
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

427

Manuscript received July 5, 2022
Manuscript revised July 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.7.53

Audio Steganography Method Using Least Significant Bit (LSB)
Encoding Technique

Alaa Abdulsalm Alarood1, Ahmed Mohammed Alghamdi2, Ahmed Omar Alzahrani3,
Abdulrahman Alzahrani4 and Eesa Alsolami5

1 College of Computer Science and Engineering, University of Jeddah, Jeddah 21959, Saudi Arabia;
alaa.alarood@gmail.com, aasoleman@uj.edu.sa

2Department of Software Engineering, College of Computer Science and Engineering,
University of Jeddah, Jeddah 21493, Saudi Arabia

3College of Computer Science and Engineering, University of Jeddah, 21959, Jeddah, Saudi Arabia: aoalzahrani@uj.edu.sa.
4College of Computer Science and Engineering, University of Jeddah, Jeddah 21493, Saudi Arabia

5 Department of Cyber Security, College of Computer Science and Engineering, University of Jeddah, 21959 Jeddah,
Saudi Arabia

*Correspondence: Alaa Alarood alaa.alarood@gmail.com, aasoleman@uj.edu.sa.

Summary
MP3 is one of the most widely used file formats for encoding and
representing audio data. One of the reasons for this popularity is
their significant ability to reduce audio file sizes in comparison to
other encoding techniques. Additionally, other reasons also
include ease of implementation, its availability and good technical
support. Steganography is the art of shielding the communication
between two parties from the eyes of attackers. In steganography,
a secret message in the form of a copyright mark, concealed
communication, or serial number can be embedded in an
innocuous file (e.g., computer code, video film, or audio
recording), making it impossible for the wrong party to access the
hidden message during the exchange of data. This paper describes
a new steganography algorithm for encoding secret messages in
MP3 audio files using an improved least significant bit (LSB)
technique with high embedding capacity. Test results obtained
shows that the efficiency of this technique is higher compared to
other LSB techniques.
Keywords:
Steganography; Least Significant Bit (LSB); MP3.

1. Introduction

The introduction should broadly describe the study,
while also highlighting its significant worth. Also, the
introduction should identify the purpose and significance of
the study. A well thought-out review of the present research
state should be presented, along with citations of main key
publications. The controversial and diverging hypotheses
should also be presented as needed. The research aim
should be mentioned in brief, while the main conclusions
are stated. It is important that the introduction is presented
in a manner that is intelligible to readers from different
research domain. As for references, they must be numbered
in order of appearance and noted by a numeral or numerals

in square brackets—e.g., [1] or [2, 3], or [4–6]. Refer to the
end of the document for more details.

Safety is a crucial element because it assures
confidentiality of the transferred information. Owing to this
safety concern, a number of methods have been established
for the purpose of ensuring message confidentiality.
However, preserving the secrecy of message contents may
no longer be sufficient as keeping the very existence of the
message secret may be required. This necessity has led to
the use of steganography. Steganography is a blend of two
words in Greek language namely “stéganos” which carries
the meaning of covered or secret and “graphy” which
carries the meaning of writing or drawing. As such, literally,
steganography carries the meaning of “covered writing.”
Steganalysis is the process of detecting steganographic
content. In other words, the goal of steganalysis is to detect
and/or estimate the eventual hidden data. The art of
steganalysis makes a major contribution to the selection of
features or characteristics that might be shown by Stego-
objects. Moreover, the science may provide assistance in
consistently testing the features chosen for the existence of
hidden information [1].
The general aim of steganography, as indicated by Kim et
al. (2014), is to shield the communication that takes place
between two parties from the eyes of attackers. In
steganography application, a secret message in the form of
a copyright mark, concealed communication, or serial
number can be embedded in an innocuous file (e.g.
computer code, video film, or audio recording), impeding
the wrong party from accessing the concealed message
during the exchange of data. Kim et al. (2014) described a
cover message incorporating a secret image as a stego-
object. Following the exchange of data, both the receiver
and the sender should destroy the cover message to prevent

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

428

accidental reuse. Figure 1 presents the fundamental model
of a steganographic system [2].

From this section, input the body of your manuscript
according to the constitution that you had. For detailed
information for authors, please refer to [1].

Embedding

Extracting

Stego‐Object

Massage

Key

Key

Cover

Massage

Figure 1 Basic model of steganography.

Hiding data requires an embedding algorithm and an
extracting algorithm, whereby embedding algorithm
conceals secret messages within a cover message. Here, a
key word is used to protect the process of embedding. This
ensures that the hidden message would be accessible to only
those with the secret key word. Meanwhile, extracting
algorithm is applied on a feasibly modified carrier and
brings back the concealed secret message [2].
In audio data encoding and representation, MP3 is among
the most commonly used file formats [3]. Such popularity
of MP3, which is an acronym for Moving Picture Experts
Group MPEG-1 Audio Layer 3 [4], has been factored by
their significant ability in decreasing audio file sizes as
opposed to other techniques of encoding.

