
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

680

Manuscript received June 5, 2022

Manuscript revised June 20, 2022

https://doi.org/10.22937/IJCSNS.2022.22.6.86

Component-Oriented Software Engineering Model for
Heterogeneous Internet of Things Systems with Connectors

using Machine Learning

Shahanawaj Ahamad

drshahwj@gmail.com
Department of Information and Computer Science

College of Computer Science and Engineering
University of Hail, Hail, Saudi Arabia

Summary
Component reuse has been proven both theoretically and
empirically to increase software quality and productivity
with an economically cost-effective option. This
necessitates the use of a graphical editor for project
modeling using component-based architecture and
development. To aid in the creation of component-
oriented software, a graphical editor was proposed for
practice. Both machine learning and software engineering
employ models based on components architecture. Aside
from these smart characteristics, AI models may be able
to help with prediction and decision-making.
Communication between IoT system components must
adhere to a set of guidelines and protocols for effective
and predictive perspectives. Components must be able to
communicate with one another in the deployed system.
The heterogeneity issue in the Internet of Things arises
when different IoT devices communicate using distinct
sets of rules, features, and contexts. Components that can
be reused are found in these or other systems or
commercial off-the-shelf. Component-oriented systems
rely on connectors to link up their reusable parts with other
entities, components, or IoT devices through the use of
related interfaces. COSE development tools provide
application-level solutions for connectors and component-
based development of systems. Linking and hookup ports
on connectors are designed to work with the attached
component and other interfaces. The communication
protocols' packets are identified and organized by the
connectors with their installed applications. A simulation
feature can be added to the tools in order to show that the
idea can be implemented in effective and efficient ways.
Connectors allow moving data between different parts of
computing systems. ML-based training and prediction
have been shown in this work for performance analysis.

Keywords:
Component-Oriented Software Engineering, Heterogenous
Internet of Things, Machine Learning, Software Reuse, COTS.

1. Introduction

Historically, software was created using structured
programming languages. The structured programming
approach becomes ineffective as the software develops in
complexity. In those days, designing, developing, and
maintaining complex software features using structured
programming was extremely difficult. Object-oriented
design and programming were formed over a decade ago
to address these challenges [1]. Even now, this has shown
to be a viable strategy for developing a complicated
software system. Component-based Software Engineering
includes Component-based Software Development as a
subfield. Figure 1 depicted the progress from structured to
component-based development.

Fig. 1 Development chart based on software development.

Composing loosely linked individual components
into systems using this method is a reuse-based strategy.
The module, functionality, or web services can all be
considered as components of the component. The ultimate
system will be built by integrating all of the components.
Different suppliers may sell these components because

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

681

they are independent and evaluated independently
components, much like the hardware, can be swapped out
in the event of a failure [1,2]. The component-based
software engineering must be applied correctly to avoid
problems in the software architecture. Because the final
system will be built using this design and all of its
components will be integrated. The whole system's
reliability will suffer if the architecture is flawed in any
way. Fast software development and delivery to
consumers can be achieved by using this method of
working. Quality, on the other hand, is the most important
consideration to be made before to the software's release
[3]. In addition, a component-based program is easier to
extend. Existing components do not need to be touched
when new requirements are implemented because they
can be provided in new components [4]. Component-
based software development reduces long-term
maintenance costs, which is a necessity for nearly every
firm, which explains why component technologies have
become so widely adopted.

In general, component-based software solutions have
a shorter time to market since we can choose from a wide
selection of available components. The ad hoc technique
was once popular in the field of software engineering [23].
In the 1970s, the focus switched away from the previous
method and toward a methodical approach. Subsequently,
in the late 1980s, a software engineering object-oriented
method was presented. With Component-based software
engineering, a new approach to the software market was
introduced recently. Figure 2 shows the general structure
of component-based software engineering. The internal
narrative expresses to us that all the systems are not new,
but they are the unchanging parts of the current systems.
This point is contributing to enhancing the performance
and quality of the software development process. The
software's complexity has increased as a result of the
current circumstance. In order to meet these high criteria
and handle the complexity, the component-based strategy
might be implemented [5]. Rather than starting from
scratch, it is more efficient to build a system by integrating
components that already exist. Component-based
development's effectiveness is one of its greatest assets.
The use of predictable construction patterns and a standard
software architecture is also encouraged by CBSE, leading
to improved performance.

