
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

191

Manuscript received July 5, 2022
Manuscript revised July 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.7.23

Anonymized Network Monitoring for Intrusion
Detection Systems

D B Srinivas1† and Sagar Mohan2††

srinivas.db@nmit.ac.in, sagarmohan.dev@gmail.com

Department of Information Science and Engineering
Nitte Meenakshi Institute of Technology, Bangalore, India.

Summary
With the ever-increasing frequency of public sector and small-
scale industries going live on the internet in developing countries,
their security of which, while crucial, is often overlooked in
most cases. This is especially true in Government services,
whilst essential, are poorly monitored if at all. This is due to
lack of funds and personnel. Most available software which can
help these organizations monitor their services are either
expensive or very outdated. Thus, there is a need for any
developing country to develop a networking monitoring system.
However, developing a network monitoring system is still a
challenge and expensive and out sourcing network monitoring
system to third party is a security threat. Therefore, in this article
we propose a method to anonymize network logs and outsource
networking monitoring system to third-party without breach in
integrity of their network logs.
Keywords:
Django, TShark, Computer-networks, intrusion-detection,
anonymization

1. Introduction

Modern networking has become rather
convoluted, not from a technical viewpoint, but from a
managerial perspective. There are so many bits and bobs
that go into a modern computer network, most people
who are not actively involved in the field or have
prerequisite knowledge in it are generally lost. This is
evident in the state of Public Sector (Government)
technology infrastructure and that of small-scale
industries in across the globe; poorly maintained
websites running on ancient/ under-powered, many-a-
times misconfigured or outdated servers. While the
central government has taken the reins and is now
permeating guidelines and standards [1] [2] [3] to be
followed by all, this is still not adopted by many
organizations. Meanwhile, when it comes to monitoring
these networks, most of the time it is not even taken into
consideration, leaving to large deficits in security,
especially in India [4].
In recent past, there have been multiple lapses, though
not completely unavoidable, in security. The chief of

them being when, in 2021, foreign malicious actors
comprised the two-factor authentication system used by
the Indian government [5]. The Covid-19 Pandemic did
no favors as it took all work and related things online,
cyber attacks rose 300% in 2020 [5]. The government
however has acted and trained quite a few officials in
cyber security [6]. There are many areas of improvement,
even within the security policies themselves [7], however,
the key concern is with network security itself.

Internationally, there have been multiple network
breach incidents as well, notable recent ones such as,
in February 2022 [8], The Red Cross had their networks
compromised by an alleged state-backed hacker group.
The attack included specific use of self-made tools to
breach their network, evading their in-place anti-
malware tools. It was only after installing observer
agents in their edge systems that they were able to
determine that their networks had been compromised. In
another case, which occurred in May 2022 [9], hackers
breached Greenland’s healthcare systems causing
extended wait times leading to significant delays in the
working of the country’s healthcare system.

Speaking of network security, this is usually done by
always observing the traffic through the use of network
capturing devices and software. Every packet flow
which goes through an observation point is captured and
logged into a database of sorts, after which a software
makes sense of the packets by aggregating the
information to a more presentable form, such as an end-
user dashboard. However, due to the nature of these
software products, the data presented to the user is
usually, though encrypted in transit, is in plaintext.
Whilst this is completely normal if the user is part of
that organization, what if the user was not. Such a
software could completely abstract sensitive
information from the end-user and still provide
functionality to a considerable extent. Thus paving the
way for having anyone monitors the network without
having to worry about data theft or data integrity loss.

In this paper, we present such a solution. Utilizing a

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

192

web dashboard linked to a backend through a web API.
We chose against making a standalone software as that
would imply sinking time and effort in hardening the
software itself; on the other hand, web browser security
has come a long way and thus give us a good foundation
to create a web dashboard whilst maintaining a
reasonably good amount of security.

The rest of this paper is organized as follows. Section
2 describes the related work. Section 3 describes
implementation of proposed framework. In Section 4,
process of anonymization is presented. In Section 5,
performance analysis of our proposed framework is
discussed. Finally, in Section 6 we conclude the paper.

2. Related work

In this section, we study the background information
related to the anonymization of network logs for
Intrusion Detection System (IDS) system. We study the
existing system under the following categories.

