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Summary 
Multi-objective optimization problems (MOPs) arise in many real-
world applications. MOPs involve two or more objectives with the 
aim to be optimized. With these problems improvement of one 
objective may led to deterioration of another. The primary goal of 
most multi-objective evolutionary algorithms (MOEA) is to 
generate a set of solutions for approximating the whole or part of 
the Pareto optimal front, which could provide decision makers a 
good insight to the problem. Over the last decades or so, several 
different and remarkable multi-objective evolutionary algorithms, 
have been developed with successful applications. However, 
MOEAs are still in their infancy. The objective of this research is 
to study how to use and apply machine learning (ML) to improve 
evolutionary multi-objective optimization (EMO). The EMO 
method is the multi-objective evolutionary algorithm based on 
decomposition (MOEA/D). The MOEA/D has become one of the 
most widely used algorithmic frameworks in the area of multi-
objective evolutionary computation and won has won an 
international algorithm contest. 
Keywords: 
Multi-objective, MOPs, MOEA, ML, Evolutionary Algorithm. 

1. Introduction 

The concept of optimization is very important for 
many of real-world applications and is considered as critical 
demand for their development and growth.  The concept of 
optimization can be summarized into the process of 
selecting the best solution among a set of elements based on 
one or several specific criteria. Using optimization is highly 
important in many areas such as finance, communications, 
naval, air and land transport. 

 
In most of optimization problems, the purpose is to 

optimize one or many objectives. That means to observe 
that objective and maximize or minimize its value, 
depending on the issue description and target. In other 
words, Optimization involves finding the optimal solution 
for the problem without affecting one of the objectives or 
making conflict between two objectives. When several 
objectives are used in the optimization process, the method 
is called Multi-objective optimization. 

The Evolutionary Algorithms (EAs) have been known 
for their great support in solving all problems of 

optimization.  The concept of these algorithms is based on 
the Darwin’s theory of evolution.  Some of the evolutionary 
mechanisms in Darwin’s theory are characterized by 
population-based algorithms.  The feature and resources of 
this algorithm are able to find many solutions for the 
optimization problems. In Multi-Objective Optimization 
Problems (MOOPs), problems may contain more than one 
objective.  The objectives may have relations to each other 
and will certainly have conflict among them.  In some cases,  
the solution will  not  only  be  one  solution  but  will  be  a  
set  of  solutions  to  be  the solutions or keys for the 
optimization process.  These solutions are known as Pareto-
optimal solutions. It should be emphasized that the main 
objective of this type of algorithm is to generate a range of 
solutions to show the Pareto-optimal front. Several Multi-
Objective Evolutionary Algorithms (MOEAs) have been 
developed with their successful applications within the past 
two decades. It is essential to refer to the fact that MOOPs 
are usually developed in all real-world applications. 
Recently, researchers have attracted their attention to add 
more developments to this field due to the increasing 
applications of MOOPs and demand. Researchers have 
developed new algorithms solving MOOPs, known as 
multi-objective evolutionary algorithm based on 
decomposition (MOEA/D), based on the concept and 
principle of ”decomposition”. 

 
Evolutionary Computation (EC) uses some algorithms 

named Evolutionary Algorithms (EA). In this research, 
Evolutionary Multi-Objective Optimization is achieved 
based on decomposition (MOEA/D). Decomposition 
divides the optimization problem with more than one 
objective into sub-problems and optimize each of them 
individually and simultaneously.  

 
That means in case of using 0/1 knapsack problem as 

an example of optimization problem, it turns to multiple 
knapsacks with each sub-problem is a 0/1 knapsack 
problem. In knapsack problem, there are a set of objects or 
items, which have their values and weights. The solution to 
the problem is to find the best number of objects to be 
included in the collection in a way where the net weight is 
less than or equal to a certain top value while the net value 
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is maximized. 0/1 knapsack means that the object will be 
included or excluded; it cannot be partially added to the 
knapsack.  

 
Machine Learning (ML) is useful in many applications 

to let the machine learn from the data by itself. Each of 
Supervised Learning and Unsupervised Learning can have 
their own advantages and usages. Applying ML to 
Optimization process can solve similar problems with 
similar target by memorizing the information and enforce 
analogical steps for more accurate results and less 
processing time. 