Software engineering includes systematic
requirement studies and processes of software
development concepts, principles, and further
maintenance. The goal is to propose the processes and
tools for software development that are more efficient and
effective. In order to make software development (SD)
more accessible and efficient, as well as increase the
ability to produce sophisticated software and meet user

requirements, research and study are always being
conducted on this subject [6]. To help software engineers,
advanced theories and concepts in the field of SD are
being developed.

Fig. 2 General structure of component-based software engineering

The methodical and disciplined approach to software
development and maintenance is known as "Software
Engineering". The change from traditional software
development to a systematic approach to software
development was made possible by the concept of
structured programming [7]. To bring software
engineering to its current position, this structured
programming idea has opened up specialized study areas
during research, it was found that software projects must
be managed well to avoid overruns in both time and
money. In order to avoid delays and failures, a proactive
activity is needed.

In order to identify the areas of the system that
demand additional attention, an evaluation of the system's
many components is required. High-level designs and the
system's quality needs are both included in its architecture
[8]. In this way, a thorough examination of the system's
design can identify the most vulnerable parts of the system.
The identification of vulnerable components can lead to a
risk assessment and the development of risk mitigation
strategies as a result of this identification. The quality of
the system will improve as a result of the application of
risk mitigation measures.

An applicable tool that uses a Component-Oriented
methodology to break down system requirements in a
hierarchical manner is the goal of the research. The

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

682

Component-Oriented Software Engineering Modeling
Language (COSEML) previously developed by [9] can be
used to model such system hierarchy. Component-based
(CB) technology, in which only a limited number of
development phases are dedicated to the consideration of
components, is the current state of affairs. There has been
a lack of a top-down approach that considers all
components.

2. Literature Review

For instance, the Model-Driven Software
Engineering (MDSE) standards use software models as a
high-level abstraction by respecting model-to-model and
model-to-code conversions. This allows the standards to
be used to software development and simulation [10]. The
foundation of DAML has been laid with its two pillars. To
improve the degree of abstraction, libraries of higher-level
APIs that also include associated frameworks are used.
One other option for deep learning is Theano [8, 12],
which is a framework that is compatible with both
TensorFlow and Keras (https://keras.io) [24]. Examples of
DAML workflow designers include visualization toolkits
like TensorBoard [7] and KNIME [4]. The MDSE
paradigm, in which model-to-code transformations may
build software implementations from comprehensive
models, is not followed by these methodologies. This is
because the MDSE paradigm follows a holistic and logical
approach. Workflows in KNIME [4], RapidMiner [14],
and TensorBoard [17] that are referred to as Data-Flow
Graphs (DFG) do not manage any aspect or issue that is
not related to DAML. Some process designs, like KNIME
[4,] create partial DAML code. There is a connection
between MDSE and the various model-exchange formats,
including PMML, PFA, and ONNX. The Data Mining
Group is responsible for producing the XML-based
standard [13], which has been used by around 30 firms
throughout the globe. New to the DMG, PFA is a standard
that is both more versatile and powerful than its
predecessor, PMML. PFA offers a DSL that may be used
for the implementation of any DAML method. Second, a
process and DAML model might be modeled using PFA.
The Internet of Things and machine learning-based
architecture are both discussed in [14]. The ONNX
platform makes it possible to develop ANN models with
the help of TensorFlow libraries and frameworks such as
Keras [1], PyTorch [13], Scitkit-Learn [20], MXNET [8],
and Caffe2 [9]. The automation component of MDSE's
second pillar has been included by DAML. PGMs have
the potential to be applied as MDSE models, which may
result in a comprehensive software implementation that
has been considered. This was suggested by Infer.Net
[6,23]. Only C# was supported for the production of
source code by them. Despite being the most applicable
approach to the MDSE paradigm, related ML models and
PGMs are not adequate to describe real-world IoT/CPS

software systems and produce entire source code from
model instances. This is the case even though they are the
most applicable method. The comparison of the many
different kinds of models and methodologies that are
employed may be seen in Table 1.

