
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

389

Manuscript received July 5, 2022
Manuscript revised July 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.7.48

Generate Optimal Number of Features in Mobile Malware
Classification using Venn Diagram Intersection

Najiahtul Syafiqah Ismail1† , Robiah Binti Yusof2†† and Faiza MA3†††

Universiti Teknikal Malaysia Melaka

Summary
Smartphones are growing more susceptible as technology
develops because they contain sensitive data that offers a severe
security risk if it falls into the wrong hands. The Android OS
includes permissions as a crucial component for safeguarding user
privacy and confidentiality. On the other hand, mobile malware
continues to struggle with permission misuse. Although
permission-based detection is frequently utilized, the significant
false alarm rates brought on by the permission-based issue are
thought to make it inadequate. The present detection method has a
high incidence of false alarms, which reduces its ability to identify
permission-based attacks. By using permission features with intent,
this research attempted to improve permission-based detection.
However, it creates an excessive number of features and increases
the likelihood of false alarms. In order to generate the optimal
number of features created and boost the quality of features chosen,
this research developed an intersection feature approach.
Performance was assessed using metrics including accuracy, TPR,
TNR, and FPR. The most important characteristics were chosen
using the Correlation Feature Selection, and the malicious
program was categorized using SVM and naive Bayes. The
Intersection Feature Technique, according to the findings, reduces
characteristics from 486 to 17, has a 97 percent accuracy rate, and
produces 0.1 percent false alarms.
Keywords:
Mobile malware, Classification, Permissions, Intersection
Technique, Intents

1. Introduction

The usage of mobile devices as personal
computers is on the rise in the modern day. A cell phone's
fundamental function is to promote human interaction, but
as technology develops, it will eventually add more
functions and processing power. These days, a mobile
phone can perform any task that a desktop or laptop can.
Smartphones are equipped with the tools necessary to
conduct phone calls, send and receive text messages, make
high-definition video calls, access social media, send and
receive emails, use financial services, and take, record, and
edit high-definition pictures, videos, or music.

The most popular mobile operating system
worldwide in 2020, as per [1], was the Android operating
system. The main cause is the open Android policy, which
permits programmed repackaging and simple publishing,
which gave rise to numerous security risks and quick
Android malware evolution. Giving to [2], in response to

the numerous demands from Android users for the ability to
acquire premium software at no cost, numerous third-party
app stores have been created, inviting various application
developers to publish their repackaged applications. This
situation, according to [3] and [4] also encourages malware
developers to take a chance by downloading dangerous
repackaged versions of expensive software to infect
consumer mobiles.

Malware is continually developing even if the
existing detection technology can detect Android malware.
According to [5] and [6], the malware's primary goals are
often to steal user information and make money by sending
premium-rate SMS messages without the users' permission.
Due to its opensource approach compared to other operating
systems, Android has attacked many people; nevertheless,
it also turns into a malware attacker. Attackers create
malicious copies of good apps, especially premium ones,
and release them on the Play Store or other third-party
markets to lure customers in. Once malicious applications
have been installed on a user's device, harmful actions like
data modification or deletion are possible. According to [7],
[8] and [9] collecting user information or sending SMS or
email without user authorization. To safeguard the privacy
and interests of Android users, it is therefore extremely
important to identify malware successfully. As described by
[10]. The ability to access third-party applications exposes
mobile devices to permission-based attacks.

The remainder of the paper is structured as follows:
the related works involve in this paper is discussed Section
2 and Section 3 introduced and discuss the detail about the
technique proposed. In Section 4, it discussed and shows the
results and evaluation. Section 5 summarization and suggest
ideas for further research.

