleton motion was encoded by Yao et al. 
[66], using the geometric relationship between particular 
joints to describe the skeleton motion. For action 
recognition, they have employed Hough Forest [68]. 
Moreover the experiments are conducted on a multi-view 
kitchen dataset [69]. X. Yang et al. [70] combined joint 
position differences with Eigen joints to form a new 
feature descriptor.By using this descriptor, we are able to 
describe the offset, motion, and static posture of the body 
joints. 

The motion and posture features encode the 
temporal and spatial configurations with pairwise joint 
difference in a single frame and also between following 
frames, respectively The offset characteristics are then 
used to depict the difference between a pose and the first 
pose. For multi-class grouping, the "Nave-Bayes-
Nearest-Neighbor (NBNN)" algorithm is used, and the 
MSR Action 3D dataset is used for simulation.  
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SMIJ is defined by F.Ofli et al. [71] as a series 
of K representative poses made up from the skeleton 
frames. The skeleton of joints is exceptionally 
interpretable estimates like most extreme angular 
velocity of joints, variance or mean of joint angles etc. At 
that point, the activity succession is address with 
Histogram of its posture words. For exploratory approval, 
they have utilized various datasets. In addition, the 
activity acknowledgement technique proposed by M. 
Barnachon et al. [72] additionally centered around 
bunching yet the grouping is cultivated through 
Hausdroff distance. The middle component of each 
bunch is considered as pose of cluster. Nonetheless, the 
histogram-based action representation techniques ignore 
the temporal information in favor of only using statistical 
data. 

Through translations and rotations in 3D space, 
R. Vemulapalli et al. [73] evaluated geometric 
relationships between different body parts to model the 
skeleton action. The skeleton joints are represented by 
curves in lie group using the proposed representation. 
Then the feature from curve space is transformed into the 
lie algebra and then performed classification through 
linear SVM, Fourier pyramid temporal representation 
and dynamic time wrapping (DTW) [79]. For 
experimental validation, they have used three datasets    

Researchers presented 3D skeleton joint 
trajectories to support 3D action recognition [74]. Each 
skeleton is first converted into three clips which each 
contain different frames and are then used to train deep 
neural networks. Clips originate from one cylinder and 
frames originate from one frame, where each frame 
represents the temporal data of the whole skeleton 
sequence. In order for this to be achieved, Convolutional 
Neural Networks (CNN) were used to learn the long-
term temporal information, followed by Multi-task 
Learning to synthesize all the information. The 
experimenters have used three datasets for experimental 
validation: the NTURGBD+ dataset, the SBU Kinect 
interaction dataset [76], and the CMU dataset [75].     

A new model used to model dynamic skeletons 
is referred to as Spatial-Temporal Graph Convolutional 
Networks (ST-GCN) by Yan et al. [77].   ST-GCN is 

more advanced than the conventional skeleton based 
methods and it ensures an automatic learning of both 
temporal and spatial patterns from action data. This 
method has a stronger generalization capability. For 
experimental validation, they have used two datasets; 
they are NTURGBD+ dataset, and Kinects [78]. 

A. Kamel et al. [80] proposed an action fusion 
method by combining depth maps and postures through 
CNNs. For both actions inputs, two different action 
descriptors are derived. To attain increased recognition 
accuracy, three different CNN channels are involved and 
the outputs obtained at each channel are fused. Further 
several fusion scores are employed to analyze the effect 
of different fusion rules.Three datasets have been used 
for simulation purposes: 1) MSRAction3D; 2) 
Multimodal Texas at Dallas; and 3) Multimodal Action 
Dataset (MAD). 

L. Cai et al. [81] used depth sequence features 
and CNN for HAR. Initially the DMM are extracted from 
depth sequence after the projection into three Cartesian 
planes. To further accelerate the computation and also 
reduce complexity, a two-dimensional process 
identification and 3-D input architecture are proposed. 
Simulations are performed on the basis of MSR Action 
3D, UT-Kinect, and a private CTP action 3D dataset. 

An enhanced spatial-temporal graph 
convolution network (MS-ESTGCN) based on multi-
streaming has been proposed by Li et al. [82]. For the 
aggregation of temporal features, each block of MS-
ESTGCN is employed for Graphic Convolutional Layers 
(GCLs) with different kernel sizes. For simulation 
purpose, two dataset namely NTU-RGBCD and 
Kinetics-Skeleton are employed.  

