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Summary 
Smartphones are growing more susceptible as technology 
develops because they contain sensitive data that offers a severe 
security risk if it falls into the wrong hands. The Android OS 
includes permissions as a crucial component for safeguarding user 
privacy and confidentiality. On the other hand, mobile malware 
continues to struggle with permission misuse. Although 
permission-based detection is frequently utilized, the significant 
false alarm rates brought on by the permission-based issue are 
thought to make it inadequate. The present detection method has a 
high incidence of false alarms, which reduces its ability to identify 
permission-based attacks. By using permission features with intent, 
this research attempted to improve permission-based detection. 
However, it creates an excessive number of features and increases 
the likelihood of false alarms. In order to generate the optimal 
number of features created and boost the quality of features chosen, 
this research developed an intersection feature approach. 
Performance was assessed using metrics including accuracy, TPR, 
TNR, and FPR. The most important characteristics were chosen 
using the Correlation Feature Selection, and the malicious 
program was categorized using SVM and naive Bayes. The 
Intersection Feature Technique, according to the findings, reduces 
characteristics from 486 to 17, has a 97 percent accuracy rate, and 
produces 0.1 percent false alarms. 
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1. Introduction 

The usage of mobile devices as personal 
computers is on the rise in the modern day. A cell phone's 
fundamental function is to promote human interaction, but 
as technology develops, it will eventually add more 
functions and processing power. These days, a mobile 
phone can perform any task that a desktop or laptop can. 
Smartphones are equipped with the tools necessary to 
conduct phone calls, send and receive text messages, make 
high-definition video calls, access social media, send and 
receive emails, use financial services, and take, record, and 
edit high-definition pictures, videos, or music. 

The most popular mobile operating system 
worldwide in 2020, as per [1], was the Android operating 
system. The main cause is the open Android policy, which 
permits programmed repackaging and simple publishing, 
which gave rise to numerous security risks and quick 
Android malware evolution. Giving to [2], in response to 

the numerous demands from Android users for the ability to 
acquire premium software at no cost, numerous third-party 
app stores have been created, inviting various application 
developers to publish their repackaged applications. This 
situation, according to [3] and [4] also encourages malware 
developers to take a chance by downloading dangerous 
repackaged versions of expensive software to infect 
consumer mobiles. 

Malware is continually developing even if the 
existing detection technology can detect Android malware. 
According to [5] and [6], the malware's primary goals are 
often to steal user information and make money by sending 
premium-rate SMS messages without the users' permission. 
Due to its opensource approach compared to other operating 
systems, Android has attacked many people; nevertheless, 
it also turns into a malware attacker. Attackers create 
malicious copies of good apps, especially premium ones, 
and release them on the Play Store or other third-party 
markets to lure customers in. Once malicious applications 
have been installed on a user's device, harmful actions like 
data modification or deletion are possible. According to  [7], 
[8] and [9] collecting user information or sending SMS or 
email without user authorization. To safeguard the privacy 
and interests of Android users, it is therefore extremely 
important to identify malware successfully. As described by 
[10]. The ability to access third-party applications exposes 
mobile devices to permission-based attacks. 

The remainder of the paper is structured as follows: 
the related works involve in this paper is discussed Section 
2 and Section 3 introduced and discuss the detail about the 
technique proposed. In Section 4, it discussed and shows the 
results and evaluation. Section 5 summarization and suggest 
ideas for further research. 

2. Related Works 

Mobile malware detection techniques, according 
to [11], [12] and [13], are comparable to desktop 
environments where they may be divided into three primary 
categories: signature-based detection, anomaly-based 
detection, and specification-based detection. The signature-
based detection method matches malware feature patterns 
to rules-based malware pattern patterns in the database. Any 
activity that differs from the typical profile behaviour is 



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022 
 

 

 

390

 

examined using an anomaly-based detection approach. The 
specification-based detection method, meanwhile, derives 
from anomaly-based detection and includes a training step 
when users are taught the anticipated behaviour of the 
application or system under scrutiny. Anomaly-based and 
specification-based detection, as stated by [14], may 
identify unknown malware, but they take a long time and 
have a high false-positive rate. In contrast, a signature-
based assault has a low percentage of false positives and 
produces excellent accuracy for known malware. The 
feature vectors derived from malicious programs determine 
the accuracy of the signature-based detection method. As a 
result, it has emerged as a crucial stage in malware detection 
for efficiently extracting a crucial characteristic. 