2. Related Works

Mobile malware detection techniques, according
to [11], [12] and [13], are comparable to desktop
environments where they may be divided into three primary
categories: signature-based detection, anomaly-based
detection, and specification-based detection. The signature-
based detection method matches malware feature patterns
to rules-based malware pattern patterns in the database. Any
activity that differs from the typical profile behaviour is

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

390

examined using an anomaly-based detection approach. The
specification-based detection method, meanwhile, derives
from anomaly-based detection and includes a training step
when users are taught the anticipated behaviour of the
application or system under scrutiny. Anomaly-based and
specification-based detection, as stated by [14], may
identify unknown malware, but they take a long time and
have a high false-positive rate. In contrast, a signature-
based assault has a low percentage of false positives and
produces excellent accuracy for known malware. The
feature vectors derived from malicious programs determine
the accuracy of the signature-based detection method. As a
result, it has emerged as a crucial stage in malware detection
for efficiently extracting a crucial characteristic.

In this study, the ideas of Venn Diagrams are
introduced, and the Intersection technique, permission-
based feature extraction, and intent-based feature extraction
are proposed. The intersection technique involves creating
a feature vector including features for permissions and
intents, which is then subjected to feature tuning before
being selected as a feature. These feature vectors will be
used in a classification procedure to assess the proposed
approach [15]. According to the experimental findings, the
Intersection Technique of Permission and Intent Feature
performed better than other approaches and could reach
high accuracy based on our data set.

The use of Venn diagrams to find and overlap area
is not uncommon in another research field. The Venn
Diagram is popular in genetic research. It is proven by [16],
where they use the Venn Diagram to find gene sets that
describe particular processes using these cross-comparisons
by layered gene lists from several pair-wise experimental
contrasts. Besides, [17] implement a Venn diagram-based
analytic approach that selects genes from experiments using
network propagation on protein-protein interaction
networks. According to [18], they applied the Venn
Diagram to find common gene from various platform that
consists of thousands of genes. Meanwhile,

Android had built a permission-based paradigm in
order to prevent an application from accessing system-
sensitive resources. According to [19], in order to access
sensitive resources, application developers must clearly
specify their request in the Android Manifest File.
Consistent with [20], an Android application with restricted
access employs a permission mechanism to access mobile
critical resources. For instance, an application has to ask for
Android.permission in order to send messages using an
SMS application. During installation, SEND SMS is sent
from the mobile device.

In addition to permission, it also depends on other
elements like accessing system resources intents [21]. As
mentioned by [22], the requester's activity is described in
the requester's intent, which serves as a communication tool.
In contrast, intent, according to [23] is a request from an
application to carry out a certain activity. Explicit and

implicit intent are the two categories of intent. As stated in
[24], asserts that an explicit intent component can be started
by requesting a particular receiver name, such as the names
of classes. Thus, the system is aware of just which
application to ask for. While implicit intent asks for generic
action to be taken, this intent is used by developers to launch
an activity or service in their application. This intent will be
handled by other components that can carry out such
activities. For instance, an application can utilise an implicit
intent (Android.intent.action.DIAL) to launch a dialer
activity if it wishes to make a phone call. However, the
system will prompt users to choose whether to install
additional dialer applications.

Based on [25], the permission-based paradigm is
continually vulnerable to security concerns such
permissions leaking to take advantage of mobile devices'
weaknesses. Permission escalation, in accordance with [26],
permits malware to access sensitive resources without
permission. On the contrary stated by [27] malware will
often declare many permissions in order to complete its
purpose, hence over-claimed permissions are used to get
around permission-based detection mechanisms. If too
many rights are claimed, hostile applications may seek
access to personal user data in attacks that include
permission escalation. Few studies have been done on
android intents, despite major study being done to examine
the permission model and Intent functionality for
identifying mobile malware.

The goal of this study is to use the integration of
permission and intent characteristics to defeat the
permission-based attack. However, too many sub-features
are generated by the Permission and Intent usage, which has
an impact on accuracy and false-positive rate. The goal of
the suggested approach is to produce the ideal amount of
features from permission and intent while simultaneously
ensuring an improvement in accuracy rate and a decrease in
false-positive rate.