2. Motivation and Objectives: 

The motivation of this research is to study MOPs 
with different techniques and decide which one gives better 
results in respect of maximizing the goal. The next step is 
to enhance to the selected technique trying to achieve better 
accuracy or lessen the time of optimization process. 
 

This research compares between the results of 
optimization algorithms with and without the usage of ML. 
ML shall improve the MOPs results. MOPs with MOEA is 
used for this research. Decomposition is a step that is added 
to MOEA to resolve the problem to a number of sub-
problems and optimize each one simultaneously and 
without conflict. The MOEA with decomposition 
techniques (MOEA/D) is then tested to a Multiple 
Optimization Problem (MOP) such as 0/1 Knapsack to 
determine its efficiency. 
 

The workflow of this research will go through the 
following steps: 
- Studying 0/1 multi-objective knapsack problem to 

understand the nature of the algorithm and its 
application depending on separate factors. 

- Studying the concept of MOEA/D and implement it. 
- Applying MOEA/D on 0/1 multi-objective knapsack. 
- Using ML on MOEA/D, where the Random Forest 

method is used. Support Vector Machine (SVM) is 
used to determine which type of Random Forest to use. 

- Comparing the results of the experiment using ML and 
the experiment results while not using ML 

 
 
 

3. MOEA/D: A Multi-Objective 
Evolutionary Algorithm Based on 
Decomposition 

Recently, a new MOEA has been proposed by Zhang 
and Li [1]. They proposed a simple but efficient and 
powerful MOEA that is based on decomposition called the 
OEA/D. This algorithm works very well on a wide range of 
multi-objective problems with many objectives and is most 
successful with a small population. The MOEA/D contains 
the following features: 
- With the MOEA/D, a MOOP is handled as a collection 

of many single-objective optimization problems. 
- It uses scalar optimization methods, such that one 

scalar optimization problem is linked to one solution. 
On the contrary, non-decomposition MOEAs do not 
have the advantage of scalar optimization methods. 

- The MOEA/D has a low computational complexity. 
- It allows the use of single-objective optimization 

methods as well as problem specific heuristics or local 
search. 
 

The framework for MOEA/D can described as following: 

Stage 1: 
The MOEA/D begins by accepting a MOOP as an input. 
Then, it must decompose the MOOP that is under 
consideration into N scalar optimization sub-problems. Any 
decomposition technique can be used here (e.g., the 
weighted sum approach). 
 
Stage 2: 
This stage starts with the initialization of a set of even 
spread weight vectors. These weight vectors should satisfy 
the following two conditions: 
 
 

 

 
 
 
Where H is a user-defined positive integer. The first 
condition states that the total sum of all the weight vectors 
must be 1. The second condition indicates that each 
individual weight in the set of weight vectors takes a value 
from weight vectors' count is calculated as follows: 
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Putting m is the number of objectives. For example, by 
specifying H = 199, one has N = 150 weight vectors for a 
two objective (m = 2) problem: λ= (0,1) (0.01, 0.99).. (1,0). 
Take a three objective (m = 3) example. By specifying          
H = 25, one has N = 351 weight vectors: λ = (0,0,1), (0, 
0:04,0:96),….(1,0,0). After the weight vectors have been 
initialized, one can proceed to the next stage. 
 
Stage 3: 
The MOEA/D requires the calculation of the T closest 
weight vectors in the neighborhood of each weight vector. 
The value of T is a user-defined positive integer. The 
MOEA/D uses the standard Euclidean distance to measure 
the distance between any two weight vectors. After the 
distances have been calculated, one assigns each λi the T 
closest weight vectors (including λi itself) as its neighbours 
and designates this set as B(λi ) ={i1,12,,,,,,ir} where i is the 
index to a solution neighbour. After determining the T 
closest neighbors for each weight vector, one can move to 
the next stage. 
 
Stage 4: 
Now one has N weight vectors as well as T neighbors in 
B(λi). So, the MOEA/D can immediately begin the 
evolutionary process. An initial population is generated 
randomly or through a problem-specific method. Notice 
that the population size is the same as N, which is the 
number of weight vectors. Next, an offspring is generated 
for each λi by applying selection, crossover, and mutation. 
Two neighbour indices, k and i, are randomly selected from 
B(λi) Then, the two neighbour solutions, xk and xi, are mated 
(i.e., undergo crossover and mutation) in order to produce 
the new solution y. The new solution y is improved by 
applying a problem-specific repair or an improvement 
heuristic approach to produce yi. Then, the new solution y. 
is compared with all of the T neighbours (including λi itself) 
by the scalarizing function (e.g., the weighted sum) with the 
weight vector of each neighbor. When it is determined that 
y. is fitter than any of the T neighbours y., is replaced with 
that particular neighbour. This process continues until a 
stopping condition is met (e.g., a predetermined number of 
solutions have been examined). 
 