The main strengths of MP3 format include its efficiency
and effectiveness in reducing the size of audio file while
maintaining quality. This has many benefits, such as
reducing the disk space needed to store audio files, which
has a great impact in reducing the amount of time needed to
share and transfer such files. However, MP3 loses some
data during the compression process. In fact, it was
reported by a number of experts, who listened to MP3
sample files, that there is a slight difference between the
coded and original audio tracks [5]. There have been many
attempts to solve this problem, and one suggestion was to
use MPEG algorithms that can reduce data loss during
compression, thus moving towards lossless compression.
Away from the fact that MP3 compression loses data, there
are many reasons to consider MP3 as one of the most
popular audio compression technologies [6]. These include,
but are not limited to, the following:

Ease of implementation: As no single company owns
the MP3 is open to all (open standard) [6].

Availability: Many professionals prefer MP3 because of the
wide range of MP3 encoders and decoders available in the
market to meet their demands [3].
Support: Developments in computer technologies in general
(processing power), specifically in sound cards, the spread
of hardware such as CD-ROMs and CD-audio writers, and
the rising popularity of the internet have all contributed to
the increased distribution of audio files in MP3 format. In
other words, MP3 was introduced at just the right time [7].

2. Related Work

Encoding refers to the process of compressing the WAV
file by reducing the size of the original digital sound file so
that it takes up less space. An algorithm that optimizes
audio perception is used to maintain quality, and data that
do not contribute to this perception are lost.
Different MP3 encoders use one of the following bit rates:
CBR (Constant Bit Rate), VBR (Variable Bit Rate), and
ABR (Average Bit Rate) [8].

Basic encoders use CBR, whereby every frame uses
the exact bit rate in the audio data stream. This means that
there will be a fixed bit rate in the whole MP3 file, resulting
in variations in quality. The advantage of this mechanism
is the possibility to predict the size of the encoded file by
multiplying the song length by the bit rate [8].
When using the VBR technique, it is possible to maintain
quality while encoding, but the file size cannot be predicted.
ABR works by adding extra bits to parts of the audio file
that require an increase in quality; this approach enhances
quality significantly, while keeping the average file size
within predictable ranges. The next sections define and
discuss the MP3 file format and frame header

2.1. MP3 File Format

The encoding method determines the content of the
MP3 file. In general, any MP3 file consists of three
components: tags, padding bytes, and frames (see Figure 2).

Figure 2. MP3 file structure.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

429

Tags have two different formats, ID3v1 and ID3v2.
Between the two, ID3v1 is an old format that post-pends
128-bits at the end of the audio file in the form of seven
fields (genre, artist name, album, song title, and so on).
However, this format suffers from two main drawbacks:
lack of flexibility and static size. Therefore, ID3v2 has been
used as replacement as it is more flexible and has advanced
format [9]. ID3v2 allows the tag to be pre-pended to the
file. The ID3v2 frames could store data of various types,
such as the artist name, song title, encoding process, and
much more. This type of tag has two main advantages: an
unlimited setting size and the ability to provide hints for the
encoder [10].Additional data appended to the frame for
filling purposes in the encoding process are called padding
bytes. These bytes are only used in CBR to assure frames
of identical size [11]. Frames are made up of two main parts
namely audio data and a file header. These two parts are
discussed in more detail in the next section.

2.2. MP3 Frame Headers

In MP3 files, a series of bits are representative of the
header. These headers either commence with 0 or 1, where
1 means block synchronization (see Table 1) [12]. A frame
consists of a 12-bit stream correspondingly for 1s. It should
be noted that there is no unique frame for any specific
header. This means that a frame can be found in any longer
data block. In general, to recognize a 4-byte data block as
a header, certain conditions must be satisfied as follows [13]:

The Layer field cannot be 00
The Frequency field cannot be 11
The Bit-rate field cannot be 0000 or 1111

Table 1 MP3 frame header
Frame
Name

leng
th
(bits
)

Position(
bits)

Description

SYNC 12 (1-12) Frame sync (all bits must be set)
MPEG
version

2 (13,14) MPEG Audio version ID

MPEG
Layer

2 (15,16) Layer description

Protect
ion

1 (17) Protection bit
0 - Protected by CRC (16bit
CRC follows header)
1 - Not protected

Bitrate
index

3 (18,20)

bitra
te

singl
e
chan
nel

ster
eo

intens
ity
stereo

dual
chan
nel

96 yes Yes yes yes

128 yes Yes yes yes

192 yes Yes yes yes

256 no Yes yes yes

320 no Yes yes yes

Sampli
ng rate

2 (21,22) Sampling rate frequency index,
bits=00, MPEG1=44100 Hz

Paddin
g bit

1 (23) 0 - frame is not padded
1 - frame is padded with one
extra slot

Paddin
g bit

1 (24) This one is only informative.