Users of the Android operating system have the
freedom of being able to install applications from the third-
party market. Android devices are secured via a permission-
based architecture that limits third-party applications'
access to critical resources, such short messaging system
databases and external storage, in order to ensure the user's
safety. However, mobile malware still poses a concern via
misuse of permissions.

Static characteristics have been employed as part of
several detection techniques. as an analogy, to identify
Android malware, [25], [28], [29], [30], [31], [32], [33] and
[34] employed permissions, intents, or a combination of
manifest file components.

As claimed by [35], The misuse of permission may
result in catastrophic security breaches, therefore the
permission induced attack is one of the most frequent and
dangerous vulnerabilities that puts Android users in peril. It
explains four types of permission-induced attacks: passive

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

391

data leak, identical custom permission, unsafe
pendingIntent, and privilege escalation. According to [29],
which provides evidence in support of this claim,
application developers may seek or define unauthorized
privileges, leading to overprivileged programs, since there
is a dearth of reliable permission data.

As mentioned by [36], they introduced a behaviour
detection approach based on the Latent Semantic Indexing
concept in accordance with. By selecting which permission
category to match from and then analysing behaviors in an
emulation environment, the suggested technique sought to
find anomalous Android applications. Both static and
dynamic analysis is used by them. Latent Semantic
Indexing will be used to retrieve data during the static phase.
Obtaining a list of applications that are comparable is the
aim of this method. In the meanwhile, they used dynamic
analysis to check the projected behaviors of the permission
list by looking at the invokes functions.

They suggest identifying cooperating programs as
well as unidentified malicious applications since
permissions and intents enable application collusion, as
noted in [37]. Applications are categorized by the proposed
malware detection system based on particular permissions
and intents that are only present in malware. Use of
ensemble methods optimizes the classification results.

Despite the fact that many signature-based
detection systems use static features, and it is effectively
increased the accuracy, nevertheless it generates a
considerable number of false alarm and number of \features.
The introduce technique in this paper is to resolve the
problems.

3. Proposed Intersection Features Technique

Permission and intent are static features, as stated by
[38]. Both features are important in distinguishing between
applications that are malicious and those that are benign. In
this research, we applied static analysis by reverse
engineering the process to extract the features from
application. Static analysis, as describe by [39], leverages
the resources of the program to identify it as malicious or
benign while examining it without running it. The datasets
utilized in this study are from the University of New
Brunswick (Abdul Kadir et al., 2015) and they contain 2909
Android malware programs from 14 distinct families that
have existed between 2010 and 2019.

The Intersection Technique consists of several stages
to generate quality and optimal number of features. There
are four stages in the Intersection Technique: Feature
Extraction, Feature Vector, Feature Tuning and Feature
Selection. The details will discuss below. The details of the
stages will discuss in the subsection.

3.1. Feature Extraction

Mobile devices running Android use the .APK file
type to download and install applications. The Android
application files were disassembled into a readable format
using the ApkTool (iBotPeaches, 2019), which produced
dex files, manifest.xml files, and smali files. The ApkTool
Command example is shown in Fig. 1.

Fig.1 Example of ApkTool Command

Fig. 1 shows the example of Apktool and the

command use to decompile the file in an application. The
manifest file, where the developer specifies the request,
Permission, and Intent filters used in the application, is the
subject of concern [22].

Fig.2 Example of Manifest File

Fig. 2 shows the example of Permission and Intent

features extracted in this stage. There are 150 manifest files
generated from 150 malicious Android applications. The
extracted Permissions and Intent were matched with

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

392

standard Permission and Intent release by Android system
using string similarity method, and the additionally
extracted sub features also recorded. The equation shown in
Eq.1 where if extracted Permission and Intent features exist,
it denoted as 0 for the nonexistence of the feature. Let R be
a vector containing a set of 466 Android features consist of
Permission and Intent features. For every ith application in
the Android application dataset (malware and benign),

Ri = {r1, r2, r3,…rj} and

j
 1, If feature jth

exist

0, otherwise

 (1)

Based on The Eq.1, in this stage, all identified
features from an application will be labelled as 1, while the
unused features will be labelled as 0. The result of this phase
will be used in the feature vector phase.