The MOEA/D employs an external population EP 
to store the non-dominated solutions that are found up to 
this point in the search process. The EP is updated by the 
newly generated solution y. All of the vectors that are 
dominated by F(y) are removed from EP. The preceding 
information is illustrated below as an algorithm 
 

3.1 Multi-Objective Knapsack Problem 

The knapsack problem is a combinatorial 
optimization problem with a group of items. Each item has 
a weight and a value. The number of items to be set in a 
collection is determined in order that the net weight is less 
than or equal to some boundary and also the net value is 
maximized. 
 

The 0-1 Multi-Objective Knapsack problem is 
mathematically formulated in equation, with a set of items, 
n and a set of m knapsacks, with: 
Pij >= 0 the profit of item j in knapsack, 
wij  >= 0 the weight of item j in knapsack, 
ci >= 0 capacity of the knapsack i, 
 
the 0 - 1 multi-objective knapsack problem can be stated as 
follows: Maximize 
 
 
 
 
 
 
 
 
 
xi = 1 means that item i is selected and inserted into all the 
knapsacks. The 0 - 1 multi-objective knapsack problem is 
classified as an NP-hard problem and can be used to model 
different forms of applications in resource allocation. When 
m = 1, it is reduced to the 0-1 single knapsack problem 
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4. Methodology 

The target of our research is to solve the Multi-
objective Optimization problem by adding a ML 
component to existent solutions and compare the results. 
The enhancement added by the study is to show that 
Machine Learning gives better results solving the 
optimization problems. Evolutionary multi-objective 
algorithms optimize many objective functions (two or 
more) simultaneously which usually have a conflict 
between each other. The target from this algorithm is to get 
the set of Pareto optimal solutions as an approximation. The 
set of solutions will seize the balance among the objective 
functions. 
 

First, the 0/1 knapsack problem is used as a 
represent for the optimization problem. It is implemented 
using decomposition technique with the following 
parameters are: 
- Decomposition technique, the Tchebycheff. 
- Number of final solutions, 
- Number of total evaluations conducted in current run. 
- Mutation rate (set to 0.9). 
- Dimension of decision space (set to 250, 500 and 750). 
- Dimension of objective space (set to 2). 
- Population Size (set to 150, 250 and 300). 
- Number of maximum function evaluations in each run (set 
to 500 * Population Size). 
- Neighborhood Size (set to 15 and 30). 
 

4.1 Research Design 

The research design shows how the study goes 
with steps of experiment. The main and first step is to 
choose the research approach and test its degree of benefit 
to the study goal. Research design has many tasks and 
decisions inside it. This study shows the development of 
research phases, as it used one method for multi-objective 
optimization and added an enhancement of using ML The 
first task is the study of previous or related research of the 
same topic, so we can add enhancement to the latest results 
in solving optimization problems. It's important to know the 
valid choices of the number of the objectives for real life 
optimization issues. There is a dire need for understanding 
the evolutionary optimization and estimate the complexity 
for having many objectives to optimize. The other design 
used is the understanding of how machine learning can 
enhance the optimization process and what the best 
technique to choose among different machine learning 
methods. The practical work must revise or discuss the 
effects of changing parameters of multi-objective 
optimization, the parameters of decomposition technique 
and the parameters of machine learning methodology as 
well. 

4.2 Performance Metrics 

This research attempts to recognize key areas 
where performance measurement can be expected to 
generate benefit to improve research goals and develop a 
promising method for solving optimization issues. Then, 
the decomposition technique is obviously better in terms of 
accuracy and processing time. Finally, adding machine 
learning to the multi-objective optimization process proves 
to show completely accurate results. 
 