Y. Han t al. [83] proposed a GL-LSTM+ Diff 
model for 3D HAR. The Global Spatial Attention (GSA) 
model provides precise information about the movements 
in human actions by representing the weights for 
different kernels. Moreover, accumulative learning 
curves are implemented to enhance the frames with the 
highest contribution. For classification, they have 
employed LSTM based RNN.Researchers conduct 
rigorous experiments on SBU's common small dataset as 
well as NTU's largest RGBCD dataset. 

Table 3: Comparison Of Different Action Recognition Methods Based On Depth Data 

Reference Taxonomy Representation Classifier Dataset for simulation Year 
Li et al. [30] Depth  Bag-of-3D points and 2D projection  Action graph  MSR Action 3D  2010 
Vieira et al. 
[32] 

Depth  STOPs followed by PCA Action graph MSR Action 3D  2012 

Wang et al. Depth  ROP and Sparse Coding  SVM MSR Action 3D  2012 
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[33] 
Jalal A et al. 
[35] 

Depth  Depth silhouette and R-transform  HMM  Self-created Daily activity dataset 2012 

Yang et al. 
[37] 

Depth  DMM followed by HOG SVM MSR Action 3D  2012 

Chen et al. 
[38] 

Depth  DMM in three views (front, side and 
top) followed by LBP 

KELM MSR Action 3D  2015 

Chen et al. 
[39] 

Depth  Segmented DMM followed y LBP  
and fisher kernel  

ELM MSR Action 3D  2016 

M. A1-faris et 
al. [40] 

Depth  Segmentation, FWMDMMs  CNN  MSR 3D daily action and MSR 3D 
actions ,Northwestern-UCLA multi-
view action 3D,  

2019 

Xu Weiyao et 
al. [42] 

Depth  MSM followed by LBP and fisher 
kernel 

KELM MSR Gesture 3D, and UTD-MHAD, 
MSR Action 3D,  

2019 

Wu Li et al. 
[43] 

Depth  DMM followed by DiscLBP ELM and 
CRC 

MSR Action 3D 2018 

Kim D et al. 
[44] 

Depth  DMA, DMH and HOG SVM MSR Action 3D  2014 

Chen et al. 
[46]  

Depth  DMMs and GLAC ELM   MSR Gesture 3D,MSR Action 3D 2015 

Chen et al. 
[50] 

Depth  DMMs and STCOG ELM MSR Gesture 3D,MSR Action 3D 2016 

Liu H et al. 
[52] 

Depth HDMMs CNN MSRAction3D and DHA  2017 

Oreifej ad Liu 
[54] 

Depth  HON4D SVM MSR Gesture 3D, and MSR Daily 
Activity 3D,MSR Actions 3D,  

2013 

Xia et al. [26]  Skeleton  HOJ3D and LDA HMM MSR Action 3D  2012 
Jinag et al. 
[62] 

Skeleton Bag of words and CRF   2015 

Koppula et al. 
[19, 63] 

Skeleton  Pose and object features  Multi-class 
SVM 

Cornel-120 and Cornel-60 action 
datasets 

2012 

Sung et al. [28, 
65] 

Skeleton  HOG, Pose features, and  GMM  MEMM Self-created dataset  2011 

Yao et al. [66] Skeleton Geometrical relational features  Hough Forest  Multi-view kitchen  2012 
X. Yang et al. 
[70] 

Skeleton  Offset, motion and static features of 
body joins 

NBNN MSR Action 3D  2014 

F. Ofli et al. 
[71] 

Skeleton  SMIJ and Histograms  Levenshtein 
distance 

MSR Action 3D, Self-created dataset 
and HMDB05 

2014 

R. 
Vemulapalli et 
al. [73] 

Skeleton  Geometric relationships between 
different body parts, DTW and 
Fourier pyramid temporal features. 