3.2. Feature Vector

This stage will create a comma-separated value
(CSV) file from the binary value of an extracted feature
from Permission and Intent. The vector's final result was 1
or 0, indicating the presence of malware or benign
application. [40]. Fig. 4 shows the example of feature
vectors result.

0, 0, 1, 1, 0, 0, …. 1

Fig.4 Feature vector

 3.4. Feature Tuning
When two or more features from different feature

sets that go through the same procedure intersect, an
Intersection Feature is formed. For example, two features,
sendTextMessage API function and SEND SMS
Permission, go through the same process, and intersect,
resulting in the creation of an Intersection Feature
containing these two features. The detection system can
benefit from features in the Intersection Feature. Table 1
shows the concept of Intersection Feature.

In the same Intersection, features are included.
Features may alter one other's feature values. Malware, for
example, can get around the Permission-based detection
process by not requesting the SEND_SMS permission. As
a result, the value of this permission in the malware feature
vector was 0. Even yet, if malware used the
sendTextMessage API Call method, the SEND_SMS
Permission value was set to 1. Fig. 5 illustrates the concept.

Fig.5 Demonstrated of Feature Intersection

diagram

Fig. 5 depicts the Venn Diagram of the Intersection

Feature method proposal, which consists of the intersection
of two feature sets that share the same resource: Permission
and Intent. A resource is a process that occurs on a
smartphone, such as dialling a phone number, sending an
SMS, watching a movie, and so on. Based in Fig. 5, the
application request to make a call activity. So, both
permission and Intent will access to the same resources to
complete the activity. The activity will be the key to find
the intersection of the features.

Based on [41], asserts that some features offer
extremely good discrimination. However, the selection of
features during the feature selection step will be impacted
by the dataset's few apps' requests for it. Enhancing the
quality of features is the aim of feature tuning. The removal
of unused additional features and the alteration of feature
values within the same Intersection feature make up this
phase's two parts. Table 1 shows the example of Intersection
Features between Permission and Intent.

Table 1: Example Permission and Intent from The Same

Activity
Permission Intent

read_phone_contacts Action.phone_state

Send_sms Action.sendto

call_phone Action_call

Access_wifi_state Connectivity_change

Fig.6 Pseudocode of Changing Permission Value Based

on Intent Value

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

393

Fig.6 and and Fig.7 shows the pseudocode
implementation of the Intersection Technique Fig. 5
shows the pseudocode of changing permission value based
on intent value. Only features that use the same resources,
like Table 1, are impacted by the changing value. The
permission value is equal to 1 for each specified Intent
value of 1.

Fig.7 Removing extra features infrequently used

The pseudocode to eliminate unused features is

shown in Fig. 6. If each feature's value, Si, is below the
threshold, S0, the features will be eliminated. This is due to
the fact that some Permissions and Intent features were
developed alone by their developer and that their feature's
name may have been misspelt in some applications. The
features that will be employed in the next phases will be
determined at this decisive phase. Furthermore, not all
malicious applications will use the same features, but
employing a large number of samples in an experiment can
assist to identify the features that malware most frequently
requests.

3.5. Feature Selection

The subset selection of critical characteristics is
the aim of the feature selection step. Feature selection is a
process to get a subset from an original feature that chooses
the pertinent characteristics of the dataset, according to [42].
Supported by [43], feature selection poses a serious problem
in classification since it may have an impact on accuracy
result. The feature selection helps reduce the dataset's
number of features and helps to use less memory and CPU.
Gain Ration, Chi-Square, and Information Gain were three
types of feature selection algorithms that were taken into
account in this study to assess how well the Intersection
Technique worked. As stated by [44], Gain Ratio, Chi-
square Information Gain algorithm gives a great
performance. Additionally, as confirmed by [45],
Information Gain offers consistent performance for a set of
features, whereas Gain Ratio exhibits superior results for

the selection of a sizable number of sensitive features.
Furthermore, [46] demonstrated that Chi-Square generates
good accuracy with less features. Chi-Square was thus
employed in this research as the feature selection approach.
Only high-quality features will be chosen during the feature
selection step since the unusable features in the prior
process were discarded.

