
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

203

Manuscript received June 5, 2022
Manuscript revised June 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.6.29

Using Machine Learning to Improve Evolutionary Multi-Objective
Optimization

Rakan Alotaibi†,

Computer and Information Systems college, Umm Alqura university, Saudi Arabia

Summary
Multi-objective optimization problems (MOPs) arise in many real-
world applications. MOPs involve two or more objectives with the
aim to be optimized. With these problems improvement of one
objective may led to deterioration of another. The primary goal of
most multi-objective evolutionary algorithms (MOEA) is to
generate a set of solutions for approximating the whole or part of
the Pareto optimal front, which could provide decision makers a
good insight to the problem. Over the last decades or so, several
different and remarkable multi-objective evolutionary algorithms,
have been developed with successful applications. However,
MOEAs are still in their infancy. The objective of this research is
to study how to use and apply machine learning (ML) to improve
evolutionary multi-objective optimization (EMO). The EMO
method is the multi-objective evolutionary algorithm based on
decomposition (MOEA/D). The MOEA/D has become one of the
most widely used algorithmic frameworks in the area of multi-
objective evolutionary computation and won has won an
international algorithm contest.
Keywords:
Multi-objective, MOPs, MOEA, ML, Evolutionary Algorithm.

1. Introduction

The concept of optimization is very important for
many of real-world applications and is considered as critical
demand for their development and growth. The concept of
optimization can be summarized into the process of
selecting the best solution among a set of elements based on
one or several specific criteria. Using optimization is highly
important in many areas such as finance, communications,
naval, air and land transport.

In most of optimization problems, the purpose is to

optimize one or many objectives. That means to observe
that objective and maximize or minimize its value,
depending on the issue description and target. In other
words, Optimization involves finding the optimal solution
for the problem without affecting one of the objectives or
making conflict between two objectives. When several
objectives are used in the optimization process, the method
is called Multi-objective optimization.

The Evolutionary Algorithms (EAs) have been known
for their great support in solving all problems of

optimization. The concept of these algorithms is based on
the Darwin’s theory of evolution. Some of the evolutionary
mechanisms in Darwin’s theory are characterized by
population-based algorithms. The feature and resources of
this algorithm are able to find many solutions for the
optimization problems. In Multi-Objective Optimization
Problems (MOOPs), problems may contain more than one
objective. The objectives may have relations to each other
and will certainly have conflict among them. In some cases,
the solution will not only be one solution but will be a
set of solutions to be the solutions or keys for the
optimization process. These solutions are known as Pareto-
optimal solutions. It should be emphasized that the main
objective of this type of algorithm is to generate a range of
solutions to show the Pareto-optimal front. Several Multi-
Objective Evolutionary Algorithms (MOEAs) have been
developed with their successful applications within the past
two decades. It is essential to refer to the fact that MOOPs
are usually developed in all real-world applications.
Recently, researchers have attracted their attention to add
more developments to this field due to the increasing
applications of MOOPs and demand. Researchers have
developed new algorithms solving MOOPs, known as
multi-objective evolutionary algorithm based on
decomposition (MOEA/D), based on the concept and
principle of ”decomposition”.

Evolutionary Computation (EC) uses some algorithms

named Evolutionary Algorithms (EA). In this research,
Evolutionary Multi-Objective Optimization is achieved
based on decomposition (MOEA/D). Decomposition
divides the optimization problem with more than one
objective into sub-problems and optimize each of them
individually and simultaneously.

That means in case of using 0/1 knapsack problem as

an example of optimization problem, it turns to multiple
knapsacks with each sub-problem is a 0/1 knapsack
problem. In knapsack problem, there are a set of objects or
items, which have their values and weights. The solution to
the problem is to find the best number of objects to be
included in the collection in a way where the net weight is
less than or equal to a certain top value while the net value

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

204

is maximized. 0/1 knapsack means that the object will be
included or excluded; it cannot be partially added to the
knapsack.

Machine Learning (ML) is useful in many applications

to let the machine learn from the data by itself. Each of
Supervised Learning and Unsupervised Learning can have
their own advantages and usages. Applying ML to
Optimization process can solve similar problems with
similar target by memorizing the information and enforce
analogical steps for more accurate results and less
processing time.