Table 1: Literature compared to the ML-Quadrat

Method used in paper Work Model Type
Machine learning
framework Libraries

TransFlow,
Keras, Scikit

DAML Models

DAML workflow
Design

JNIME,
RapidMiner

DAML Models

Model Interchange
Format

PMML,
PFA, ONNX

DAML Models

ML-based Model Infer.Net MLSE Models
MDE4 IoT IoT ML SE Model

3. Background

There are a variety of connected devices in the IoT
world, including wired and wireless ones. Things like low-
power sensor devices and high-performance gadgets are
included in this category. In IoT systems, the number of
devices results in a variety of network designs. Smart
surroundings are the primary goal of IoT systems [11]. To
have a smart environment, gadgets must be able to
automatically communicate with one another and be
connected. Decisions can be made based on the flow of
information across organizations. According to the
decisions made, an organization may move to a new state
or communicate this information to another organization.
A wide range of sensors and devices resulted in a wide
range of IoT heterogeneity.

3.1 Software components

Independently executable software is one of the most
prevalent kinds of software components. It refers to a
piece of software that can be installed and executed on its
own. It is not necessary to have any knowledge of the
internal workings of a component in order to use it. A
component's proper operation may be shown by a COTS
service provider. A service component can be deployed
into a program without the need for the developer to know
the programming language in which the component is
implemented or the location where the component is being
executed [22]. This eliminates the need for the developer
to worry about the location where the component is being
executed. Components of the system should operate
independently of one another and should only be
connected to one another when absolutely essential.
Because the components of a system are only loosely
linked to one another, changing one component of the
system will not have any effect on the other components
of the system. What defines a component are the many
interfaces that it provides. Components may either provide

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

683

or need interfaces from other components in order to
perform their intended functions. Because there are
potential components that either supply or demand
comparable services in order to function, interface
specifications need to be clearly and exhaustively stated
[15]. Users are thus able to make educated judgments
about which components to employ based on the specific
needs that are unique to them. An example of a component
that may be found in figure 3 is shown below.

Fig. 3 Components structure.

3.2 Component-based software engineering

When building a software system using Component-
Oriented Software Engineering, it is feasible to reuse pre-
existing software components rather than having to start
from zero and create them from scratch. The early year
2000 saw the introduction of a novel method known as
COSE. The construction of components in the CBSE often
makes use of object-oriented methodologies [16]. COSE
places a greater emphasis on the reuse technique, while
CBSE places a greater reliance on pre-built components.

The whole emphasis that CBSE and COSE place on
the idea of components is a significant point of difference
between the two organizations. As a consequence of the
work done by COSE, systems may be broken down into
two primary categories of primitives: connectors and
components. A collection of connectors is used in order to
accomplish the task of developing a finished software
system. Conducting a domain study and erecting a domain
model are the tasks that make up the first phase of the
COSE development process. After doing an in-depth
examination of a system's needs and specifications on an
abstract level, it is feasible to disassemble the system into
its component elements. After the process of
decomposition, the definition of the abstract components
comes next [17]. After that, it's time to begin searching for
the various components that make up the system. The
process of integration does not start until all of the
components that were described have been identified.
Utilizing the COSE software connections allows for the
creation of an integrated system model. Figure 4 provides

a visual representation of the COSE development process
modeling.

Fig. 4 Component-Oriented Software Engineering Modeling (COSEM)

The architectural style is defined by a set of
components, a topological arrangement, a set of semantic
restrictions, and a set of connections. This style is an
abstraction for a set of architectures that fit the definition
of the style [25]. Garlan et al [26,27] have compiled a list
of architectural styles based on their research into existing
systems. Independent components, data flow-centered,
data-centric and virtual machine architectures are all
included in this short library.

Table 2: Architecture styles

Main Class Characteristics
Independent
components

The communication patterns are primarily
controlled by processes, such as event
systems and communicative processes.

Data Flow In addition to the sequential and batch
processing, transfer of data is accomplished
by mechanisms such as pipelines.

Data Centered For the purpose of modifying the main data
store, independent calculations are used.

Virtual
Machine

Systems that are constituted by the
transformation of one sequence of
instructions into another are examples of
such a system. That are interpreters and
rule-based systems.