A. Intrusion Detection Systems

Computer Networks, like all types of distribution net-
works, are susceptible to many kinds of attacks, one of
which is prevalent is the intrusion attack. By definition,
intrusion can be from of unauthorized access to a
network or system that is connected to a network.
This type of attack can lead to complete integrity loss
of the information in transit through the network. An
IDS can be broadly classified into 2 categories [10]

• Active IDS
This kind of IDS acts as the middleman between the
networking hardware and the information network.
All information packets in transit through the
network has to go through these IDS before it can
leave its host network. This is done through the use
of a hardware device which captures the network
flow.

• Passive IDS
This kind of IDS does not require it to be a
middle man in the network, as it can passively
monitor network flow using a mirror port in the
networking hardware or network gateway. Hence,
the packets can freely flow without having to go
through an extra bit of hardware. Furthermore, the
IDS can be classified into 4 types [10]:

• Network Intrusion Detection System (NIDS)
As the name suggests, this type of IDS works at the
network level, monitoring flows at a router,
gateway level

• Host-Based Intrusion Detection System (HIDS)

Here, this type of IDS is installed, usually, as a
software component in each device that is meant to
be monitored Here, software programs called
“agents” are installed in workstations or other
systems and can be made to store logs or trigger
any alerts when required to do so.

• Signature-Based Intrusion Detection System

(SIDS)
This is the most popular form of intrusion detection
technique. It is achieved by utilizing a known threat
vector, be it a malicious IP address, or a malicious
payload and creating a signature of this known
threat vector. Once a signature is created of this
threat vector, this signature, which will in a way
that uniquely identifies a particular threat, can be
added to private or public databases of known
signatures. This signature can then be used to
identify any similar threat that might crop up.

 Anomaly-Based Intrusion Detection System(AIDS)

Here, the intrusion detection system performs it pur-
pose, by analyzing the performance of the network over
time and creating a baseline for it. Hence, if there is any
suspicious activity, where there is more or less network
flow than expected, the AIDS will alert the analyst to
this anomalous behavior, hence the name

B. How effective are Host Based Intrusion Detection
Systems

Time and again, many researchers have said that
signature-based IDS cannot effectively identity new
attacks or attacks involving protocols and attack vectors
not identified by the detection system [11]. However,
what they fail to note is the use case and the
environment the IDS will be run in. If an adversary
is proficient and well-funded enough to target a small
organization, then the organization in question should
have a large budget to handle all their security detail.
Therefore, the signature-based IDS still stand pretty well
against most forms of network intrusions and therefore
can be utilized relatively easily.

C. Packet Filtering

In [12], the authors demonstrate the different kinds of

identifiers that are important to correctly flagging an of-
fending network packet. They compare whether, when
filtering packets, does the fields being monitored or
does the anonymization algorithm matter for correctly
flagging the malicious packets. In their results, they
were able to ascertain that it is indeed the fields that

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

193

matter more than the algorithm. The authors used the
Snort tool to compare results between the fields and the
algorithm and found that a few fields were responsible
for the most false positive results; they were:

• TCP Destination Port
• TCP Source Port
• IPv4 Source IP
• IPv4 Destination IP
• Timestamp of Packet
• Acknowledgement Number of TCP Packet

D. Anonymization

Anonymization of network logs have been highly

researched field where newer ways of anonymizing logs
have been brought forward regularly. The most well-
known paper on this [13], firstly mentions how this kind
of anonymization depends on the policies of the
organization to which the network logs belong to.
While the easiest effort would be, to completely
remove the fields which have no relevance to the
required use case, in the case of an intrusion detection
system, dropping any fields would result in erroneous
results which might impact the efficiency of the IDS
significantly. Therefore, based on the policy, a uniform
method of anonymizing network traffic needs to be
utilized. This form of obfuscation needs to be
cryptographically secure, and should not disrupt the
efficiency of the IDS.

Furthermore, while anonymizing the data, one should
take care that the anonymization techniques used should
not be reproducible in any way whatsoever. This is a
key factor, as if part of any identifying information is
obfuscated, but the rest is left as is, it could give
adversaries leverage to reconstruct the data from
discernible data.

From Fig. 1, the understanding of the system
working is ascertained.

1) The Watchdog/Observer performs the packet

capture on the device it is installed on.
2) The captured packet information is sent to the

filter to be analyzed whether it is malicious or
not.

3) The relevant information is written to the
CoreDB, which is the plain text database.