2. Motivation and Objectives:

The motivation of this research is to study MOPs
with different techniques and decide which one gives better
results in respect of maximizing the goal. The next step is
to enhance to the selected technique trying to achieve better
accuracy or lessen the time of optimization process.

This research compares between the results of
optimization algorithms with and without the usage of ML.
ML shall improve the MOPs results. MOPs with MOEA is
used for this research. Decomposition is a step that is added
to MOEA to resolve the problem to a number of sub-
problems and optimize each one simultaneously and
without conflict. The MOEA with decomposition
techniques (MOEA/D) is then tested to a Multiple
Optimization Problem (MOP) such as 0/1 Knapsack to
determine its efficiency.

The workflow of this research will go through the
following steps:
- Studying 0/1 multi-objective knapsack problem to

understand the nature of the algorithm and its
application depending on separate factors.

- Studying the concept of MOEA/D and implement it.
- Applying MOEA/D on 0/1 multi-objective knapsack.
- Using ML on MOEA/D, where the Random Forest

method is used. Support Vector Machine (SVM) is
used to determine which type of Random Forest to use.

- Comparing the results of the experiment using ML and
the experiment results while not using ML

3. MOEA/D: A Multi-Objective
Evolutionary Algorithm Based on
Decomposition

Recently, a new MOEA has been proposed by Zhang
and Li [1]. They proposed a simple but efficient and
powerful MOEA that is based on decomposition called the
OEA/D. This algorithm works very well on a wide range of
multi-objective problems with many objectives and is most
successful with a small population. The MOEA/D contains
the following features:
- With the MOEA/D, a MOOP is handled as a collection

of many single-objective optimization problems.
- It uses scalar optimization methods, such that one

scalar optimization problem is linked to one solution.
On the contrary, non-decomposition MOEAs do not
have the advantage of scalar optimization methods.

- The MOEA/D has a low computational complexity.
- It allows the use of single-objective optimization

methods as well as problem specific heuristics or local
search.

The framework for MOEA/D can described as following:

Stage 1:
The MOEA/D begins by accepting a MOOP as an input.
Then, it must decompose the MOOP that is under
consideration into N scalar optimization sub-problems. Any
decomposition technique can be used here (e.g., the
weighted sum approach).

Stage 2:
This stage starts with the initialization of a set of even
spread weight vectors. These weight vectors should satisfy
the following two conditions:

Where H is a user-defined positive integer. The first
condition states that the total sum of all the weight vectors
must be 1. The second condition indicates that each
individual weight in the set of weight vectors takes a value
from weight vectors' count is calculated as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

205

Putting m is the number of objectives. For example, by
specifying H = 199, one has N = 150 weight vectors for a
two objective (m = 2) problem: λ= (0,1) (0.01, 0.99).. (1,0).
Take a three objective (m = 3) example. By specifying
H = 25, one has N = 351 weight vectors: λ = (0,0,1), (0,
0:04,0:96),….(1,0,0). After the weight vectors have been
initialized, one can proceed to the next stage.

Stage 3:
The MOEA/D requires the calculation of the T closest
weight vectors in the neighborhood of each weight vector.
The value of T is a user-defined positive integer. The
MOEA/D uses the standard Euclidean distance to measure
the distance between any two weight vectors. After the
distances have been calculated, one assigns each λi the T
closest weight vectors (including λi itself) as its neighbours
and designates this set as B(λi) ={i1,12,,,,,,ir} where i is the
index to a solution neighbour. After determining the T
closest neighbors for each weight vector, one can move to
the next stage.

Stage 4:
Now one has N weight vectors as well as T neighbors in
B(λi). So, the MOEA/D can immediately begin the
evolutionary process. An initial population is generated
randomly or through a problem-specific method. Notice
that the population size is the same as N, which is the
number of weight vectors. Next, an offspring is generated
for each λi by applying selection, crossover, and mutation.
Two neighbour indices, k and i, are randomly selected from
B(λi) Then, the two neighbour solutions, xk and xi, are mated
(i.e., undergo crossover and mutation) in order to produce
the new solution y. The new solution y is improved by
applying a problem-specific repair or an improvement
heuristic approach to produce yi. Then, the new solution y.
is compared with all of the T neighbours (including λi itself)
by the scalarizing function (e.g., the weighted sum) with the
weight vector of each neighbor. When it is determined that
y. is fitter than any of the T neighbours y., is replaced with
that particular neighbour. This process continues until a
stopping condition is met (e.g., a predetermined number of
solutions have been examined).