Call and
Return

Objects and call-based client-server
architecture are examples of layered
architecture, which typically employs a
single thread of control.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

684

4. Classification of Connectors

Interaction services provide for the possibility of a
more generic classification of connectors; nevertheless,
this does not explain the particular [19]. Connectors are
separated into their own distinct types based on the types
of interaction services they provide, such as an event, a
linkage, a stream, a procedure call, an arbitrator, an
adaptor, a distributor, and data access [28]. This is done so
that new types of connectors can be developed, modeled,
and analyzed.

In order to properly describe IoT systems inside
COSE, IoT connections must first be defined and then
implemented [20]. Connectors are used to link two
different components using a variety of communication
protocols in order to implement the solution outlined in
[18]. Every component is a separate piece of the
heterogeneous IoT system. It is safe to assume that any
component that is coupled to a connection has a port on
the connector that corresponds to it. Connector ports are
responsible for sequentially handling the responsibilities
of the physical layer, the internet layer, and the transport
layer.

The connector software receives data from the ports,
which it then processes in line with the information
received from the ports. After additional components have
been connected to the connection, it is then able to receive
data packets from those other components [21]. Because
they are aware of which other components are linked to
them, connectors have the ability to do an analysis on core
data. Because the connector has a second port that is
linked to the second component, it is able to interact with
the second component by exchanging data packets that are
pertinent to the conversation. During the course of this
task, data packets are generated and then sent on to the
second component in line with the data packet structures
of the components. Figure 5 shows an example of the
Internet of Things connections and components.

Fig. 5 IoT System with connectors and components.

5. Design Pattern

The term "software component technology" refers to
the products and ideas that enable an approach that is
based on the building of software components as from
pieces that make up those components. Architecture and
design are the patterns of high-level system structural
design that are reflected by the types of components that
make up systems, and the ways in which those
components communicate and interrelate with one another
[22], which is represented in the technology of software
components [29]. The architectural pattern of high-level
design is reflected by the types of components, this
reflection is able to be seen when software components are
used in both development tools and applications or
systems that have been deployed. Component
applicability analysis and deployment prediction are
implemented by ML-based methods highlighted here
below.

As a result, each component vector's values total to a
predefined constant. For convenience, the total of each
vector's axis is usually one after division by that constant.
From here on, assume our design data collection consists
of proportional or percentage vectors of:

𝑝௜ ൒ 0,𝑎𝑛𝑑 ∑ 𝑝௜
௞
௜ୀଵ ൌ 1 (1)

The analysis' numerous ratios are impossible to compute.
Zeros must be handled first. Presents a simple method for
choosing stable imputed values. It's like multiplicative
substitution.

𝑟௝ ൌ 𝛿௝൫𝑖𝑓 𝑝௝ ൌ 0൯ (2)

𝑟௝ ൌ 𝑝௝൫1 െ ∑ 𝛿௟௟:௣೗ୀ଴ ൯ ሺ𝑖𝑓 𝑝௝ ൐ 0ሻ (3)

To change a proportional vector, divide each member by
the geometric mean. The transformation can be applied
after the zeros have been removed. The compositional
vector r's CLR transformation is calculated as follows.

𝑦 ൌ 𝑐𝑙𝑟ሺ𝑟ሻ ൌ ሾlog
௥

௚ሺ௥ሻ
ሿ (4)

where

𝑔ሺ𝑟ሻ ൌ ሾ∏ 𝑟௜
௞
௜ୀଵ ሿ

ଵ
௞ൗ (5)

6. Implementation and Results

The work presented in this paper does not analyze the
usability and friendliness of a prospective user interface
[23], since this was not its intended purpose for study. As
a direct consequence of this, the system is easy to
understand but not very user-friendly. The COSE model
system's general architecture is shown below in Figure 6.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

685

For instance, session basis design patterns may be realized
by using session beans in their respective applications.

The session-based design pattern is responsible for
handling activities relating to transactions and rollbacks.
Establishing a connection to the database may be
accomplished via the use of Data Access Object Design
patterns or Entity Beans. The data access object design
pattern maintains all of the JDBC needs in addition to a
connection and resources drawn from a pool. Additionally,
the data access object design pattern is responsible for
managing failures and terminating connections.

The Data Access Object (DAO) pattern of the
command determines what kinds of queries will be
executed. So, what happens is the user supplies an XML
file (or a class) that has instructions and queries in it. This
framework is first designed with the COSE design pattern
and tools, and it is then realized using programming
language implementation. After some period of time, a
component design pattern could become apparent as a
result of using this framework. Figure 6 depicts the COSE
design model for heterogeneous IoT systems.