4. Results and Discussions

The purpose of this research is to find whether the
generated optimal number of features proposed by
Intersection Technique will increase the accuracy detection
results and lower the false alarm result. In order to fit the
purpose, several evaluation metrics are modified to serve
the objective of evaluating the success of the intersection
feature technique. The measures for assessment and the
findings are explained in this section.

4.1. Evaluation Metrics

In order to evaluate the detection method, several
evaluation metrics were used.

•True Positive (TP): number of malicious applications
precisely classified as positive.
•False Positive (FP): number of benign applications
falsely classified as positive.
•False Negative (FN): number of malicious applications
falsely classified as negative.
•True Negative (TN): number of benign applications
precisely classified as negative.

 (2)

4.2. Evaluation Results
The results of the proposed technique's

implementation are highlighted in this section. Two
scenarios have been created in order to assess the improved
performance while employing Permission and Intent
features which are classification result before feature tuning
and classification result after feature tuning.

To determine the effectiveness of the feature
intersection technique, the SVM classifier was used in the
classification phase on the created dataset. Table 2 displays
the accuracy and false positive attained by applying feature

False
Positive=

FP

FP+TN

Accuracy=
TP+TN

TN+FN+TP-FP

Recall= TP

 FN+TP

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

394

tuning to the Permission feature and the Intent feature in
two separate classification methods.

Table 2. Effectiveness Result of Intersection Technique

 With Intersection
Feature (%)

Without Intersection
Feature (%)

Accuracy 94.8 86
False Positive 0.07 0.18

In Table 2, the accuracy of classification for

Intersection Feature is higher than without using the
proposed technique. The experiment has been done three
times. The showing result in Table 2 is the mean results of
Accuracy and False Positive Value. The technique also
achieves to reduce the false-positive rate to 0.07. The lowest
false positive results and the highest accuracy result prove
the effectiveness of the Feature Intersection Technique.

An independent samples T-test was used to
compare the mean accuracy (ACC) score of Without
Intersection Feature (n=3) and With Intersection Feature
(n=3). Levene’s test was significant; thus, an equal variance
assumed for both groups. As P value= 0.001 (Sig. 2 tailed
value) is less than 0.05, t test is statistically significant. So,
we managed to reject the null hypothesis. Therefore, there
is significant difference in average accuracy (ACC) exists
between Without Intersection Feature and With Intersection
Feature. So, we can conclude that average accuracy (ACC)
of Without Intersection feature and With Intersection
Feature are statistically significant.

4. Conclusion and Future Work

Compared to other forms of Android malware, the Android
botnet poses a major threat to smartphone users. Numerous
Android malware detection techniques are put into place
based on earlier studies without taking into account diverse
feature set circumstances. Additionally, the majority of
detection methods just employ basic Android botnet
characteristics without taking into account their unique
traits. As a consequence, the Android botnet is able to avoid
most suggested techniques. The Intersection Features
technique is suggested in this work while taking into
account various Permissions and Intent features. Some
intersection characteristics' values are changed by the
proposed technique. As a result, the accuracy rate rises to
94.8 percent and the false positive rate reduces from 1.8 to
0.07. Concurrently, the main objective to generate optimal
number of features has been achieved where the number of
features has decreased from a total of 486 features to 17.

For future research, features from dynamic
analysis such as system call should be applied to achieve
better performance and increase detection accuracy.
Although this technique is achieved excellence results,

however the number of malicious application samples
during experiment also play a major role. This experiment
was done using 150 samples from the same sources’ dataset,
but in the future more samples will be collected from
various sources to distinguish mobile malware features.