Inverted Generational Distance (IGD) is a 
different method of measuring performance [2]. It is a 
convergence metric that compares the non-dominated 
solutions found so far with each element of the Pareto-
optimal front. Thus, the IGD metric uses the Pareto-optimal 
front as a reference. The IGD from the Pareto-optimal front 
PF* the non-dominated 
solutions set P found so far is defined as: 
 
 
 
 
Where d(x,P) is the minimum Euclidean distance between 
x and each element in P. As long as the IGD value is mall. 
The solutions are more close to the Pareto-optimal front; for 
example, IGD= 0 leads to the result that the solutions 
generated are in the Pareto-optimal front. Likewise, the 
higher the value of IGD obtained, the farther the set of non-
dominated solutions is from the Pareto-optimal front. 
 

5. Experiments and Results 

The optimization problem adopted by the 
algorithm is 0/1 multi-knapsack problem. A text file with 
knapsack problem details. The file has items with their 
weights and the values of the items in the problem. These 
items are selected in a true/false manner, that it they are 
taken or not taken and can not be partially included. The 
problem has been divided into 
sub-problems using Tchebyche_ method as a 
decomposition technique. Tchebyche_ method tries to 
eliminate weak or non-dominated points from the 
optimization problem. 
 

The sub-problems generated are then pass through 
the next stage, which is genetic algorithm. Crossover and 
mutation are the variants of the GA. Random Crossover is 
implemented. Crossover generates a new solutions where 
the parents are selected from the neighborhood. Machine 
learning is then applied to the same knapsack problems. 
Random forest supervised machine learning method is used 
in the experiment. It first randomly selects some items from 
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the dataset. Then it builds a decision tree to switch between 
solutions depending on their rank or votes. 

5.1 Datasets 

At level one, all the focus was only on whether the 
implementation was right or wrong because its accuracy 
gives an indication of the extent of his understanding of the 
subject. Thus, a group of datasets, with their optimal 
solutions were used with the application of a simple GA to 
the single objective knapsack problem. The purpose of 
using those datasets is to test how accurately the GA is 
applied to this problem. At level two, the program and the 
algorithm were different from those in the previous level in 
that multiple objectives were included. Therefore, a suitable 
method was needed for testing and evaluating these 
multiple objectives. The 0-1 multi-objective knapsack 
problem, which is NP-hard, required special test problems 
that are suited for it. Ziztler and Theile [3] have proposed a 
dataset for multi-objective heuristics, and this dataset is 
commonly used in the EC community. This dataset consists 
of nine test instances and is widely used for multi-objective 
knapsack problems. 
 

5.2 Implementation Environment 

Python is an open-source computer programming 
language that is one of the most powerful languages a 
programmer can use for algorithm development, data 
visualization, data analysis, and numeric computation. It is 
widely used to perform engineering and scientific 
calculations and provides a very extensive library of 
predefined functions. Most of the applied ML methods used 
implementations from the Python library scikit-learn. 
Scikit-learn is an open source machine learning library. It 
focuses on modelling data and it has predefined algorithms. 
It provides multiple supervised and unsupervised learning 
algorithms. Scikit-learn was used with version 3.6 of 
Python. Thus, the implementation environment will be 
python. The python program and language will be used to 
implement and test both the MOEA/D algorithm with the 0-
1 multi-objective knapsack problem, and MOEA/D with 
machine learning. 
 

In order to conduct the experiments, a computer with 
the following specifications will be used:  
- Processor: Intel(R) Core(TM) i7-4510U CPU @ 

2.00GHz 2.60 GHz 
- Installed memory (RAM): 16.00 GB 
- System type: 64-bit Windows 7 Professional 

5.3 Results of MOEA/D algorithm 

In this experiment, we run the MOEA/D 
algorithm on the knapsacks problem. It was ran 20-times 
independently for each 2 objective 250 / 500 /750 items in 
the MOKP test instance in the process of our experiments. 
Results are reported in the following tables: 

 
Table 1: IGD metric and run time found by MOEA/D for all the MOKP 
test instances. 

 
 
Table 2: The mean and min IGD metric and standard deviation values of 
the non-dominated solutions found by MOEA/D for all the MOKP test 
instances 
 

 
 
 
 
 

The following figures shows plotting the evolution 
of the average IGD metric in MOEA/D for 2 objective 
250/500/750 items in the MOKP test instances. 
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Figs.1,2,3 The evolution of the average IGD metric in MOEA/D for 2 
objective 250/500/750 items in the MOKP test instances 

 
In the following figures, plotting the non-

dominated solutions with the lowest IGD metric values in 
20 runs of the MOEA/D in 2 objective MOKP test instances. 
 