SVM MSR Action 3D, UTKinect-Action 
and Florence3D-Action  

2014 

Q. Ke et al. 
[74] 

Skeleton  3D trajectories of skeleton joints  CNN NTURGBD+, SBU Kinect 
interaction and CMU 

2017 

S. Yan et al. 
[77] 

Skeleton  ST-GCN CNN NTURGBD+ and Kinect 2018 

A. Kamel et al. 
[80] 

Depth and 
Skeleton 

Depth Motion Maps and Skeleton 
joint descriptors 

CNN MSRAction3D;  and i) multimodal 
action dataset (MAD) dataset, ii) 
University of Texas at Dallas-
multimodal human action dataset; 

2019 

L. Cai et al. 
[81] 

Depth  DMM on three planes 3-D CNN MSR Action 3D, UT-Kinect and a 
private CTP action 3D dataset 

2018 

Fanjia Li et al. 
[82] 

Skeleton  Skeleton with GCL CNN NTU-RGBCD and Kinetics-Skeleton 2020 

Y. Han t al. 
[83] 

Skeleton global spatial Attention (GSA) RNN NTU RGBCD and SBU dataset 2020 
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4. Discussion and Conclusion  

In the recent years, the depth data has been 
acquiring a huge research interest in different kind of 
applications. Among those applications, the major 
contribution is done in the field of human action 
recognition. Compared to the tradition vision based data, 
the depth data has more advantages and the development 
of applications based on depth data has more benefits. 
For example, the RGB images are sensitive to 
illumination and lighting conditions while the depth data 
is insensitive. Based on this inspiration, so many authors 
put effort towards the improvement of various types of 
HAR models. Based on this comparison we understood 
that the depth data has so many advantages tan the vision 
data like less computational cost, more efficiency, 
inexpensiveness and ease of deployment.    

Our study explores different approaches of 
action recognition based on depth. Initially we have 
outlined the basic prospects of depth data and explored 
its advantages by comparing with RGB data. Further we 
have outlined a detailed description about the depth 
action datasets those are used in the performance 
evaluation of different HAR methods. Among the 
surveyed datasets, there are two types of datasets, they 
are the dataset those are intended mainly on the 
recognition of daily activities and the second one is the 
datasets those are intended on provision of interaction 
between human and computer. Making the computer to 
behave like a human being is a tedious task and only a 
limited number of interactions are acquired in the HCI 
datasets. Further, we also noticed that in the depth 
datasets, broadly there are two kinds of data formats, 
they are one is depth maps and another is skeleton. These 
datasets are typically categorized into three types of 
formats: RGB, depth, and skeleton. 

   Next, we have conducted a detailed survey on 
the HAR methods. Broadly all the surveyed methods are 
categorized into two categories; These approaches are 
skeleton-based and based on depth data. In the old 

category, the developed HAR system seeks the depth 
maps as input while in the second one it seeks the 
skeleton data as input. The initial methods like ROP, 
HOG, STOP, and HON4D etc. applied the traditional 
action representation techniques like STIPs, cuboids and 
occupancy patterns, bag of words etc. as feature 
extraction techniques which are not new ones. In contrast 
to these methods, DMM was introduced first by Yang et 
al. [37] who showed it significantly increased recognition 
accuracy, as well as computing complexity. Compared to 
the traditional action representation methods, the DMM 
is very simple and also effective. Based on these 
advantages, so many versions of DMMs like HDMM, 
FWMDMM, DMA, DMH etc. are developed and proven 
the effectiveness of DMM. However, the major issue 
with DMM its non-robustness for noises, occlusions and 
some small side effects like minor movements and body 
shaking movements. For a given action sequence with 
these disturbances the DMM and its subsequent methods 
had shown a limited performance. Hence there is a need 
to work on such kind of issues in future to achieve an 
efficient recognition performance.  

Based on skeleton data, the next category of 
methods represents the movement by showing the joints' 
positions in three dimensions (x-, y-, and z-axis). At the 
starting phase methods, the action is described by the 
computation of displacements of joints in successive 
frames. However, they are susceptible for view point 
variations. Hence to achieve view-point variance, some 
authors transformed the skeleton joints data in Cartesian 
plane to spherical plane and the actions are described 
through the radial distance and angular deviation with 
horizontal and vertical axis. However, they are observed 
to have susceptibility to minor actions or the actions with 
similar movements like Draw cross, Draw tick in MSR 
action 3D dataset. We conclude from these observations 
that there is still a great deal of potential for further 
research in the field of depth data assisted HAR. 
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