In this study, the ideas of Venn Diagrams are 
introduced, and the Intersection technique, permission-
based feature extraction, and intent-based feature extraction 
are proposed. The intersection technique involves creating 
a feature vector including features for permissions and 
intents, which is then subjected to feature tuning before 
being selected as a feature. These feature vectors will be 
used in a classification procedure to assess the proposed 
approach [15]. According to the experimental findings, the 
Intersection Technique of Permission and Intent Feature 
performed better than other approaches and could reach 
high accuracy based on our data set. 

The use of Venn diagrams to find and overlap area 
is not uncommon in another research field. The Venn 
Diagram is popular in genetic research. It is proven  by [16], 
where they use the Venn Diagram to find gene sets that 
describe particular processes using these cross-comparisons 
by layered gene lists from several pair-wise experimental 
contrasts. Besides, [17] implement a Venn diagram-based 
analytic approach that selects genes from experiments using 
network propagation on protein-protein interaction 
networks. According to [18], they applied the Venn 
Diagram to find common gene from various platform that 
consists of thousands of genes. Meanwhile,  

Android had built a permission-based paradigm in 
order to prevent an application from accessing system-
sensitive resources. According to [19], in order to access 
sensitive resources, application developers must clearly 
specify their request in the Android Manifest File. 
Consistent with [20], an Android application with restricted 
access employs a permission mechanism to access mobile 
critical resources. For instance, an application has to ask for 
Android.permission in order to send messages using an 
SMS application. During installation, SEND SMS is sent 
from the mobile device. 

In addition to permission, it also depends on other 
elements like accessing system resources intents  [21]. As 
mentioned by [22], the requester's activity is described in 
the requester's intent, which serves as a communication tool. 
In contrast, intent, according to [23] is a request from an 
application to carry out a certain activity. Explicit and 

implicit intent are the two categories of intent. As stated in 
[24], asserts that an explicit intent component can be started 
by requesting a particular receiver name, such as the names 
of classes. Thus, the system is aware of just which 
application to ask for. While implicit intent asks for generic 
action to be taken, this intent is used by developers to launch 
an activity or service in their application. This intent will be 
handled by other components that can carry out such 
activities. For instance, an application can utilise an implicit 
intent (Android.intent.action.DIAL) to launch a dialer 
activity if it wishes to make a phone call. However, the 
system will prompt users to choose whether to install 
additional dialer applications. 

Based on [25], the permission-based paradigm is 
continually vulnerable to security concerns such 
permissions leaking to take advantage of mobile devices' 
weaknesses. Permission escalation, in accordance with [26], 
permits malware to access sensitive resources without 
permission. On the contrary stated by [27] malware will 
often declare many permissions in order to complete its 
purpose, hence over-claimed permissions are used to get 
around permission-based detection mechanisms. If too 
many rights are claimed, hostile applications may seek 
access to personal user data in attacks that include 
permission escalation. Few studies have been done on 
android intents, despite major study being done to examine 
the permission model and Intent functionality for 
identifying mobile malware. 

The goal of this study is to use the integration of 
permission and intent characteristics to defeat the 
permission-based attack. However, too many sub-features 
are generated by the Permission and Intent usage, which has 
an impact on accuracy and false-positive rate. The goal of 
the suggested approach is to produce the ideal amount of 
features from permission and intent while simultaneously 
ensuring an improvement in accuracy rate and a decrease in 
false-positive rate. 

Users of the Android operating system have the 
freedom of being able to install applications from the third-
party market. Android devices are secured via a permission-
based architecture that limits third-party applications' 
access to critical resources, such short messaging system 
databases and external storage, in order to ensure the user's 
safety. However, mobile malware still poses a concern via 
misuse of permissions.  

Static characteristics have been employed as part of 
several detection techniques. as an analogy, to identify 
Android malware, [25], [28], [29], [30], [31], [32], [33] and 
[34] employed permissions, intents, or a combination of 
manifest file components. 