Fig. 6 System architectural framework.

The IoT makes use of a diverse selection of protocols
[18], each of which is adapted to the unique characteristics
of each IoT device. The following is a list of some of the
Internet of Things protocols and communication systems
[30,31] that are considered to be the most effective and
widely used.

 Communication protocols such as 3G, 4G, LTE,
and most advanced 5G.

 AMQP
 ZigBee 802.15.4

 CoAP
 Wi-Fi/802.11
 DDS
 TCP, UDP, IPv4, and future generation IPv6
 Bluetooth low energy (BLE)
 6LoWPAN
 Z-Wave
 RFID
 SigFox
 PLC
 LPWAN
 MQTT

Communication between different types of Internet
of Things devices, connectors, and components requires
the usage of standardized protocols. The Internet Protocol,
mostly abbreviated as IP, is a set of guidelines that
determines how data is sent to and received from the
internet. The protocols used by the Internet of Things (IoT)
make certain that the information that is sent from one
device or sensor to another device, a gateway, or a service
is able to be read and comprehended by the respective
gateways, devices, and services. There are several
different protocols for the Internet of Things, each of
which was developed and is functioning at its peak
potential for a different initiative or goal. It is necessary to
make use of the proper protocol in a suitable environment
while working with the Internet of Things (IoT) since
there is such a vast range of devices that are now available.

Wi-Fi was the protocol of choice for establishing a
link between the internet network and the intended
Internet of Things devices. The Wi-Fi standard is the one
that's used for wireless networking. The practice of easing
data flow between mobile devices and the internet
network often makes use of it. Another ubiquitous
standard that is used for networking devices and
computers is known as Ethernet.

Ethernet is the name of the technology that is used
for LANs (Local Area Networks) the majority of the time.
It makes it possible to establish a hardwired connection
between the devices and the internet so that a direct link
may be created. It is a protocol that explains the process
of how some interconnected devices can communicate
their data well within the system or with other connected
devices across the physical channel. This communication
may take place between any two networked devices. It is
part of the TCP/IP stack, which specifies the physical and
link layers. Its responsibility is to describe how networked
devices communicate their data. The cornerstone of this
architecture is the IEEE 802.3 standard. Ethernet is a way
that may be utilized inside of an IoT system in order to
link stationary or fixed IoT devices. This is one of the
purposes for which Ethernet was developed.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

686

Fig. 7 Case study of the system architecture.

These appliances shown in figure 7 are assumed to
have the same load or active power as the house as a whole
for the time period. The goal is to forecast the washer and
dryer's binary status (ON/OFF) at a given time. An 80
percent portion of the data was used to develop a
supervised machine learning model for us. The ML model
is tested on 20% of the samples, as a result. In machine
learning, this is a frequent practice.

More research is needed to figure out if various splits
might make things better or worse in the future.
Furthermore, it is vital to note that it is not arbitrarily
divided the data, as they are sequential (particularly time
series) order and data in which they appear is critical. As
a result, this supervised ML method in the Scikit-Learn
package uses a multi-layer perceptron with one hidden
layer of 100, Adam optimization and the Relu activation
function, the and other default variables to classify a
dataset.

Training the ML model referred to above, worked
flawlessly on the test data. Metrics such as accuracy,
precision, recall, and F1-Measure are frequently used in
machine learning. Positive and negative classes in binary
classification are defined as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ ்௉ା்ே

்௉ା்ேାி௉ାிே
 (6)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ ்௉

்௉ାி௉
 (7)

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
்௉

்௉ାிே
 (8)

𝐹1 െ 𝑆𝑐𝑜𝑟𝑒 ൌ ଶ.௉௥௘௖௜௦௜௢௡.ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟
 (9)

True-Positive, True-Negative, False-Positive, and
False-Negative situations are referred to as TP, TN, FP,
and FN in the equations above. Other ML performance
parameters, such as precision, recall, and F1-Measure,
were all 99.9 percent, 100 percent, and 99.9 percent,
respectively, in this trial. A highly capable MLP ANN
classifier was expected to perform well given that the
challenge was not difficult. There is no need to measure
the performance of machine learning methods in this case

study because we simply use the target libraries' APIs for
this purpose. The examples are used to demonstrate the
viability of the suggested method. Because the stated
results here are purely for informational purposes, they do
not contribute to the validation process.