4) The anonymized data is written to the AnonDB.
5) Any non-essential packet information is written

to MongoDB, which benefits from not having
any schema to conform to.

6) The Dashboard which is viewable to the analyst
is connected to only the AnonDB and, through

an API, the MongoDB database. It shows the IP
logs and any flagged malicious IPs.

7) The analyst can also use the API to alert the
admin without having actual access to the
CoreDB.

Fig. 1: Intrusion Detection System

E. The Dashboard

The Dashboard is built using the Django Web
Framework. This is well defined in internet literature.
Fig. 2 shows Django MVC Model architecture.
1) The Model: this uses the Object Relational

Mapper to connect native code in Python to SQL
statements. Therefore all database logic is written
in native python code which allows for easier
code reading and code modification.

2) The Template: Django provides the use of static
templates along with template inheritance to allow
for programmatic sequencing of existing templates.

3) The View: the view is the broker that ties together
the model (the database) and the template and
serves it to the requester

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

194

Fig. 2: Django MVC Model

F. The Observer

The observer is an agent-based software that is
supposed to be installed on the system or device meant to
be monitored. This software is also written in python
utilizing libraries such as Scapy, Database client libraries
and the T-Shark Terminal Utility Program.

1) Tshark: Wireshark is a free and open-source
program used for network packet analysis. It is used
widely and thoroughly in the industry while being free
software. Tshark is the terminal equivalent of the
graphical user interface of the normal Wireshark software.
Over all operation of Tshark is as shown in Fig. 3

2) How Tshark Works: Tshark, like most other packet
monitoring software, works as follows:

• You bind tshark to listen to a particular network
interface (this could be the wireless or Ethernet
interface; it could also be a network device like a
router as well).

• Now that tshark has been bound to an interface,
when any application transmits its network data
through this network, depending on what mode
tshark is running in, it’ll will capture the network
data directly or indirectly.

• It performs the packet capture by either having the
proper permissions to operate at a high privilege
level in the operating system, or performing the
packet capture with as little permissions as possible
in user mode.

• When capturing the data, it captures all the network

frames and contains it in a specific file format
which is called the packet capture file format, aka
pcap files.

• Any program utilizing this packet capture can
either retroactively use the pcap files as they are
being updated, or wait for the packet capture to
complete, and the use the data contained within
them.

Fig. 3: TShark Operation

3. IMPLEMENTATION

The implementation of the observer is broken into
four main parts. The packet capture; the IP filtering;
anonymization; writing to the database.

A. Packet Capture

Here, the interface which is supposed to be monitored
is input into the config of the python script. After which
the packet capture is invoked based on the time periods
specified by the network administrator. Furthermore, the
IP address of the current system is found to write the
relevant data, whether a packet is incoming or outgoing.
While the program is running, all the packet capture data
is temporarily stored in a local directory to allow for log
keeping. Since packet data is voluminous, it does not
make sense to keep the entire raw packet data for long,
as it gradually builds up.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

195

B. IP Filtering

Once the data packet is captured, each relevant packet
goes through filtering to check whether it is malicious or
not. How this is done is by using the bloom filter [14].
The working of the bloom filter can be explained using
the Fig. 4.

Fig. 4: Bloom Filter

.The Bloom filter data structure tells whether an
element may be in a set, or definitely isn’t. The only
possible errors are false positives: a search for a
nonexistent element can give an incorrect answer. With
more elements in the filter, the error rate increases.
Bloom filters are both fast and space-efficient. However,
elements can only be added, not removed.

An empty Bloom filter is a bit array of m bits, all set to
0. There are also k different hash functions, each of
which maps a set element to one of the m bit positions.
Bloom filters are used in a many domains which include
packet filtering, P2P communications, Big Data
Security, to name a few [15]

From Fig. 4, the values x, y, z have been written to
the bit array using some k hash functions. The values
are converted into a set of bits that are written at certain
indices in the bit array, in other words, the bits at those
indices are set. When we try to check if the value w
exists, we hash it and check if the bits at its indices are
set, if they are, then w may be part of the set, if not set,
it is not part of the set. Another example, let’s assume
that we need to add the words or names Jason and
Davies to the filter. We can see that the two words are
then mapped to particular indices in the bit array. Now a