As claimed by [35], The misuse of permission may 
result in catastrophic security breaches, therefore the 
permission induced attack is one of the most frequent and 
dangerous vulnerabilities that puts Android users in peril. It 
explains four types of permission-induced attacks: passive 
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data leak, identical custom permission, unsafe 
pendingIntent, and privilege escalation. According to [29], 
which provides evidence in support of this claim, 
application developers may seek or define unauthorized 
privileges, leading to overprivileged programs, since there 
is a dearth of reliable permission data. 

As mentioned by [36], they introduced a behaviour 
detection approach based on the Latent Semantic Indexing 
concept in accordance with. By selecting which permission 
category to match from and then analysing behaviors in an 
emulation environment, the suggested technique sought to 
find anomalous Android applications. Both static and 
dynamic analysis is used by them. Latent Semantic 
Indexing will be used to retrieve data during the static phase. 
Obtaining a list of applications that are comparable is the 
aim of this method. In the meanwhile, they used dynamic 
analysis to check the projected behaviors of the permission 
list by looking at the invokes functions. 

They suggest identifying cooperating programs as 
well as unidentified malicious applications since 
permissions and intents enable application collusion, as 
noted in [37]. Applications are categorized by the proposed 
malware detection system based on particular permissions 
and intents that are only present in malware. Use of 
ensemble methods optimizes the classification results. 

Despite the fact that many signature-based 
detection systems use static features, and it is effectively 
increased the accuracy, nevertheless it generates a 
considerable number of false alarm and number of  \features. 
The introduce technique in this paper is to resolve the 
problems. 

3. Proposed Intersection Features Technique 

Permission and intent are static features, as stated by  
[38]. Both features are important in distinguishing between 
applications that are malicious and those that are benign. In 
this research, we applied static analysis by reverse 
engineering the process to extract the features from 
application. Static analysis, as describe by [39], leverages 
the resources of the program to identify it as malicious or 
benign while examining it without running it. The datasets 
utilized in this study are from the University of New 
Brunswick (Abdul Kadir et al., 2015) and they contain 2909 
Android malware programs from 14 distinct families that 
have existed between 2010 and 2019.  

The Intersection Technique consists of several stages 
to generate quality and optimal number of features. There 
are four stages in the Intersection Technique: Feature 
Extraction, Feature Vector, Feature Tuning and Feature 
Selection. The details will discuss below. The details of the 
stages will discuss in the subsection. 
 

3.1.  Feature Extraction 

Mobile devices running Android use the .APK file 
type to download and install applications. The Android 
application files were disassembled into a readable format 
using the ApkTool  (iBotPeaches, 2019), which produced 
dex files, manifest.xml files, and smali files. The ApkTool 
Command example is shown in Fig. 1. 

  

 
Fig.1 Example of ApkTool Command 

 
Fig. 1 shows the example of Apktool and the 

command use to decompile the file in an application. The 
manifest file, where the developer specifies the request, 
Permission, and Intent filters used in the application, is the 
subject of concern [22].  

 

 
Fig.2 Example of Manifest File 

 
Fig. 2 shows the example of Permission and Intent 

features extracted in this stage. There are 150 manifest files 
generated from  150 malicious Android applications. The 
extracted Permissions and Intent were matched with 
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standard Permission and Intent release by Android system 
using string similarity method, and the additionally 
extracted sub features also recorded. The equation shown in 
Eq.1 where if extracted Permission and Intent features exist, 
it denoted as 0 for the nonexistence of the feature. Let R be 
a vector containing a set of 466 Android features consist of 
Permission and Intent features. For every ith application in 
the Android application dataset (malware and benign), 

 
Ri = {r1, r2, r3,…rj} and 
 
 

j 
 1, If feature jth 

exist 

0, otherwise 

                                                                                        
                                         (1) 

Based on The Eq.1, in this stage, all identified 
features from an application will be labelled as 1, while the 
unused features will be labelled as 0. The result of this phase 
will be used in the feature vector phase. 