 
 

 

 

 

Figs 4,5,6: Plot of non-dominated solutions with the lowest IGD metric 
values in 20 runs of the MOEA/D in 2 objective MOKP test instances 
with pareto Front PF for each test instances. 

5.4 Results of MOEA/D + Machine Learning 
algorithm 

This section presents the results of this paper 
contribution on multi-objective evolutionary algorithm 
based on decomposition (MOEA/D). The approach is to add 
a ML component to previous MOEA/D algorithm. 
Specifically, a supervised ML algorithm which is the 
Random Forest algorithm. The learned model constitutes 
the knowledge which can be then utilized to guide the 
evolution process within MOEA/D. Simulation results on 
knapsacks problem are presented.  As in the previous 
experiment where the results of 20 runs were presented. The 
same is preformed with MOEAD/D+ML solution, this 
algorithm run 20-times independently for each 2 objective 

250 / 500 /750 items in the MOKP test instance in the 
process of experiments. Table 3 shows the IGD metric and 
standard deviation values of the nondominated solutions 
found by MOEA/D+ML for all the MOKP test instances. 
 
Table 3: IGD metric and run time found by MOEA/D + ML for all the 
MOKP test instances 

 
Table 4: The mean and min IGD metric and standard deviation values of 
the non-dominated solutions found by MOEA/D+ML for all the MOKP 
test instances 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figs 7,8,9: The evolution of the average IGD metric in MOEA/D for 2 
objective 250/500/750 items in the MOKP test instances MOEA/D + ML 
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For this experiment, plotting the non-dominated 
solutions with the lowest IGD metric values in 20 runs of 
the MOEA/D + ML in 2 objective MOKP test instances. 

 

 

 

 

 

 
Figs 10,11,12: Plot of non-dominated solutions with the lowest IGD 
metric values in 20 runs of the MOEA/D + ML in 2 objective MOKP test 
instances. 
 
 

Another experiment was conducted with varying 
the training data size to show its impact. MOEA/D+ML 
algorithm was trained using nine different sizes of training 
data set (theta = 0.05, theta = 0.10, ..., theta = 0.80, and theta 
= 0.9). For each size data, the lowest IGD metric value is 
reported in table 5 and Figure 13. 
 
 
 

Table 5: Theta probability 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
Figs 13-20: (a) Theta probability 0.1 (b) Theta probability 0.2 (c) Theta 
probability 0.3 (d) Theta probability 0.4 (e) Theta probability 0.5 (f)  Theta 
probability 0.6 (g) Theta probability 0.7 (h) Theta probability 0.8  

 
 
 

6. Discussions 
 

The IGD metric was used to assess the 
performance of the algorithm. In many cases, the Pareto-
optimal front is unknown. In such instances, an upper 
approximation for the Pareto-optimal front is used. For the 
nine test instances of the 0-1 multi-objective knapsack 
problem, there exist a very good upper approximation. This 
upper approximation was produced by Jaszkiewicz. His 
upper approximation has 202 points for two objective 
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instances. Table 6 shows the mean and the minimum values 
of the IGD metric in the MOEA/D and MOEA/D with 
machine learning for all the 0-1multi-objective knapsack 
problem test instances. It also presents the standard 
deviation values. 
 

As can be seen in table 6, Among both multi-
objective EAs, MOEA/D+ML algorithm seems to provide 
the best performance for the 2 objective instance with 250 
items and 750 items. The minimum IGD values for each test 
problem with MOEA/D+ML are less than the 
corresponding IGD values of the MOEA/D algorithm. 
However, The minimum IGD value for the two objective 
instance with 500 items obtained with MOEA/D is less than 
the corresponding IGD values of the MOEA/D+ML 
algorithm. 
 
 
Table 6: IGD metric and standard deviation values of the non-dominated 
solutions found by MOEA/D and MOEA/D+ML for all the MOKP test 
instances 

 
In order to examine the convergence of both 

algorithms (MOEAD vs MOEAD+ML), the mean IGD 
metric values for both compared methods (20 independent 
runs) for the 2 objective instance with 250 items, 500 items, 
and 750 items are plotted in Figures 21, 22, and 23. These 
figures show respectively the evolution of the average IGD 
metric in MOEA/D for 2 objective 250, 500, and 750 items 
in the MOKP test instances (a) MOEA/D (b) MOEA/D + 
ML (c) comparison MOEA/Dvs MOEA/D + ML. It can be 
observed from these figures that the curves of the mean IGD 
values obtained by MOEA/D+ML reach the lowest 
positions with the fastest searching speed on 2-250 and 2-
750 items. The promising convergence speed of the 
proposed MOEA/D-ML might be attributed to the adaptive 
strategy used when applying random forest algorithm. 
 