Rather than guessing the labels of the ON/OFF
classes, MLP ANN Regressor was implemented in Scikit-
Learn. Both the Mean Absolute Error (MAE) and the
Mean Squared Error (MSE), commonly referred to as the
L2-Norm or the Euclidean Norm, are standard error
metrics used to assess regression's effectiveness. This is
how they're defined:

𝑀𝐴𝐸 ൌ ଵ
௡
∑ |𝑦పෝ
௡
௜ୀଵ െ 𝑦௜| (10)

𝑀𝑆𝐸 ൌ ଵ
௡
∑ ሺ𝑦పෝ
௡
௜ୀଵ െ𝑦௜ሻଶ (11)

The plot of MAE and MSE in terms of percentage is
shown in Figures 11 and 12 respectively, its data arranged
in the table 4. We don't use the recommended approach to
train an unsupervised ML model. ML is therefore created
by hand. However, we use the same data set in our analysis.
The black-box ML mode is used to link the pre-trained
ML model to the software model. The remaining steps are
identical to those in the unsupervised ML example
presented before (including the performance).

These results are depicted in Figures 8 and 9,
respectively. There is a clear correlation between the
change in threshold and the change in recall rate. However,
there is no discernible pattern in the rate of precision.
Small thresholds lead to a significant number of
components being found. As a result, the precision rate is
low. This means that the precision rate rises when the
threshold is increased since the number of components
recovered decreases. To some extent, this decrease in the
number of recovered parts is compensated for by an
increase in the number of desirable components. It's not as
evident as the shift in recall rate that precision has changed.

Fig. 8 Thesaurus-free precision and recall

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

687

Fig. 9 Thesaurus with precision and recall

Table 3 shows the values of all the performance-
related parameters for all the models. When compared to
other models, the results of the hybrid strategy given in the
tables show that it performs better. The performance graph
is shown in Figure 10.

Table 3: Table for the performance of the model which is Accuracy,
Recall, Precision and F1_Score

Model Accuracy Recall Precision F1_Score
SVM 0.8914 0.9145 0.8646 0.9615
ANN 0.9013 0.9465 0.8837 0.9632
ANFIS 0.9428 0.9579 0.9128 0.9756
Proposed 0.9832 0.9911 0.9598 0.9834

Fig. 10 Plot for overall performance.

Table 4: Table for the MAE and MSE

Model MAE (%) MSE (%)
SVM 93.4 6.6
ANN 94.2 5.8
ANFIS 96.5 3.5
Proposed 97.9 2.1

Fig. 11 Plot for MAE in terms of %

Fig. 12 Plot for MSE in terms of %

7. Conclusion

The idea of this research is for an architectural model
for software development based on components rather
than discrete pieces of code. Component-based software
engineering, in contrast to traditional software
engineering, makes it possible to deploy reusable software
components, which traditional software engineering does
not. The mapping of a software system to a collection of
existing components is done concurrently via domain
analysis and engineering as well as application
engineering in the recommended paradigm for the
software development process. The COSE tool has the
capability of being upgraded to include newly developed
Internet of Things components and connections. Before
any more components that describe the protocol can be
added, the precise packet structure of the IoT protocol
must first be determined. After the user has uncovered
specific knowledge about the packet's structure, the
application level is where the payload data of the protocol
has to be supplied. Examining the Internet of Things
components that have been presented may be done with
the help of the class diagrams that have been provided.
The process of isolating and packing potential component
candidates from legacy systems gave us the ability to
disassemble and reassemble component parts.

Case studies have shown that design patterns may be
used in the same manner as component-based design. On
the other hand, this does not always mean that each and
every design pattern can be immediately used as a
components-based system implementation. It is not
enough for a design pattern to be able to be utilized as a
subcomponent inside a component in a component-
oriented design; the pattern itself must also be employed.
The use of design patterns has shown to be quite beneficial
to the COSE model. In the case studies, it was determined
that reuse was a more effective strategy. When the COSE
system is being constructed, subproblems that have a
higher effect are being addressed more rapidly. When it
comes to design, you have the option of choosing either
abstract or intricate patterns. However, there is no method

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

688

to automatically produce code for the components of a
program. It is quite evident that component and pattern
catalogues are required. It's possible that the COSE tool
will have the capability to search for and apply design
patterns from the catalog, after which it will output code
automatically. Further ML-based methods are used to
analyze the performance of IoT systems with connectors
implemented by the COSE model.