new word is to be searched in the bit array. The word
“David” is hashed and check the bit array if the bits of
the hashed word are set in the array. Since none of the
indices of this new word are set, therefore the word
“David” does not exist in the filter.
The IP filter works on the same principle. First, we
obtain all major block-listed IPs from existing open-
source information databases. Once we do that, we can
add all those IP addresses to the bloom filter. We have
to add each IP sequentially, as the hashing process
hashes each IP and then sets the relevant bits in the bit
array. When the observer wants to filter the packet logs,
it pushes the information to the filter, which hashes the
to-be-checked IP and sees whether the those bits are set
or not. If all are set, it’s definitely there, if some are set,
it might be present, if none are set, it is not present.
When working with Bloom Filters the k number of
hashes as well as the size of the set need to be
predetermined. A smaller bloom filter will set all bits
in the array to 1 if it fills up, so choosing an
economical size is important. With hash functions, the
more hash functions we use, the slower the bloom filter
becomes, so a balance needs to be calculated between
the filter size and the number of hashes.
From Fig.5, we can see the False Positivity Rate of the
Bloom filter. Using one hash and writing 10 Million
records into 100k size Bloom filter will make the
FPR exactly 1, meaning all the bits are set to 1 so any
record being searched will, by definition, be present in
the array. With 8 hash functions and writing 10
Million records to a filter with a size of 1 Billion bits,
the FPR comes down to e − 10.

Fig. 5: Bloom Filter False Positivity Rate

C. Anonymization

Now, since the Observer has to do the anonymization

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

196

locally, we have to implement the anonymization here.
There are many ways one can go about implementing
this, however let us first see the results of different ways
of anonymizing the network traffic.

From Table I, we can see that randomization is the

slowest, as it has to use the system entropy to generate
each randomized entry. However, we can be rest assured
that these slow, but randomized values cannot be brute
forced as we see with the hashing algorithms.
D. Data Collected

As per the framework design, data is predominantly
stored in three databases, two of which are SQL and
mirror the type of content stored but in two different
ways. The CoreDB stores data in plaintext and is only
viewable by an admin. The AnonDB is the database that
mirrors most of which is stored in the CoreDB but all
predetermined information is correctly anonymized. The
data being stored is as follows

1) CoreDB and AnonDB:

• Source IP
• Destination IP
• Source Port
• Destination Port
• Type of Service
• Universal Unique Identifier (UUID)
• Salt (if policy requires it, only stored in CoreDB)

2) Extraneous Packet Information:

Packets contain many other information and
depending on the type of service, different structures
of the packet. All such information is directly fed into
a NoSQL database, in our testing case, MongoDB.
The reason for which being it is easier to write any
other packet information into a NoSQL record rather
than design a schema for every type of service’s
packet structure. For example, in the case of a normal
TCP packet, the following information (out of many)
is stored:
• Sequence ID
• Acknowledgement Number
• Window
• Checksum

4. Anonymization

Much research has gone into anonymization of
network logs or PII (Personally Identifying
Information), where the authors have created novel
ways at effectively anonymizing network logs. When
working with IPv4 Addresses, there are only 4
Million IP addresses available by design. Hence,

considering this, if we look at brute-forcing the entire
address set. It would take seconds to find a similar IP.
We tested the time it would take to brute force the
machine on two different machines resulting in similar
times.

TABLE I: Hashing IP Addresses

Algorithm 1 Million IPs
(seconds)

4 Million IPs
(seconds)

Random 115.53 493.77

MD5 2.35 8.33

SHA1 2.13 9.13

SHA224 2.35 9.60

SHA256 2.38 10.38

SHA384 2.72 11.05

SHA512 3.04 8.06

From Table II, we can see that the time taken to brute

force any of the Hashes on two machines, Machine 1
having an Intel Core i7-8750H @ 2.20GHz (this is a
CPU variant for laptops) and Machine 2, having a
desktop grade AMD Ryzen 7 3700X (16) @ 3.60GHz.
This experiment was run on both machines using a
single thread. A faster brute force time can be
demonstrated when brute forcing voluminous IP
addresses at scale, a great example is GPUHash which
is online Cracking as a Service, although it is many a
times used for nefarious purposes.

TABLE II: Brute Force IPv4 Addresses

Algorithm Machine 1
(seconds)

Machine 2
(second)

MD5 0.1847 0.0404

SHA1 0.2139 0.0436

SHA224 0.2595 0.5254

SHA256 0.2860 0.5459

SHA384 0.3967 0.0728

SHA512 0.1245 0.0219

An alternative to this approach is to use a salt with an

IP address to uniquely hash the IP address. However,
when doing this, the storing of the additional salt field
for each IP address as well as the final hash itself needs
to be considered. As at scale, these two fields will
accumulate much storage (in the orders for hundreds of
gigabytes) and as such is not feasible.