Acknowledgments

We want to express our appreciation to the Universiti
Teknikal Malaysia Melaka (UTeM) for their constant
support in getting the authors to publish this work.

References
[1] StatCounter, “Mobile Operating System Market Share

Worldwide,” StatCounter, 2021. .
[2] W. J. Buchanan, S. Chiale, and R. Macfarlane, “A

methodology for the security evaluation within third-
party Android Marketplaces,” Digit. Investig., vol. 23, pp.
88–98, 2017.

[3] F. Martinelli, F. Mercaldo, V. Nardone, A. Santone, and
C. A. Visaggio, “Identifying mobile repackaged
applications through formal methods,” ICISSP 2017 -
Proc. 3rd Int. Conf. Inf. Syst. Secur. Priv., vol. 2017-
Janua, no. Icissp, pp. 673–682, 2017.

[4] S. Kandukuru and R. M. Sharma, “Android malicious
application detection using permission vector and
network traffic analysis,” 2017 2nd Int. Conf. Converg.
Technol. I2CT 2017, vol. 2017-Janua, pp. 1126–1132,
2017.

[5] J. Duarte, “A Survey of Android Attacks Detection
Techniques,” in Digital Privacy and Security Conference
(DPSC), 2020, no. February, pp. 106–117.

[6] C. Chen, J. Lin, and G.-H. Lai, “Detecting Mobile
Application Malicious Behaviors Based on Data Flow of
Source Code,” in International Conference on
Trustworthy Systems and their Applications Detecting,
2014, pp. 1–6.

[7] W. Wang, Z. Gao, M. Zhao, Y. Li, J. Liu, and X. Zhang,
“DroidEnsemble: Detecting Android Malicious
Applications with Ensemble of String and Structural
Static Features,” IEEE Access, vol. 6, no. c, pp. 31798–
31807, 2018.

[8] G. Kirubavathi and R. Anitha, “Structural analysis and
detection of android botnets using machine learning
techniques,” Int. J. Inf. Secur., vol. 17, no. 2, pp. 153–167,
2018.

[9] P. Feng, J. MA, C. SUN, X. XU1, and Y. MA, “A Novel
Dynamic Android Malware Detection System With
Ensemble Learning,” IEEE Trans. JOURNALS, vol. 4, no.
c, 2018.

[10] F. M. Faqiry, “Scrutinizing Permission Based Attack on
Android Os Platform Devices,” Int. J. Adv. Res. Comput.
Sci., vol. 8, no. 7, pp. 421–426, 2017.

[11] V. Kouliaridis, G. Kambourakis, D. Geneiatakis, and N.
Potha, “Two anatomists are better than one-Dual-level
android malware detection,” Symmetry (Basel)., vol. 12,
no. 7, pp. 1–21, 2020.

[12] M. Al Ali, D. Svetinovic, Z. Aung, and S. Lukman,
“Malware Detection in Android Mobile Platform using

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

395

Machine Learning Algorithms,” in International
Conference on Infocom Technologies and Unmanned
Systems (Trends and Future Directions) (ICTUS), 2017,
pp. 4–9.

[13] P. Yan and Z. Yan, “A survey on dynamic mobile
malware detection,” Softw. Qual. J., vol. 26, no. 3, pp. 1–
31, 2017.

[14] A. K. Chakravarty and S. Paul, “A study of signature-
based and behaviour-based malware detection
approaches,” Int. J. Adv. Res. Ideas Innov. Technol. ISSN,
vol. 5, no. 3, pp. 1509–1511, 2019.

[15] D. Ö. Şahin, O. E. Kural, S. Akleylek, and E. Kılıç, “A
novel permission-based Android malware detection
system using feature selection based on linear regression,”
Neural Comput. Appl., vol. 1, p. 5875, 2021.