References

[1] S. U. Khan, A. W. Khan, F. Khan, M. A. Khan and T. K.
Whangbo, "Critical Success Factors of Component-Based
Software Outsourcing Development From Vendors’
Perspective: A Systematic Literature Review," in IEEE
Access, vol. 10, pp. 1650-1658, 2022, doi:
10.1109/ACCESS.2021.3138775.

[2] Sandeep SR, Ahamad S, Saxena D, Srivastava K, Jaiswal S,
Bora A. To understand the relationship between Machine
learning and Artificial intelligence in large and diversified
business organisations. Materials Today: Proceedings.
2022 Jan 1;56:2082-6.

[3] D. Ameller et al., "Dealing with Non-Functional
Requirements in Model-Driven Development: A Survey,"
in IEEE Transactions on Software Engineering, vol. 47, no.
4, pp. 818-835, 1 April 2021, doi:
10.1109/TSE.2019.2904476.

[4] Kaur H, Ahamad S, Verma GN. Elements of Legacy
Program Complexity. International Journal of Research in
Engineering and Technology. 2015;4(3):501-5.

[5] C. Yuan, Z. Liu, X. Wang and F. Yuan, "A Component
Development Framework for Embedded Software," 2021
IEEE International Conference on Information
Communication and Software Engineering (ICICSE), 2021,
pp. 71-75, doi: 10.1109/ICICSE52190.2021.9404109.

[6] T. Lu, C. Liu, H. Duan and Q. Zeng, "Mining Component-
Based Software Behavioral Models Using Dynamic
Analysis," in IEEE Access, vol. 8, pp. 68883-68894, 2020,
doi: 10.1109/ACCESS.2020.2987108.

[7] C. Paterson and R. Calinescu, "Observation-Enhanced QoS
Analysis of Component-Based Systems," in IEEE
Transactions on Software Engineering, vol. 46, no. 5, pp.
526-548, 1 May 2020, doi: 10.1109/TSE.2018.2864159.

[8] Moin, A., Rössler, S., Sayih, M., Günnemann, S.: From
things’ modeling language (thingml) to things’ machine
learning (thingml2). In: Guerra, E., Iovino, L. (eds)
MODELS ’20: ACM/IEEE 23rd International Conference
on Model Driven Engineering Languages and Systems,
Virtual Event, Canada, 18-23 October, 2020, Companion
Proceedings, ACM, pp. 19:1–19:2, 2020

[9] Ali H. Dogru, “Component Oriented Software Engineering
Modeling Language: COSEML”, Computer Engineering
Department, Middle East Technical University, Dec. 1999.

[10] A.A.K. Mohammad, M. A. Bari, S. Ahamad, M. Arshad, M.
Ali Hussain, “Performance evaluation of reactive routing
protocol using simulation knowledge”, Materials Today:
Proceedings, 2021, ISSN: 2214-7853,
https://doi.org/10.1016/j.matpr.2021.01.752

[11] W. Dai et al., "Semantic Integration of Plug-and-Play
Software Components for Industrial Edges Based on
Microservices," in IEEE Access, vol. 7, pp. 125882-125892,
2019, doi: 10.1109/ACCESS.2019.2938565.

[12] S. Jha et al., "Deep Learning Approach for Software
Maintainability Metrics Prediction," in IEEE Access, vol. 7,
pp. 61840-61855, 2019, doi:
10.1109/ACCESS.2019.2913349.

[13] C. Diwaker et al., "A New Model for Predicting
Component-Based Software Reliability Using Soft
Computing," in IEEE Access, vol. 7, pp. 147191-147203,
2019, doi: 10.1109/ACCESS.2019.2946862.

[14] S. Ahamad, “System Architecture for Brain-Computer
Interface based on Machine Learning and Internet of Things”
International Journal of Advanced Computer Science and
Applications (IJACSA), 13(3),
2022. http://dx.doi.org/10.14569/IJACSA.2022.0130357

[15] H. Sastypratiwi and Y. Yulianti, "Web Application
Development using MVC-component-based approach,"
2019 International Conference on Data and Software
Engineering (ICoDSE), 2019, pp. 1-5, doi:
10.1109/ICoDSE48700.2019.9092609.