Channe
l Mode

2 (25,26) 00 - Stereo
01 - Joint stereo (Stereo)
10 - Dual channel (2 mono
channels)
11 - Single channel (Mono)

Mode
extensi
on

2 (27,28) Only used in Joint stereo

Copyri
ght

1 (29) 0 - Audio is not copyrighted
1 - Audio is copyrighted

Origina
l

1 (30) 0 - Copy of original media
1 - Original media

Empha
sis

2 (31,32) Indication is here to tell the
decoder that the file must be de-
emphasized.

The frame size in the 4-byte block that begins with the

Sync and is in compliance with the above stipulations is not
always clear [10], and so it is better to determine the two
ends of the frame. This task should be easy, as all headers
have similar contents and structures. The equation below
can be used to find the frame size [13] [14].

Frame Size ሺFSሻ ൌ ଵସସ ൈ ୆୧୲୰ୟ୲ୣ

ୗୟ୫୮୪ୣ ୖୟ୲ୣ ା ୔ୟୢୢ୧୬୥

 (1)
Bit Rate: measured in bits per second.
Sample Rate: denotes the rate of sample of the original data.
Padding: denotes the additional data appended to the frame
to fully fill it during the encoding process [12].
In many cases, there will be some unemployed bits (fields).
Additionally, padding stuffing is available as well which
can help steganography designers in secret data embedding
process.

2.3. Steganography Categories

Steganography comes in three main types: pure
steganography, secret key steganography, and public key
steganography. Each is explained in the following sections.

2.3.1 Pure Steganography

Pure steganography has no requirement for the
preceding exchange of certain secret information, for
instance, a stego-key. The embedding process is
describable by the mapping E: C × M → C. Meanwhile, the
extraction process which includes secret message extraction
from a cover message is illustratable by the mapping D: C
→ M. Here, C denotes the set of probable covers, while M
denotes the set of probable messages namely │C│≥│M│.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

430

Embedding

Extracting

Massage Cover

Stego‐Object

Massage

Figure 3 Pure steganography.�

In pure steganography, only the sender and receiver are
allowed access to the employed algorithms during the
embedding and extraction processes [15]. In other words,
the public have no access. However, considering that the
sender and receiver depend only on the supposition that this
secret message is not known by other parties, it becomes a
drawback of this method; it lacks security. Pure
steganography is illustrated in Figure 3.

2.3.2 Secret Key Steganography

Secret key steganography involves the use of a secret
key (stego-key) to be exchanged before communication.
Employing this stego-key; secret key steganography
comprises the embedding of the secret message within a
cover message. Parties that have access to the secret key
can read the message.

Embedding

Extracting

Stego‐Object

Massage

Key

Key

Cover

Massage

Figure 4 Secret key steganography.

Secret key steganography involves a stego-key exchange;
this is different from pure steganography, which contains a
perceived invisible communication channel (the reason why
pure steganography is more prone to interception). In secret
key steganography, even when the cover message is
intercepted, only those parties with access to the secret key
are allowed access to the secret message [16]. This
becomes an advantage of secret key steganography. Figure

4 accordingly illustrates the process of secret key
steganography.

2.3.3 Public Key Steganography

Public key steganography is underpinned by the notion
of public key cryptography. This type of steganography
(public key steganography) involves the use of both public
key and private key in assuring that parties are in secure
communication. This method entails the use of public key
by sender during encoding process. To decipher the secret
message, the sender uses only a private key with a direct
mathematical linkage to the public key. Public key
steganography is more robust because it employs a
technology with greater level of robustness and that is well-
researched in the field of public key cryptography. Public
key steganography is also layered with multiple levels of
security. Therefore, the secret message is difficult to access;
many attempts have to be made to crack the employed
algorithm in the public key system, and only then, the secret
message can be intercepted [16]. Public key steganography
is illustrated in Figure 5.

Embedding

Extracting

Stego‐Object

Encryption Massage

Key

Massage

Key

Encryption

Massage

Cover

Decryption

Figure 5 Public key steganography.

However, the use of public key steganography increases
the complexity of the steganographic technique while
decreasing the size of the secret message to be embedded.
This is because the encryption algorithms cause the size of
the message to expand more than double its original size.
A new model for steganography will be constructed. This
model will have the capacity to embed text messages in
MP3 audio cover messages using a technique known as the
least significant bit (LSB).

2.4 Least Significant Bit (LSB)

Being the first and most straightforward technique, the
LSB method is utilized in the embedding of secret messages
into audio files or other file types. Using this method, the

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

431

audio file and the secret message are first transformed into
a bit stream, and then the secret message is embedded into
the audio file. The embedding is performed by swapping
the LSB of the audio with one (or more) bit of the secret
message before sending it to the receiver [17]. The secret
message is extracted by the receiver by accessing the
sequence of sample indices that are utilized during the
process of embedding. The amount of information that can
be embedded in the audio file is 1 kbps per kHz, which is
considered low. However, in steganography, the capacity
and robustness are crucial components. Wakiyama et al.
(2010) has in fact reported a significant improvement in
both capacity and robustness.