 
3.2.  Feature Vector 

This stage will create a comma-separated value 
(CSV) file from the binary value of an extracted feature 
from Permission and Intent. The vector's final result was 1 
or 0, indicating the presence of malware or benign 
application. [40]. Fig. 4 shows the example of feature 
vectors result. 

 
0, 0, 1, 1, 0, 0, …. 1 

Fig.4 Feature vector 
 

 3.4.  Feature Tuning 
When two or more features from different feature 

sets that go through the same procedure intersect, an 
Intersection Feature is formed. For example, two features, 
sendTextMessage API function and SEND SMS 
Permission, go through the same process, and intersect, 
resulting in the creation of an Intersection Feature 
containing these two features. The detection system can 
benefit from features in the Intersection Feature. Table 1 
shows the concept of Intersection Feature.  

In the same Intersection, features are included. 
Features may alter one other's feature values. Malware, for 
example, can get around the Permission-based detection 
process by not requesting the SEND_SMS permission. As 
a result, the value of this permission in the malware feature 
vector was 0. Even yet, if malware used the 
sendTextMessage API Call method, the SEND_SMS 
Permission value was set to 1. Fig. 5 illustrates the concept. 

  

 
Fig.5 Demonstrated of Feature Intersection 

diagram 
 
Fig. 5 depicts the Venn Diagram of the Intersection 

Feature method proposal, which consists of the intersection 
of two feature sets that share the same resource: Permission 
and Intent. A resource is a process that occurs on a 
smartphone, such as dialling a phone number, sending an 
SMS, watching a movie, and so on. Based in Fig. 5, the 
application request to make a call activity. So, both 
permission and Intent will access to the same resources to 
complete the activity. The activity will be the key to find 
the intersection of the features. 

Based on [41], asserts that some features offer 
extremely good discrimination. However, the selection of 
features during the feature selection step will be impacted 
by the dataset's few apps' requests for it. Enhancing the 
quality of features is the aim of feature tuning. The removal 
of unused additional features and the alteration of feature 
values within the same Intersection feature make up this 
phase's two parts. Table 1 shows the example of Intersection 
Features between Permission and Intent. 

 
Table 1: Example Permission and Intent from The Same 

Activity 
Permission Intent 

read_phone_contacts Action.phone_state 

Send_sms Action.sendto 

call_phone Action_call 

Access_wifi_state Connectivity_change 

 

 
Fig.6 Pseudocode of  Changing Permission Value Based 

on Intent Value 
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Fig.6 and and Fig.7 shows the  pseudocode  
implementation  of  the  Intersection Technique Fig. 5 
shows the pseudocode of changing permission value based 
on intent value. Only features that use the same resources, 
like Table 1, are impacted by the changing value. The 
permission value is equal to 1 for each specified Intent 
value of 1. 

 
Fig.7 Removing extra features infrequently used 

 
The pseudocode to eliminate unused features is 

shown in Fig. 6. If each feature's value, Si, is below the 
threshold, S0, the features will be eliminated. This is due to 
the fact that some Permissions and Intent features were 
developed alone by their developer and that their feature's 
name may have been misspelt in some applications. The 
features that will be employed in the next phases will be 
determined at this decisive phase. Furthermore, not all 
malicious applications will use the same features, but 
employing a large number of samples in an experiment can 
assist to identify the features that malware most frequently 
requests. 

 
3.5.  Feature Selection 

The subset selection of critical characteristics is 
the aim of the feature selection step. Feature selection is a 
process to get a subset from an original feature that chooses 
the pertinent characteristics of the dataset, according to [42]. 
Supported by [43], feature selection poses a serious problem 
in classification since it may have an impact on accuracy 
result. The feature selection helps reduce the dataset's 
number of features and helps to use less memory and CPU. 
Gain Ration, Chi-Square, and Information Gain were three 
types of feature selection algorithms that were taken into 
account in this study to assess how well the Intersection 
Technique worked. As stated by [44], Gain Ratio, Chi-
square Information Gain algorithm gives a great 
performance. Additionally, as confirmed by [45], 
Information Gain offers consistent performance for a set of 
features, whereas Gain Ratio exhibits superior results for 

the selection of a sizable number of sensitive features. 
Furthermore, [46] demonstrated that Chi-Square generates 
good accuracy with less features. Chi-Square was thus 
employed in this research as the feature selection approach. 
Only high-quality features will be chosen during the feature 
selection step since the unusable features in the prior 
process were discarded. 