[16] Hartmann, T., Moawad, A., Fouquet, F., Le Traon, Y.: The
next evolution of MDE: a seamless integration of machine
learning into domain modeling. Softw. Syst. Model.
(SoSyM) 18, 1285–1304 (2019)

[17] A. Triantafyllou, P. Sarigiannidis, and T. D.Lagkas,
“Network protocols, schemes, and mechanisms for internet
of things (IoT): Features, open challenges, and trends,”
Wireless Communications and Mobile Computing, vol.
2018, pp. 1– 24, 08 2018.

[18] R. Joshi, S. Mellor, and P. Didier, “The industrial internet
of things volume G5: Connectivity framework,” Industrial
Internet Consortium (IIC), pp. 1–127, 2017.

[19] T. Joseph, R. Jenu, A. K. Assis, S. K. V. A, S. P. M, and D.
A. G, “IoT middleware for smart city,” IEEE International
Symposium on Technologies for Smart Cities, 2017.

[20] S. Al-Sarawi, M. Anbar, K. Alieyan, and M. Alzubaidi,
“Internet of things (IoT) communication protocols: Review,”
in ICIT 2017 Internet of Things (IEEE, ed.), pp. 685–690.

[21] M. C. Kaya, M. S. Nikoo, S. Suloglu, B. Tekinerdogan, and
A. H. Dogru, Managing Heterogeneous Communication
Challenges in the Internet of Things Using Connector
Variability, pp. 127–149. Cham: Springer International
Publishing, 2017.

[22] Xu Yingzhao. Research on the Development Trend of
Integration of Embedded System and Internet of Things
Wireless Internet Technology,2019,16(04):13-14.

[23] A. K. Sandhu and R. S. Batth, "A Hybrid approach to
identify Software Reusable Components in Software
Intelligence," 2021 2nd International Conference on
Intelligent Engineering and Management (ICIEM), 2021,
pp. 353-356, doi: 10.1109/ICIEM51511.2021.9445378.

[24] https://www.tutorialspoint.com/keras/index.htm

[25] Gorton, Ian. (2011). Understanding Software Architecture.
10.1007/978-3-642-19176-3_1.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.6, June 2022

689

[26] Kim, Jung & Garlan, David. (2010). Analyzing
architectural styles. Journal of Systems and Software. 83.
1216-1235. 10.1016/j.jss.2010.01.049.

[27] Kang, Sungwon & Garlan, David. (2014). Architecture-
Based Planning of Software Evolution. International
Journal of Software Engineering and Knowledge
Engineering. 24. 211-241. 10.1142/S0218194014500090.

[28] Mehta, Nikunj & Medvidovic, Nenad & Phadke, Sandeep.
(2000). Towards a taxonomy of software connectors.
Proceedings - International Conference on Software
Engineering. 178-187. 10.1109/ICSE.2000.870409.

[29] Mark Richards, “Software Architecture Patterns”, ISBN:
978-1-491-92424-2, O’Reilly Media, Inc, 2017.

[30] Madakam, Somayya & Ramaswamy, R & Tripathi,
Siddharth. (2015). Internet of Things (IoT): A Literature
Review. Journal of Computer and Communications. 3. 164-
173. 10.4236/jcc.2015.35021.

[31] https://azure.microsoft.com/en-us/overview/internet-of-
things-iot/iot-technology-protocols/

Dr. Shahanawaj Ahamad is
an active academician and
researcher in the field of
Computer Science and
Software Engineering with 17
years of experience. He
completed 3 master’s
qualifications followed by a
Ph.D. degree in Computer
Science specializing in

Software Engineering; contributed to publish 60 research
articles and 3 books. He is designated as Asst. Professor
and Program Coordinator of Software Engineering in the
College of Computer Science and Engineering,
University of Hail, Hail City, Saudi Arabia. He has been
contributing significantly to various academic and
administrative responsibilities, and a member of several
scientific and research organizations including fellowship
of British Computer Society UK. His research interest
includes software engineering, software aging, program
analysis, application of machine learning, IoT and cloud
computing.