The MOEA/D employs an external population EP
to store the non-dominated solutions that are found up to
this point in the search process. The EP is updated by the
newly generated solution y. All of the vectors that are
dominated by F(y) are removed from EP. The preceding
information is illustrated below as an algorithm

3.1 Multi-Objective Knapsack Problem

The knapsack problem is a combinatorial
optimization problem with a group of items. Each item has
a weight and a value. The number of items to be set in a
collection is determined in order that the net weight is less
than or equal to some boundary and also the net value is
maximized.

The 0-1 Multi-Objective Knapsack problem is
mathematically formulated in equation, with a set of items,
n and a set of m knapsacks, with:
Pij >= 0 the profit of item j in knapsack,
wij >= 0 the weight of item j in knapsack,
ci >= 0 capacity of the knapsack i,

the 0 - 1 multi-objective knapsack problem can be stated as
follows: Maximize

xi = 1 means that item i is selected and inserted into all the
knapsacks. The 0 - 1 multi-objective knapsack problem is
classified as an NP-hard problem and can be used to model
different forms of applications in resource allocation. When
m = 1, it is reduced to the 0-1 single knapsack problem

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

206

4. Methodology

The target of our research is to solve the Multi-
objective Optimization problem by adding a ML
component to existent solutions and compare the results.
The enhancement added by the study is to show that
Machine Learning gives better results solving the
optimization problems. Evolutionary multi-objective
algorithms optimize many objective functions (two or
more) simultaneously which usually have a conflict
between each other. The target from this algorithm is to get
the set of Pareto optimal solutions as an approximation. The
set of solutions will seize the balance among the objective
functions.

First, the 0/1 knapsack problem is used as a
represent for the optimization problem. It is implemented
using decomposition technique with the following
parameters are:
- Decomposition technique, the Tchebycheff.
- Number of final solutions,
- Number of total evaluations conducted in current run.
- Mutation rate (set to 0.9).
- Dimension of decision space (set to 250, 500 and 750).
- Dimension of objective space (set to 2).
- Population Size (set to 150, 250 and 300).
- Number of maximum function evaluations in each run (set
to 500 * Population Size).
- Neighborhood Size (set to 15 and 30).

4.1 Research Design

The research design shows how the study goes
with steps of experiment. The main and first step is to
choose the research approach and test its degree of benefit
to the study goal. Research design has many tasks and
decisions inside it. This study shows the development of
research phases, as it used one method for multi-objective
optimization and added an enhancement of using ML The
first task is the study of previous or related research of the
same topic, so we can add enhancement to the latest results
in solving optimization problems. It's important to know the
valid choices of the number of the objectives for real life
optimization issues. There is a dire need for understanding
the evolutionary optimization and estimate the complexity
for having many objectives to optimize. The other design
used is the understanding of how machine learning can
enhance the optimization process and what the best
technique to choose among different machine learning
methods. The practical work must revise or discuss the
effects of changing parameters of multi-objective
optimization, the parameters of decomposition technique
and the parameters of machine learning methodology as
well.

4.2 Performance Metrics

This research attempts to recognize key areas
where performance measurement can be expected to
generate benefit to improve research goals and develop a
promising method for solving optimization issues. Then,
the decomposition technique is obviously better in terms of
accuracy and processing time. Finally, adding machine
learning to the multi-objective optimization process proves
to show completely accurate results.

Inverted Generational Distance (IGD) is a
different method of measuring performance [2]. It is a
convergence metric that compares the non-dominated
solutions found so far with each element of the Pareto-
optimal front. Thus, the IGD metric uses the Pareto-optimal
front as a reference. The IGD from the Pareto-optimal front
PF* the non-dominated
solutions set P found so far is defined as:

Where d(x,P) is the minimum Euclidean distance between
x and each element in P. As long as the IGD value is mall.
The solutions are more close to the Pareto-optimal front; for
example, IGD= 0 leads to the result that the solutions
generated are in the Pareto-optimal front. Likewise, the
higher the value of IGD obtained, the farther the set of non-
dominated solutions is from the Pareto-optimal front.