4. Results and Discussions 

The purpose of this research is to find whether the 
generated optimal number of features proposed by 
Intersection Technique will increase the accuracy detection 
results and lower the false alarm result. In order to fit the 
purpose, several evaluation metrics are modified to serve 
the objective of evaluating the success of the intersection 
feature technique. The measures for assessment and the 
findings are explained in this section. 

 
4.1.  Evaluation Metrics 

In order to evaluate the detection method, several 
evaluation metrics were used. 

•True Positive (TP): number of malicious applications 
precisely classified as positive. 
•False Positive (FP): number of benign applications 
falsely classified as positive. 
•False Negative (FN): number of malicious applications 
falsely classified as negative. 
•True Negative (TN): number of benign applications 
precisely classified as negative. 
 

                                                                                                              

                                                                         (2) 
 

4.2.  Evaluation Results 
The results of the proposed technique's 

implementation are highlighted in this section. Two 
scenarios have been created in order to assess the improved 
performance while employing Permission and Intent 
features which are classification result before feature tuning 
and classification result after feature tuning. 

To determine the effectiveness of the feature 
intersection technique, the SVM classifier was used in the 
classification phase on the created dataset. Table 2 displays 
the accuracy and false positive attained by applying feature 

False 
Positive= 

FP 

FP+TN 

Accuracy= 
TP+TN 

TN+FN+TP-FP 

Recall= TP 

 FN+TP 
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tuning to the Permission feature and the Intent feature in 
two separate classification methods. 

 
Table 2. Effectiveness Result of Intersection Technique 

 With Intersection 
Feature (%) 

Without Intersection 
Feature (%) 

Accuracy 94.8 86 
False Positive 0.07 0.18 

 
In Table 2, the accuracy of classification for 

Intersection Feature is higher than without using the 
proposed technique. The experiment has been done three 
times. The showing result in Table 2 is the mean results of 
Accuracy and False Positive Value. The technique also 
achieves to reduce the false-positive rate to 0.07. The lowest 
false positive results and the highest accuracy result prove 
the effectiveness of the Feature Intersection Technique. 

An independent samples T-test was used to 
compare the mean accuracy (ACC) score of Without 
Intersection Feature (n=3) and With Intersection Feature 
(n=3). Levene’s test was significant; thus, an equal variance 
assumed for both groups. As P value= 0.001 (Sig. 2 tailed 
value) is less than 0.05, t test is statistically significant. So, 
we managed to reject the null hypothesis. Therefore, there 
is significant difference in average accuracy (ACC) exists 
between Without Intersection Feature and With Intersection 
Feature. So, we can conclude that average accuracy (ACC) 
of Without Intersection feature and With Intersection 
Feature are statistically significant. 

4. Conclusion and Future Work 

Compared to other forms of Android malware, the Android 
botnet poses a major threat to smartphone users. Numerous 
Android malware detection techniques are put into place 
based on earlier studies without taking into account diverse 
feature set circumstances. Additionally, the majority of 
detection methods just employ basic Android botnet 
characteristics without taking into account their unique 
traits. As a consequence, the Android botnet is able to avoid 
most suggested techniques. The Intersection Features 
technique is suggested in this work while taking into 
account various Permissions and Intent features. Some 
intersection characteristics' values are changed by the 
proposed technique. As a result, the accuracy rate rises to 
94.8 percent and the false positive rate reduces from 1.8 to 
0.07. Concurrently, the main objective to generate optimal 
number of features has been achieved where the number of 
features has decreased from a total of 486 features to 17. 

For future research, features from  dynamic 
analysis such as system call should be applied to achieve 
better performance and increase detection accuracy. 
Although this technique is achieved excellence results, 

however the number of malicious application samples 
during experiment also play a major role. This experiment 
was done using 150 samples from the same sources’ dataset, 
but in the future more samples will be collected from 
various sources to distinguish mobile malware features. 
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