[16] P. Wijesekera, A. Baokar, L. Tsai, and J. Reardon, “The
Feasibility of Dynamically Granted Permissions:
Aligning Mobile Privacy with User Preferences,” Proc. -
IEEE Symp. Secur. Priv., pp. 1077–1093, 2017.

[17] Z. Abdullah and M. M. Saudi, “RAPID-Risk Assessment
of Android Permission and Application Programming
Interface (API) Call for Android Botnet,” no. October,
2018.

[18] H. Bagheri, E. Kang, S. Malek, and D. Jackson, “A
formal approach for detection of security flaws in the
android permission system,” Form. Asp. Comput., vol. 30,
no. 5, pp. 525–544, 2018.

[19] B. F. Demissie, M. Ceccato, and L. K. Shar, “Security
analysis of permission re-delegation vulnerabilities in
Android apps,” Empir. Softw. Eng., vol. 25, no. 6, pp.
5084–5136, 2020.

[20] M. W. Afridi, T. Ali, T. Alghamdi, T. Ali, and M. Yasar,
“Android application behavioral analysis through intent
monitoring,” in International Symposium on Digital
Forensic and Security, ISDFS 2018, 2018, vol. 6, pp. 1–
8.

[21] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil,
and S. Furnell, “AndroDialysis: Analysis of Android
Intent Effectiveness in Malware Detection,” Comput.
Secur., vol. 65, no., pp. 121–134, 2017.

[22] R. Chang et al., “Towards a multilayered permission-
based access control for extending Android security,”
Concurr. Comput., vol. 30, no. 5, 2018.

[23] L. Shi, J. Fu, Z. Guo, and J. Ming, “‘Jekyll and hyde’ is
risky: Shared-everything threat mitigation in dual-
instance apps∗,” in MobiSys 2019 - Proceedings of the
17th Annual International Conference on Mobile Systems,
Applications, and Services, 2019, pp. 225–235.

[24] S. Kumar, R. Shanker, and S. Verma, “Context aware
dynamic permission model: A retrospect of privacy and
security in android system,” in Proceedings - 2nd
International Conference on Intelligent Circuits and
Systems, ICICS 2018, 2018, pp. 330–333.

[25] J. Xiao, S. Chen, Q. He, Z. Feng, and X. Xue, “An
Android application risk evaluation framework based on
minimum permission set identification,” J. Syst. Softw.,
vol. 163, p. 110533, 2020.

[26] R. Kumar, X. Zhang, R. Khan, and A. Sharif, “Research
on Data Mining of Permission-Induced Risk for Android
IoT Devices,” Appl. Sci., vol. 9, no. 2, p. 277, 2019.

[27] A. Bhattacharya and R. T. Goswami, “A Hybrid

Community Based Rough Set Feature Selection
Technique in Android Malware Detection,” in Smart
Trends in Systems, Security and Sustainability., 2018, no.
18, pp. 249–258.

[28] C. La, P. Myo, and K. M. Myo, “Permission-based
Feature Selection for Android Malware Detection and
Analysis,” Int. J. Comput. Appl., vol. 181, no. 19, pp. 29–
39, 2018.

[29] M. Hammad, H. Bagheri, and S. Malek, “DELDROID:
An automated approach for determination and
enforcement of least-privilege architecture in android,” J.
Syst. Softw., vol. 149, pp. 83–100, 2019.

[30] W. Y. Lee, J. Saxe, and R. Harang, “SeqDroid:
Obfuscated android malware detection using stacked
convolutional and recurrent neural networks,” Adv. Sci.
Technol. Secur. Appl., pp. 197–210, 2019.

[31] M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, and T. Liu,
“DAPASA: Detecting Android Piggybacked Apps
Through Sensitive Subgraph Analysis,” IEEE Trans. Inf.
Forensics Secur., vol. 12, no. 8, pp. 1772–1785, 2017.

[32] A. Sadeghi, R. Jabbarvand, N. Ghorbani, H. Bagheri, and
S. Malek, “A temporal permission analysis and
enforcement framework for Android,” in Proceedings of
the 40th International Conference on Software
Engineering - ICSE ’18, 2018, pp. 846–857.