5. Experiments and Results

The optimization problem adopted by the
algorithm is 0/1 multi-knapsack problem. A text file with
knapsack problem details. The file has items with their
weights and the values of the items in the problem. These
items are selected in a true/false manner, that it they are
taken or not taken and can not be partially included. The
problem has been divided into
sub-problems using Tchebyche_ method as a
decomposition technique. Tchebyche_ method tries to
eliminate weak or non-dominated points from the
optimization problem.

The sub-problems generated are then pass through
the next stage, which is genetic algorithm. Crossover and
mutation are the variants of the GA. Random Crossover is
implemented. Crossover generates a new solutions where
the parents are selected from the neighborhood. Machine
learning is then applied to the same knapsack problems.
Random forest supervised machine learning method is used
in the experiment. It first randomly selects some items from

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

207

the dataset. Then it builds a decision tree to switch between
solutions depending on their rank or votes.

5.1 Datasets

At level one, all the focus was only on whether the
implementation was right or wrong because its accuracy
gives an indication of the extent of his understanding of the
subject. Thus, a group of datasets, with their optimal
solutions were used with the application of a simple GA to
the single objective knapsack problem. The purpose of
using those datasets is to test how accurately the GA is
applied to this problem. At level two, the program and the
algorithm were different from those in the previous level in
that multiple objectives were included. Therefore, a suitable
method was needed for testing and evaluating these
multiple objectives. The 0-1 multi-objective knapsack
problem, which is NP-hard, required special test problems
that are suited for it. Ziztler and Theile [3] have proposed a
dataset for multi-objective heuristics, and this dataset is
commonly used in the EC community. This dataset consists
of nine test instances and is widely used for multi-objective
knapsack problems.

5.2 Implementation Environment

Python is an open-source computer programming
language that is one of the most powerful languages a
programmer can use for algorithm development, data
visualization, data analysis, and numeric computation. It is
widely used to perform engineering and scientific
calculations and provides a very extensive library of
predefined functions. Most of the applied ML methods used
implementations from the Python library scikit-learn.
Scikit-learn is an open source machine learning library. It
focuses on modelling data and it has predefined algorithms.
It provides multiple supervised and unsupervised learning
algorithms. Scikit-learn was used with version 3.6 of
Python. Thus, the implementation environment will be
python. The python program and language will be used to
implement and test both the MOEA/D algorithm with the 0-
1 multi-objective knapsack problem, and MOEA/D with
machine learning.

In order to conduct the experiments, a computer with
the following specifications will be used:
- Processor: Intel(R) Core(TM) i7-4510U CPU @

2.00GHz 2.60 GHz
- Installed memory (RAM): 16.00 GB
- System type: 64-bit Windows 7 Professional

5.3 Results of MOEA/D algorithm

In this experiment, we run the MOEA/D
algorithm on the knapsacks problem. It was ran 20-times
independently for each 2 objective 250 / 500 /750 items in
the MOKP test instance in the process of our experiments.
Results are reported in the following tables:

Table 1: IGD metric and run time found by MOEA/D for all the MOKP
test instances.

Table 2: The mean and min IGD metric and standard deviation values of
the non-dominated solutions found by MOEA/D for all the MOKP test
instances

The following figures shows plotting the evolution
of the average IGD metric in MOEA/D for 2 objective
250/500/750 items in the MOKP test instances.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

208

Figs.1,2,3 The evolution of the average IGD metric in MOEA/D for 2
objective 250/500/750 items in the MOKP test instances

In the following figures, plotting the non-

dominated solutions with the lowest IGD metric values in
20 runs of the MOEA/D in 2 objective MOKP test instances.

Figs 4,5,6: Plot of non-dominated solutions with the lowest IGD metric
values in 20 runs of the MOEA/D in 2 objective MOKP test instances
with pareto Front PF for each test instances.