Using completely randomized strings of characters
representing anonymized IP logs are an easy and
effective replacement to hashes in the system. Firstly,
since the entire framework uses the concept of the
UUID, the UUID can be utilized in searching for any

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

197

unique record rather than relying on a unique hash
generated using a salt. Secondly, since one can control
the size of the randomly generated string, the storage
space utilized will be much less than with
Cryptographic hashes; for example, if using a SHA256
hash, it will generate a 256 bit or 32 byte unique
signature for the given IP; the same if done using a
string of 15 randomly generated characters takes less
than half that space at 15 bytes.

Even with a completely randomized, utilizing
system entropy, anonymization scheme, there is a minute
chance of collision occurring, more specifically; taking
a possible 50 character set and setting the generated
string length at 15 character, there are 5015 number of
different combinations of letters. So the possibility of a
birthday attack is very unlikely. However, there is a
more cryptographically secure alternative to this, the
only downside being that the space needed to store
records at scale increases. The solution would be to use
ShortUUIDs which are a more concise version of
standard UUIDs. In the case of the implementation being
used in this implementation, we used the Python library
shortuuid which generates the UUIDs using Python’s
in-built uuid library and then converts into base57
based on certain criteria. By design, they are 22 bytes
long. Concatenating them further will cease to make
them universally unique and no different from the
randomized generation above.

5. PERFORMANCE

Since the observer is running constantly to monitor
network traffic. Some evident performance metrics play
a major role.

A. Large Capture Files

The observer functions by using capture files
taken by the capturing program, in this case, Tshark. So
when there are large capture files with hundreds of
thousands of packet capture information exceeding
200MB, then loading those files into memory will slow
down the system.

B. Packets Dropped

When logging network packets in real time, more
often than not, some packets get dropped. This is usually
because the system is not designed to handle load. A few
ways to prevent this or reduce this would be

• Stop or kill other programs which are using
considerable amounts of memory

• Use a packet capturing program that is more
designed for speed like TCPDump.

The framework is designed in such a way that any
component or module can be swapped out without
affecting other components.

C. General Considerations

In the case of the network observer software, there are
two considerations that need to be addressed

1) Is the system dedicated?

2) If the system is dedicated for the observer, it should
not pose any issues when capturing network traffic
flowing through it as all computational power and
memory is available to it

3) Is the System competent?
When dealing with logging network traffic, the
program should have good computing power,
enough memory and not mention a good network
interface card (NIC).

6. CONCLUSION AND FUTURE WORK

Network security, especially that involving Intrusion
Detection Systems, has a great scope for improvement.
While there are much large-scale software to perform
intrusion detection, what they lack is the correct set of
anonymization potential to allow any 3rd party to
monitor the network logs. Having completed this
implementation, it has given us an in-depth
understanding of the complexity of the networking flow
that is always occurring unbeknownst to us, abstracted
from us by decades of constantly progressing network
engineering. The staggering number of packets that
flows through a system is too fast for a human to
comprehend now. As a result, the monitoring of such
packets plays a paramount role in keeping computer
networks safe. Additionally, the complexity behind
well-known IDS software like IBM’s QRadar, Splunk
and us having done this project have made us realize the
depth of programming that is required to monitor
networks at a significantly large scale. The Network
security domain is very exciting and we are thrilled to
work forward and see where else something can be
improved or worked upon.

While this implementation succeeds at anonymizing
network logs securely and efficiently as possible, what it
fails to do is allow analysis of encrypted network traffic,
specifically the packet payload of each network traffic.
A common way of skirting around this issue what be for
the network packet capture software to act as the middle
man and intercept any packets while not messing up any
crucial packet info like the destination address. The
problem, however, lies in the fact that not all
applications will accept the certificates provided by the

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

198

packet capture software. So an efficient solution to
monitoring networks with least privileged access needs
to be created.