[33] H. Shahriar and M. Islam, “Android Malware Detection
Using Permission Analysis,” IEEE Conf. Proc., vol. 2017,
no. SoutheastCon, pp. 1–6, 2017.

[34] F. I. Abro, M. Rajarajana, and T. Chen, “Mobile Malware
detection with permissions and intents analysis,” p. 2014,
2014.

[35] M. Yusof, M. M. Saudi, and F. Ridzuan, “A new mobile
botnet classification based on permission and API calls,”
in Proceedings - 2017 7th International Conference on
Emerging Security Technologies, EST 2017, 2017, pp.
122–127.

[36] A. Talha and I. Alper, “An in-depth analysis of Android
malware using hybrid techniques,” Digit. Investig., vol.
24, pp. 25–33, 2018.

[37] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “Improving
Dynamic Analysis of Android Apps Using Hybrid Test
Input Generation,” in International Conference On Cyber
Security And Protection Of Digital Services, 2017, pp. 1–
8.

[38] C. Wang and Y. Lan, “PFESG : Permission-based
Android Malware Feature Extraction Algorithm,” in
ICNCC 2017: Proceedings of the 2017 VI International
Conference on Network, Communication and Computing,
2017, pp. 106–109.

[39] J. Cai, J. Luo, S. Wang, and S. Yang, “Feature selection
in machine learning: A new perspective,”
Neurocomputing, vol. 300, pp. 70–79, 2018.

[40] E. M. Karabulut, S. A. Özel, and T. İbrikçi, “A
comparative study on the effect of feature selection on
classification accuracy,” Procedia Technol., vol. 1, pp.
323–327, 2012.

[41] A. Sharma and S. Dey, “Performance Investigation of
Feature Selection Methods and Sentiment Lexicons for
Sentiment Analysis,” Int. J. Comput. Appl., no. June, pp.
15–20, 2012.

[42] R. Kaur and M. Sachdeva, “Study and Comparison of

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

396

Feature Selection Approaches for Intrusion Detection,” in
Proceedings on International Conference on Advances in
Emerging Technology, 2016, vol. 2, pp. 1–7.

[43] X. Liu and J. Liu, “A two-layered permission-based
android malware detection scheme,” Proc. - 2nd IEEE Int.
Conf. Mob. Cloud Comput. Serv. Eng. MobileCloud, pp.
142–148, 2014.

 Najiahtul Syafiqah Ismail, currently
pursuing her PhD degree in the
Faculty of Information and
Communication Technology,
University Technical Melaka (UTeM).
She received a BSc (Hons) in
Computer Science and the MSc in
Information Technology from
University Technical Malaysia
Melaka (UTeM). Her research

interests include computer networking, computer security and
mobile security.

 Robiah Yusof, currently a Senior
Lecturer in the Universiti Teknikal
Malaysia Melaka (UTeM). She
received the BSc (Hons) of Computer
Studies and Master of Information
Technology from Liverpool John
Moore’s University, UK and
Universiti Kebangsaan Malaysia,
respectively. She obtained the Doctor

of Philosophy, Network Security from Universiti Teknikal
Malaysia Melaka (UTeM). Her research interests include network
security, computer system security, and network design.

 Mohd Faizal Abdollah currently
working as a Senior Lecturer in the
Department of Computer and
Communication System, Faculty of
Information and Communication
Technology, University Technical
Malaysia Melaka (UTeM). He
obtained his Master and bachelor’s
degree from University Kebangsaan
Malaysia and University Utara

Malaysia. He achieved his PhD from University Technical
Malaysia Melaka in Computer and Network Security. Formerly,
he worked as an MIS Executive at EON Berhad, Selangor and as
a System Engineer in Multimedia University, Melaka, for six years.
His interest is mainly in network and wireless technology &
network and wireless security.