5.4 Results of MOEA/D + Machine Learning
algorithm

This section presents the results of this paper
contribution on multi-objective evolutionary algorithm
based on decomposition (MOEA/D). The approach is to add
a ML component to previous MOEA/D algorithm.
Specifically, a supervised ML algorithm which is the
Random Forest algorithm. The learned model constitutes
the knowledge which can be then utilized to guide the
evolution process within MOEA/D. Simulation results on
knapsacks problem are presented. As in the previous
experiment where the results of 20 runs were presented. The
same is preformed with MOEAD/D+ML solution, this
algorithm run 20-times independently for each 2 objective

250 / 500 /750 items in the MOKP test instance in the
process of experiments. Table 3 shows the IGD metric and
standard deviation values of the nondominated solutions
found by MOEA/D+ML for all the MOKP test instances.

Table 3: IGD metric and run time found by MOEA/D + ML for all the
MOKP test instances

Table 4: The mean and min IGD metric and standard deviation values of
the non-dominated solutions found by MOEA/D+ML for all the MOKP
test instances

Figs 7,8,9: The evolution of the average IGD metric in MOEA/D for 2
objective 250/500/750 items in the MOKP test instances MOEA/D + ML

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

209

For this experiment, plotting the non-dominated
solutions with the lowest IGD metric values in 20 runs of
the MOEA/D + ML in 2 objective MOKP test instances.

Figs 10,11,12: Plot of non-dominated solutions with the lowest IGD
metric values in 20 runs of the MOEA/D + ML in 2 objective MOKP test
instances.

Another experiment was conducted with varying
the training data size to show its impact. MOEA/D+ML
algorithm was trained using nine different sizes of training
data set (theta = 0.05, theta = 0.10, ..., theta = 0.80, and theta
= 0.9). For each size data, the lowest IGD metric value is
reported in table 5 and Figure 13.

Table 5: Theta probability

Figs 13-20: (a) Theta probability 0.1 (b) Theta probability 0.2 (c) Theta
probability 0.3 (d) Theta probability 0.4 (e) Theta probability 0.5 (f) Theta
probability 0.6 (g) Theta probability 0.7 (h) Theta probability 0.8

6. Discussions

The IGD metric was used to assess the
performance of the algorithm. In many cases, the Pareto-
optimal front is unknown. In such instances, an upper
approximation for the Pareto-optimal front is used. For the
nine test instances of the 0-1 multi-objective knapsack
problem, there exist a very good upper approximation. This
upper approximation was produced by Jaszkiewicz. His
upper approximation has 202 points for two objective

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

210

instances. Table 6 shows the mean and the minimum values
of the IGD metric in the MOEA/D and MOEA/D with
machine learning for all the 0-1multi-objective knapsack
problem test instances. It also presents the standard
deviation values.

As can be seen in table 6, Among both multi-
objective EAs, MOEA/D+ML algorithm seems to provide
the best performance for the 2 objective instance with 250
items and 750 items. The minimum IGD values for each test
problem with MOEA/D+ML are less than the
corresponding IGD values of the MOEA/D algorithm.
However, The minimum IGD value for the two objective
instance with 500 items obtained with MOEA/D is less than
the corresponding IGD values of the MOEA/D+ML
algorithm.

Table 6: IGD metric and standard deviation values of the non-dominated
solutions found by MOEA/D and MOEA/D+ML for all the MOKP test
instances

In order to examine the convergence of both

algorithms (MOEAD vs MOEAD+ML), the mean IGD
metric values for both compared methods (20 independent
runs) for the 2 objective instance with 250 items, 500 items,
and 750 items are plotted in Figures 21, 22, and 23. These
figures show respectively the evolution of the average IGD
metric in MOEA/D for 2 objective 250, 500, and 750 items
in the MOKP test instances (a) MOEA/D (b) MOEA/D +
ML (c) comparison MOEA/Dvs MOEA/D + ML. It can be
observed from these figures that the curves of the mean IGD
values obtained by MOEA/D+ML reach the lowest
positions with the fastest searching speed on 2-250 and 2-
750 items. The promising convergence speed of the
proposed MOEA/D-ML might be attributed to the adaptive
strategy used when applying random forest algorithm.

Figs 21,22,23: The evolution of the average IGD metric in MOEA/D for
2 objective 250 items in the MOKP test instances (a) MOEA/D (b)
MOEA/D + ML (c) comparison MOEA/D vs MOEA/D + ML

The results using the PF obtained by both
algorithms are shown in figure 24,25 and 26.
MOEA/D+ML performs the best in 2-objective
optimization problems (250 items and 750 items). The ML
enhanced MOEA/D is able to obtain better estimation of
Pareto fronts. It behaves better than MOEA/D. But for the
2-objective optimization problem (500 items), MOEA/D
slightly outperforms the MOEA/D+ML algorithm.