REFERENCESS

[1] Ministry of Communications and Information

Technology, Government of India, “National cyber
security policy.” [Online]. Available:
https://www.meity.gov.in/writereaddata/files/ncsp
060411.pdf

[2] Ministry of Communications and Information
Technology, Government of India , “Intermediary
guidelines and digital media ethics code rules 2021.”
[Online]. Available: https://bit.ly/3AEjRxJ

[3] Ministry of Power, Government of India, “Cybersecurity
in power sector guidelines 2021.” [Online]. Available:
https://bit.ly/3yUjjT1.

[4] S. Sharma and M. Khadke, “Network Security: A
Major Challenge in India,” in 2018 4th International
Conference on Computing Communication and
Automation (ICCCA). IEEE, pp. 1–5. [Online].
Available: https://ieeexplore.ieee.org/document/8777642/

[5] N. Chauhan, “Almost 300% rise in cyberattacks in
india in 2020, govt tells parliament,” The Hindustan
Times. [Online]. Available:
https://www.hindustantimes.com/india-news/almost-300-
rise-in-cyber-attacks-in-india-in-2020-govt-
tells-parliament-101616496416988.html

[6] D. Bhardwaj, “In wake of increased attacks, govt
trains 4,000 officials in cybersecurity,” The
Hindustan Times. [Online]. Available:
 https://www.hindustantimes.com/india-news/in-wake-of-
increased-attacks-govt-trains-4-000-officials-in-
cybersecurity-101617683297609.html.

[7] Col. Sanjeev Relia, “India’s tryst with a new national
cyber security policy: Here’s what we need,” Financial
Express. [Online].Available:
https://www.financialexpress.com/defence/indias-tryst-
with-a-new-national-cyber-security-policy-heres-what-
we-need/2304053/.

[8] S. Gatlan, “Red cross: State hackers breached our
network using zoho bug,” Bleeping Computer.
[Online]. Avail¬able:
https://www.bleepingcomputer.com/news/security/red-
cross-state-hackers-breached-our-network-using-zoho-
bug

[9] G. Cluley, “Greenland hit by cyber attack, finds its
health service crippled,” Bitdefender. [Online]. Avail¬able:
https://www.bitdefender.com/blog/hotforsecurity/greenland
-hit-by-cyber-attack-finds-its-health-service-crippled.

[10] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman,
 “Survey of intrusion detection systems: Techniques,
 datasets and challenges,” vol. 2, no. 1, p. 20. [Online].
 Available:
 https://cybersecurity.springeropen.com/articles/10.1186/s4
 2400-019-0038-7/

[11] E. Anthi, L. Williams, P. Burnap, and K. Jones, “A three-
tiered intrusion detection system for industrial control
systems,” vol. 7, no. 1, p. tyab006. [Online]. Available:
https://doi.org/10.1093/cybsec/tyab006

[12] K. Lakkaraju and A. Slagell, “Evaluating the utility of
 anonymized network traces for intrusion detection,” in
 Proceedings of the 4th International Conference on Security
 and Privacy in Communication Netowrks - SecureComm
 ’08. ACM Press, p. 1. [Online]. Available:
 http://portal.acm.org/citation.cfm?doid=1460877.14608999.

[13] R. Pang, M. Allman, V. Paxson, and J. Lee, “The devil and
 packet trace anonymization,” vol. 36, no. 1, pp. 29–38

[Online]. Available:
 https://dl.acm.org/doi/10.1145/1111322.1111330.

[14] S. Geravand and M. Ahmadi, “Bloom filter applications
 in network security: A state-of-the-art survey,” pp. 4047–
 4064, 2013. [Online]. Available:
 https://www.sciencedirect.com/science/article/pii/S138912
 8613003083.

[15] R. Patgiri, S. Nayak, and S. K. Borgohain, “Hunting the
 pertinency of bloom filter in computer networking and
beyond: A survey,” Journal of Computer Networks and
Communications, vol. 2019, p. 2712417, Feb 2019. [Online].
Available: https://doi.org/10.1155/2019/2712417.

Sagar Mohan is currently a Bachelor’s
student in the department of Information
Science and Engineering at Nitte
Meenakshi Institute of Technology,
India. His research interests include
computer networks, cyber security, and
distributed systems.

D.B. Srinivas received his PhD degree
in Computer Science and Engineering
from Visvesvaraya Technological
University, India, in 2019. He is
currently working as a Professor in
Department of Information Science and
Engineering at Nitte Meenakshi Institute
of Technology, Bangalore, India. His
research interests are in the area of
Distributed Computing and network

security.