In order to increase the audio steganography capacity,
Kekre et al. (2010) proposed two algorithms that use LSB
techniques. In these algorithms, the message bits are
embedded into multiple and variable LSBs. The
aforementioned method comprises the use of up to seven
LSBs for data embedding. The first proposed algorithm
will examine the first two Most Significant Bits (MSBs) of
the cover samples. Here, the two MSB values in 4–7 LSBs
are used in the secret message embedding. This results in
the capacity increasing to 5.563 bits per sample from 4 bits
per sample. Moreover, the second algorithm extends the
first method by checking the MSB of the cover samples,
whereby, if it is 0, six LSBs were used, whereas, if it is 1,
seven LSBs were used for secret message embedding.
These algorithms increase the capacity to 6.574 bits per
sample [18].

The secret message should be encrypted prior to its
embedding into audio signals [19]. In the work of Ozighor
and Izegbu (2020), the higher bit indices replaced the
traditional LSB. This resolved the issue of robustness by
concealing the data from hackers and safely transmitting
them to the specified destination. This proposed method
does not alter the file size and is suitable for all audio file
formats. Moreover, the sound quality is dictated by the
user-selected audio quality and the message length. Some
trade-offs between the robustness, capacity, and
imperceptibility were highlighted by [22]. In relation to this
matter, Devaraj et al. (2009) mentioned that the trade-off
between noise acceptance and capacity is impacted by
higher bit indices, and this is necessary for a reasonably
imperceptible embedding [20].

The lifting scheme was proposed by Shahreza and
Shalmani in (2007) in the creation of perfect reconstruction
filter banks, namely, Int2lnt. This scheme can also
adaptively conceal data in the LSB of the details coefficient.
This reduces the error rate in wavelet domain
steganography. As reported by [21], this method generates
error-free outcomes with a capacity of less than 100 kbps
and up to 200 kbps.

2.5. Dataset

This research uses MP3 files as the carrier files. We
took 72 MP3 files with various ratios of compression, sizes,
genres, and sampling frequencies (320 kbps, 256 kbps, 196
kbps, 128 kbps, and 96 kbps) as the standard dataset [3].

3. The Proposed Method

The embedding process in steganography works by
moving bits from one place to another with the intention of
inserting additional bits into the carrier. For this study, the
carrier bits formed MP3 files, while the embedded bits were
from text files. During the embedding, different file formats
have different bit insertion methods, as different MP3 file
compression ratios were used in this study. The LSB
technique is the main embedding procedure. The
embedding process in this study is described below, and the
steps for pre-processing and embedding are as follows.

3.1. Acquisition of File Properties

The first step in this process is to read the MP3 file. This
function reads the MP3 file and takes its name and
extension as input arguments. Then, it reads the MP3 file
format and returns an output argument as the analogue value
of the audio samples only. This function also returns the
properties of the MP3 file, frequency of sampling, and
number of bits. The header and time frame are removed to
simplify the data structure and supply only meaningful data.
The next step is to read the text file to be embedded inside
the MP3 in order to generate the stego MP3 file.

Figure 6. Obtaining the parameters of an MP3 file.

The MP3 file parameters are measured and estimated.
This is to ascertain the data size and encoding necessary for
the embedding position. The embedding is initiated from a
random location inside the MP3 file. To obtain a random
location, the following steps are implemented:
Step 1: Select MP3 file for a hidden message to be
embedded.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

432

Step 2: Load the MP3 and gather file information such as
audio samples, MP3 properties, frequency of sampling,
number of bits, and sample rate.
Step 3: Calculate Irand, which specifies the random
location inside the MP3 file at which the embedding starts,
by the equation below:
 Irand = ceil(rand * fix(Espace/2))+200
Step 4: Espace is computed using the following equation,
where “r” denotes the number of samples in the MP3 file,
“rb*cb” denotes the size of the text message file, and “deg”
denotes the number of insertion bits. The equation is as
below:

Espace = r - rb*cb/deg – 200
Step 5: The “rand” function generates a random number in
the range 0–1.
Step 6: The result is a random starting location for the
embedding that ensures the end of insertion will be placed
within the MP3 file.

3.2. File Conversion

The digital handling of the text file involves the conversion
of all text data into digital format. In the process, first, the
text file is converted to ASCII. Here, the text data string
becomes the input argument and the ASCII code for each
character is returned. As an example:
>> double(“Aoun”)
ans = 65 111 117 110

This function generates result in decimal format, rather
than hexadecimal. Notably, the result does not have to be
converted into hexadecimal format, but should be converted
directly into binary format. For each character, it is
discretely converted to binary, and the binary conversion
results in a two-dimensional matrix as exemplified below:
Consider the string “Aoun”, where the row denotes the
character, while the column represents the binary code for a
specified character.
>> dec2bin(ans')
ans =
01000001
01101111
01110101
01101110

This process uses the following function to convert decimal
numbers to binary:

𝐁𝐝𝐢 ൌ 𝐫𝐞𝐦ሺ𝑫𝒅𝒊శ𝟏
𝟐

𝟐ሻ (2)

Where: Bdi denotes the binary digit index, Ddi+1 denotes
the result of decimal digit division, and “rem” denotes the
division remainder. The result is a two-dimensional matrix
of size R×8, where 8 denotes the number of bits for ASCII
character conversion to binary, while R denotes the number

of characters within the text file. R includes alphanumeric
characters as well as ASCII symbols such as space and
carriage return, as shown in Figure 6. The following steps
describe the overall process:
Step 1: Select the text files to be tested.
Step 2: Load text files that will be converted to digital.
Step 3: Convert to ASCII format using the following
function:
Double (‘text’)
Step 4: The single characters (decimal number) are
discretely converted to binary by the following:
 Bdi = rem (Ddi+1 /2)
 Where: Bdi signifies the binary digit index, Ddi+1
signifies the decimal digit division result, while “rem”
signifies the division remainder.
Step 5: Save the results in a two-dimensional array of size
R×8, where 8 is the number of bits in the binary, while R
represents the number of characters within the text file.

Figure 7. Converting a text file to ASCII.

The raw data for this research must be normalized to
prepare them for the final analysis. In some studies,
researchers have argued that working with raw data is more
suitable than working with normalized data, although other
researchers claimed that working with normalized data
enhances the accuracy of the model being tested. This
shows that there is no consensus over whether to use
normalized or raw data. However, in this research situation,
raw data in their original forms are analogue MP3 and text
coded files, and it is compulsory to transform them into
binary format and scale them down to a uniform format
suitable for processing by analytical tools. The
normalization procedure for this research is illustrated in
Figure 8. The MP3 files are read and expressed as analogue
values, and then each MP3 sample has a floating-point
value in the interval [−1, +1]. In theory, floating point
numbers are a rough calculation in digital systems. For this
reason, any processing of them will include an accrued error.
In order to manage this analogue value with a minimal error

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

433

which nears the value of zero, we normalize to a higher
value as follows:
𝐴௜ே ൌ ሺ𝐴௜ ൅ 1ሻ ∗ 106 (3)
where: AiN signifies the ith normalized sample of the audio
array A. Thereafter, the normalized samples are converted
into their corresponding binary format. In this regard, the
conversion function is identical to that carried out for text
conversion, and the steps are as follows:
Step 1: Select all MP3 files to be embedded.
Step 2: Load the MP3 files to be converted to digital.
Step 3: Convert each MP3 sample to an analogue value in
the interval [−1, +1] with floating point format using the
following function: Sprintf(each MP3 sample)
Step 4: Normalize the analogue value to a higher value by
multiplying it by 1×106 to minimize the error. Fsample =
mp3original(i,1) * 1000000.
Step 5: Convert the bit to an absolute value using the
following function:
 If (Fsample < 0)
 signA = 1;
 Fsample = -1 * Fsample;
 else
 signA = 0.
 end
Step 6: Convert the floating point numbers in the digital
system by the above process.
Step7: Convert the sample to the corresponding binary
format by the following algorithm:
 Btemp = dec2bin (Fsample).
 Step 8: Save the results in a one-dimensional array of size
R, where R represents the number of samples within the
MP3 file.

Figure 8. Converting an MP3 file to a bit stream.

3.3 Build Stego Bit Stream

Building a stego-object directly means undergoing a
steganographic process that hides a secret message in a
carrier file. This study continues from the previous step
(normalization). Once the audio data have been normalized
and converted to binary, whereas the text file is transformed
into ASCII and then binary, the data are set for the stego-
file formation. The procedure starts by embedding the
binary from the text into the binary representing the audio.
This technique of embedding is initiated from a random
location within the MP3 file. In this regard, it is necessary
that the embedded message is confined within its start
location and end location, whereby the former follows the
start signature or key, while the latter is just prior to the end
signature or key. There is also an avenue for multi-bit
insertion; therefore, the key should carry information
pertaining to the number of insertion bits. Table 2
summarizes the four signatures to be embedded at the start
and end of each and every message.

Table 2. Key or signatures

LSB Insertions key, signature

Single-Bit Insertion 10101010101010, 10101010101010

Two-Bit Insertion 01010101010101, 01010101010101

Three-Bit Insertion 10101010101010, 01010101010101

Four-Bit Insertion 01010101010101, 10101010101010

The exact signature is applied for the start and end of

the embedding, as shown for single-bit insertion. Thus, the
message is confined within the exact signature which
indicates the start and end of the message, along with the
number of insertion bits. Here, the insertion method simply
takes a bit or number of bits from the message data and
inserts it to the carrier data, as described in Table 2 for four-
bit insertion. Figure 9 shows the addition of keys or a
signature for single-bit insertion and four-bit insertion of a
secret message.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

434

Figure 9. Adding a signature to a text file.