 

 
 
 

 

Figs 21,22,23: The evolution of the average IGD metric in MOEA/D for 
2 objective 250 items in the MOKP test instances (a) MOEA/D (b) 
MOEA/D + ML (c) comparison MOEA/D vs MOEA/D + ML 

 
 

The results using the PF obtained by both 
algorithms are shown in figure 24,25 and 26. 
MOEA/D+ML performs the best in 2-objective 
optimization problems (250 items and 750 items). The ML 
enhanced MOEA/D is able to obtain better estimation of 
Pareto fronts. It behaves better than MOEA/D. But for the 
2-objective optimization problem (500 items), MOEA/D 
slightly outperforms the MOEA/D+ML algorithm. 
 

 
 
 
 
 
 
 
 
 
 
 
Figs 24,25,26: Plot of non-dominated solutions with the lowest IGD metric 
values in 20 runs of the MOEA/D and MOEA/D +ML and showing the 
comparison for all test instance (a) comparison 2 objective 250 items (b) 
comparison 2 objective 500 items (c) comparison 2 objective 750 items 
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To summarize, machine learning techniques can 
help the EA algorithms search more effectively and 
efficiently, they also add to computational burden. There is 
a tradeoff between this benefits and the computational costs. 
Better understanding and improving cooperation between 
ML and EC will play a significant role in enhancing EC 
algorithms with ML techniques efficiently. 
 

7. Conclusion and Future Work 
 

Research in this study worked on solving multi-
objective optimization problem. Knapsack problem is a 
popular example of an optimization. In 0/1 knapsack 
problem, the items to be optimized can't be partitioned, it's 
taken or not taken. Using decomposition with Multi-
objective optimization makes it easier to solve. Tchebyche_ 
is the decomposition techniques used in the research. 
 

Genetic Algorithm is an optimization method that 
imitate the natural evolution process. It's based on 
population search. There are many applications that Genetic 
Algorithms are suitable for them. Decision making 
problems are a popular example of such applications. 
Optimization, Machine Learning, Robotics and Search 
problems are other types of applications for which Genetic 
Algorithms may have proper solutions. Genetic Algorithm 
has been used to solve each sub-problem generated from the 
decomposition step. Crossover and mutation are the 
variants or the operators of the genetic algorithm. In the 
research, the crossover is random. 
 

Artificial Intelligence, Machine Learning, 
Evolutionary Multi-Objective Optimization and Genetic 
Algorithm were the main topic of search in the thesis. It's 
vital to show the solution of the optimization problem as a 
search space to solve it. Also, it's needed to design specific 
operators for the search process so that they generate new 
solutions as candidates based on the solution presented. 
Computational complexity of exploring the new solutions 
reduces as the accuracy of the cost function increases. The 
techniques of Machine Learning have promising 
capabilities in the integration with MOEA framework; yet 
this integration is still in its early stages. Machine Learning 
supports the solution for Evolutionary Optimization 
Problems. Machine Learning gives better population 
diversity and more accuracy. The used ML technique here 
is Random forest. 

 
Supervised Random Forest has been used for 

classification problem mainly. It's random as it selects 

random samples from the given dataset used for the training. 
The forest comes from the fact that it creates decision trees 
on the data samples. Then the algorithm form the prediction 
from each of these trees. Finally it selects the best solution 
by voting. 
 

This research work has laid down the framework for 
different operations of Genetic Algorithms and also the 
hybridization of GA with other search techniques. This 
paper can be groundwork for further research in this area. 
Some of the possible directions for future research are 
highlighted here: 
 
- Use some other techniques like Population Initialization, 

Population Reproduction and Variation, Algorithm 
Adaptation and Local Search 

- This paper focuses on using ML for Fitness Evaluation 
and Selection particularly in Reducing Number of 
Function Evaluations, other direction can be done for 
Modeling Objective Function 
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