Figs 24,25,26: Plot of non-dominated solutions with the lowest IGD metric
values in 20 runs of the MOEA/D and MOEA/D +ML and showing the
comparison for all test instance (a) comparison 2 objective 250 items (b)
comparison 2 objective 500 items (c) comparison 2 objective 750 items

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

211

To summarize, machine learning techniques can
help the EA algorithms search more effectively and
efficiently, they also add to computational burden. There is
a tradeoff between this benefits and the computational costs.
Better understanding and improving cooperation between
ML and EC will play a significant role in enhancing EC
algorithms with ML techniques efficiently.

7. Conclusion and Future Work

Research in this study worked on solving multi-
objective optimization problem. Knapsack problem is a
popular example of an optimization. In 0/1 knapsack
problem, the items to be optimized can't be partitioned, it's
taken or not taken. Using decomposition with Multi-
objective optimization makes it easier to solve. Tchebyche_
is the decomposition techniques used in the research.

Genetic Algorithm is an optimization method that
imitate the natural evolution process. It's based on
population search. There are many applications that Genetic
Algorithms are suitable for them. Decision making
problems are a popular example of such applications.
Optimization, Machine Learning, Robotics and Search
problems are other types of applications for which Genetic
Algorithms may have proper solutions. Genetic Algorithm
has been used to solve each sub-problem generated from the
decomposition step. Crossover and mutation are the
variants or the operators of the genetic algorithm. In the
research, the crossover is random.

Artificial Intelligence, Machine Learning,
Evolutionary Multi-Objective Optimization and Genetic
Algorithm were the main topic of search in the thesis. It's
vital to show the solution of the optimization problem as a
search space to solve it. Also, it's needed to design specific
operators for the search process so that they generate new
solutions as candidates based on the solution presented.
Computational complexity of exploring the new solutions
reduces as the accuracy of the cost function increases. The
techniques of Machine Learning have promising
capabilities in the integration with MOEA framework; yet
this integration is still in its early stages. Machine Learning
supports the solution for Evolutionary Optimization
Problems. Machine Learning gives better population
diversity and more accuracy. The used ML technique here
is Random forest.

Supervised Random Forest has been used for

classification problem mainly. It's random as it selects

random samples from the given dataset used for the training.
The forest comes from the fact that it creates decision trees
on the data samples. Then the algorithm form the prediction
from each of these trees. Finally it selects the best solution
by voting.

This research work has laid down the framework for
different operations of Genetic Algorithms and also the
hybridization of GA with other search techniques. This
paper can be groundwork for further research in this area.
Some of the possible directions for future research are
highlighted here:

- Use some other techniques like Population Initialization,

Population Reproduction and Variation, Algorithm
Adaptation and Local Search

- This paper focuses on using ML for Fitness Evaluation
and Selection particularly in Reducing Number of
Function Evaluations, other direction can be done for
Modeling Objective Function

References
[1] Q. Zhang and H. Li, ―MOEA/D: A Multi-objective

Evolutionary Algorithm Based on Decomposition,‖ IEEE
Trans. Evol. Comput., vol. 11, no. 6, pp. 712–731, Dec. 2007.

[2] M. Sierra and C. Coello (2005). ―Improving PSO-based
Multi-objective Optimization using Crowding, Mutation and
Epsilon-Dominance.‖ In Third International Conference on
Evolutionary Multi-Criterion Optimization, pp. 505-519

[3] Kassu Jilcha Sileyew (August 7th 2019). Research Design
and Methodology [Online First], IntechOpen, DOI:
10.5772/intechopen.85731.

Rakan Alotaibi received the B.E. and M.E. degrees, from
umm al qura university in 2009and 2020, respectively. In 2009.
working as a programing, a Business Analyst (from 2012) in the
Dept. of Demand Management , Holy Makkah Municipality, and
a Software Project Manager in IT (from 2016), he has been a
Digital Transformation Consultant to the Makkah mayor general
secretary / Vice CIO and Director of IT Demand Management.
Since 2019. His research interest includes Artificial intelligence,
Algorithms and machine learning.