The procedure in Figure 10 demonstrates how one bit and
two bits are inserted from the message to the carrier. The
process of insertion is carried out involving the least-
significant bit. By starting from the least significant bit, the
perceptible impact of the real digital value becomes
insignificant. Hence, the insertion will not result in any
defects and will not impact the original audio data as judged
by the individual who listens to the MP3 file.

Figure 10. Insertion of one and two bits.

The developed system includes four scenarios of
insertion in accordance with the number of bits. In this
regard, single-bit insertion, two-bit insertion, three-bit
insertion, and four-bit insertion can be implemented
according to the input arguments of the developed program.
Figure 9 displays the insertion of a single bit and two bits.
The scheme is unique, as this research ensures that the
insertion procedure continues until all bits of text data have
been inserted inside the digital carrier data of the audio MP3
file (see Figure 10). The following steps illustrate the
process:

Step 1: Select every MP3 and text file to be embedded.
Step 2: Load the MP3 and text files after converting them
into binary bits.
Step 3: Select a random location in the MP3 file to start
embedding the text file (see section 4.3.1).
Step 4: Add a signature or key at the beginning and end of
the text file, as shown in Table 2.
Step 5: Add the number of insertion bits (1, 2, or 4), as
shown in Figure 7.

Step 6: Examine the sizes of the MP3 and text files to start
the process of embedding.
Step 7: Start to replace the binary bits from the text in the
MP3 file.
Step 8: Upon completion of the embedding process, obtain
the bit steam.

Figure 10. Replacing bits in the carrier file.

3.4. Converting a Bit Stream to an MP3 Stego-Object

This process begins when all of the binary samples of
text have been inserted into the carrier file; this is actually
the MP3 stego-object, which is now converted to an MP3
format file. To perform the inverse process in the post-
processing phases, the digital selection representing the
MP3 stego-object is first converted to decimal. The entire
inverse process is carried out according to:
𝐷𝑑 ൌ ∑𝑏௜ ∗ 2௜ (4)
where: Dd signifies the decimal digit given by conversion,
bi signifies the ith binary bit value, and i signifies the index
of the binary bit. The index i takes values from 0–22. As
such, the maximum normalized decimal number is 2×106.
Therefore, the maximum value of i is 22.
The resulting decimal data are normalized following the
aforementioned process of normalization. For this reason,
de-normalization needs to be carried out to obtain the

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

435

original analogue audio format. This is carried out
according to:
𝐴௜ ൌ ሺ𝐴௜ே ∗ 10ି଺ሻ െ 1 (5)
where: Ai is the de-normalized analogue audio sample and
AiN is the normalized analogue sample, which now
becomes a stego sample. The following steps illustrate the
process:
Step 1: For each MP3, convert to a bit stream and insert text.
Step 2: Convert bits to decimal using the following equation:
 Dtemp = bin2dec(Btemp)
Step 3: De-normalize bits by the following equation:
 Dtemp = bin2dec(Btemp) / 1000000;
Step 4: Convert bits to an absolute value by the following
procedure:
 If (signA == 1)
 Dtemp = -1 * Dtemp;
 Else
 Dtemp = Dtemp;
 End
Step 5: Convert floating point numbers in the digital system
by the above process.
Step 6: Recover the original analogue MP3 format.
Step 7: Save the MP3 stego-object under a new file.

Figure 10 explains the process of the LSB embedding
technique used to build MP3 stego-objects, including the
transformation of MP3 and text files, normalization of MP3
samples, and embedding of text bits into MP3 file. The
inverse process is described by the following steps:
Step 1: Select all MP3 files to be embedded.
Step 2: Read the MP3 files.
Step 3: Read the text message files.
Step 4: Check the size of the MP3 and text message; if it
could be embedded, go to Step 5: otherwise, stop and output:
Audio file size is less than that required for the text file.
Step 5: Select random start location in the MP3 file.
Step 6: Select the character message.
Step 7: Convert ASCII text into binary.
Step 8: Select a sound sample.
Step 9: Normalize the sound sample.
Step 10: Convert the MP3 sample into binary.
Step 11: Insert character message into the MP3 sample.
Step 12: Convert binary MP3 result into decimal.
Step 13: If (charCount = max), end the process; otherwise,
go to Step 6.
Step 14: Save the MP3 file.

Figure 11 Embedding a text file in an MP3 file

4. Result and Discussion

The Peak Signal-to-Noise Ratio (PSNR) encompasses
the ratio between a signal's maximum power and the power
of the signal's noise. The application of PSNR has been
common among engineers in their measurement of the
quality of compressed reconstructed signals. Considering
that signals can have an extensive dynamic range, PSNR is
generally expressed in decibels as show comparisons
between embedded different bits. In statistics, the
difference between values inferred by an estimator and the
true values of the quantity being estimated can be measured
using the Mean Squared Error (MSE) of an estimator. In
specific, MSE entails a risk function that corresponds to the
anticipated value of the squared error loss or quadratic loss.
It measures the average of the squares of the "errors,"
whereby an error entails the amount by which the value
inferred by the estimator is distinct from the quantity to be
appraised, as show Comparisons between embedded
different bits, the secret message is text data using the secret
messages: Data-1 is equal 1 KB and the datasets have
different sizes and bitrates.
Table 3 presents the PSNR results for Data-1 with the
application of the LSB technique for embedding MP3 files.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

436

Here, the secret message is embedded in 1, 2, and 4 LSBs
for various genres including Blues, Classical, Country,
Dance, Hip-Hop, Jazz, Metal, Pop, R&B, Rap, Reggae,
Rock, under a 320-kbps rate of compression with the cover
MP3 file sizes and time. The results demonstrate superior
imperceptibility of 1-LSB as opposed to 2-LSB and 4-LSB
for all various types of genre. On the other hand, 4-LSB
shows imperceptibility that is worse when compared to 1-
LSB and 2-LSB. Accordingly, the average values for PSNR
are correspondingly 79.14779, 73.12698, and 64.0964 for
embedding secret messages in 1, 2, and 4 LSBs. The
highest values for 1-LSB (80.8612), 2-LSB (76.8849), and
4-LSB (65.8695) occur in the Metal genre. The lowest
values for 1-LSB (77.5252), 2-LSB (73.5076), and 4-LSB
(62.3538) occur in the Classical genre. The Rap and
Reggae content has the same file size (9.14 MB) and time
(3:59 min), but the values for 1-LSB, 2-LSB, and 4-LSB are
different. Rap achieves better values for 1-LSB (77.5252),
2-LSB (73.5076), and 4-LSB (62.3538) than Reggae.

Table 1 PSNR results for Data-1 at 320 kbps compression rate

Genre Time

(min)

Size

(MB)

1-LSB

1st

position

2-LSB

1st and

2nd

4-LSB

1st , 2nd

and 4th

Blues 4:41 10.7 79.56 75.59 64.48

Classical 2:54 6.67 77.52 73.50 62.35

Country 3:42 8.48 78.43 74.55 63.48

Dance 6:12 14.2 80.71 76.72 65.65

Hip-hop 5:27 12.4 80.15 76.28 65.14

Jazz 3:12 7.34 77.96 73.93 62.79

Metal 6:28 14.8 80.86 76.88 65.86

Pop 4:00 9.16 78.87 74.85 63.78

R&B 3:51 8.81 78.65 74.63 63.60

Rap 3:59 9.14 78.87 74.83 63.77

Reggae 3:59 9.14 78.79 74.8 63.79

Rock 4:33 10.4 79.35 75.40 64.40

Table 4 presents the PSNR results for Data-1 using the

LSB technique to embed MP3 files, where the secret
message is embedded in 1, 2, and 4 LSBs for different
genres (Blues, Classical, Country, Dance, Hip-Hop, Jazz,
Metal, Pop, R&B, Rap, Reggae, Rock) under a 256-kbps
compression rate with the cover MP3 file sizes and time.
The results show that the imperceptibility of 1-LSB is better
than that of 2-LSB and 4-LSB for all genre types. The
imperceptibility in 4-LSB is again worse than that of 1-LSB
and 2-LSB. The average PSNR values are 78.164, 73.1735,
and 63.13678 for embedding the secret message in 1, 2, and
4 LSBs, respectively. The highest values for 1-LSB
(80.0109), 2-LSB (74.8849), and 4-LSB (64) occur in the
Metal genre. The lowest values for 1-LSB (76.4867), 2-
LSB (71.5076), and 4-LSB (61.4076) occur in the Classical
genre. The Rap and Reggae content has the same file size
(9.14 MB) and time (3:59 min), but the values for 1-LSB,
2-LSB, and 4-LSB are different. Rap achieves better values
for 1-LSB (77.8309), 2-LSB (72.8357), and 4-LSB
(62.8812) than Reggae.

Table 2 PSNR results for Data-1 at 256 kbps compression rate

Genre Time

(min)

Size

(MB)

1-LSB

1st

position

2-LSB

1st

and

2nd

4-LSB

1st , 2nd

and 4th

Blues 4:41 6.44 78.58 73.59 63.49

Classical 2:54 4 76.48 71.50 61.40

Country 3:42 5.08 77.45 72.55 62.53

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

437

Dance 6:12 8.53 79.78 74.72 64.79

Hip-Hop 5:27 7.48 79.22 74.28 64.15

Jazz 3:12 4.4 76.90 71.92 61.82

Metal 6:28 8.88 80.01 74.88 64.92

Pop 4:00 5.49 77.87 72.85 62.79

R&B 3:51 5.29 77.57 72.66 62.65

Rap 3:59 5.48 77.83 72.83 62.88

Reggae 3:59 5.48 77.82 72.87 62.79

Rock 4:33 6.26 78.39 73.40 63.38

Table 5 presents the PSNR results for Data-1 with the use
of the LSB technique for MP3 files embedding. Here, the
secret message is embedded in 1, 2, and 4 LSBs for a
multitude of genres (Blues, Classical, Country, Dance, Hip-
Hop, Jazz, Metal, Pop, R&B, Rap, Reggae, and Rock) at a
192-kbps rate of compression with the cover MP3 file sizes
and time. The results demonstrate better degree of
imperceptibility of 1-LSB in comparison to 2-LSB and 4-
LSB for every type of genre. 4-LSB shows imperceptibility
that is worse than that of 1-LSB and 2-LSB. The average
PSNR values are correspondingly 76.906, 71.8177, and
60.8678 for embedding the secret message in 1, 2, and 4
LSBs. The highest values for 1-LSB (78.6795), 2-LSB
(73.6608), and 4-LSB (62.6441) can be observed in the
Metal genre. The lowest values for 1-LSB (75.2853), 2-
LSB (70.1953), and 4-LSB (59.1751) occur in the Classical
genre. The Rap and Reggae content has the same file size
(9.14 MB) and time (3:59 min), but the values for 1-LSB,
2-LSB, and 4-LSB are different. Rap achieves better values
for 1-LSB (76.5595), 2-LSB (71.5365), and 4-LSB
(60.4908) than Reggae.

Table 3 PSNR results for Data-1 at 192 kbps compression rate

Genre Time

(min)

Size

(MB)

1-LSB

1st

position

2-LSB

1st and

2nd

4-LSB

1st , 2nd

and 4th

Blues 4:41 6.44 77.27 72.30 61.24

Classical 2:54 4 75.28 70.19 59.17

Country 3:42 5.08 76.21 71.29 60.26

Dance 6:12 8.53 78.45 73.51 62.44

Hip-Hop 5:27 7.48 77.93 72.97 61.93

Jazz 3:12 4.4 75.68 70.65 59.58

Metal 6:28 8.88 78.67 73.66 62.64

Pop 4:00 5.49 76.63 71.54 60.54

R&B 3:51 5.29 76.47 71.37 60.43

Rap 3:59 5.48 76.55 71.53 60.49

Reggae 3:59 5.48 76.57 70.56 60.54

Rock 4:33 6.26 77.09 72.18 61.12

Table 6 presents the PSNR results for Data-1 utilizing the
LSB technique for MP3 files embedding. Here, the secret
message is embedded in 1, 2, and 4 LSBs for various genres
(Blues, Classical, Country, Dance, Hip-Hop, Jazz, Metal,
Pop, R&B, Rap, Reggae, and Rock) under a 128-kbps rate
of compression with the cover MP3 file sizes and time. The
results show superior imperceptibility of 1-LSB to that of 2-
LSB and 4-LSB for all types of genre. Meanwhile, 4-LSB

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

438

shows imperceptibility that is worse than that of 1-LSB and
2-LSB. The average PSNR values are correspondingly
75.1036, 70.1388, and 59.0868 for embedding the secret
message in 1, 2, and 4 LSBs. The highest values for 1-LSB
(76.8599), 2-LSB (71.9001), and 4-LSB (60.827) occur in
the Metal genre. The lowest values for 1-LSB (73.4161),
2-LSB (68.481), and 4-LSB (57.3223) occur in the
Classical genre. The Rap and Reggae content has the same
file size (9.14 MB) and time (3:59 min), but the values for
1-LSB, 2-LSB, and 4-LSB are different. Rap achieves
better values for 1-LSB (74.878), 2-LSB (69.87), and 4-
LSB (58.8803) than Reggae.

Table 4. PSNR results for Data-1 at 128 kbps compression rate

Genre Time

(min)

Size

(MB)

1-LSB

1st

position

2-LSB

1st

and

2nd

4-

LSB

1st ,

2nd

and

4th

Blues 4:41 4.29 75.48 70.42 59.40

Classical 2:54 2.66 73.41 68.48 57.32

Country 3:42 3.39 74.38 69.568 58.54

Dance 6:12 5.68 76.75 71.70 60.62

Hip-Hop 5:27 4.99 76.08 71.17 60.09

Jazz 3:12 2.93 73.81 68.82 57.79

Metal 6:28 5.92 76.85 71.90 60.87

Pop 4:00 3.66 74.77 69.87 58.78

R&B 3:51 3.52 74.66 69.63 58.58

Rap 3:59 3.65 74.88 69.87 58.88

Reggae 3:59 3.65 74.7 69.78 58.79

Rock 4:33 4.17 75.36 70.41 59.37

Table 7 presents the PSNR results for Data-1 with the usage
of the LSB technique for MP3 files embedding, whereby the
secret message is embedded in 1, 2, and 4 LSBs for a variety
of genres (Blues, Classical, Country, Dance, Hip-Hop, Jazz,
Metal, Pop, R&B, Rap, Reggae, Rock) under a 96-kbps rate
of compression with the cover MP3 file sizes and time. The
results demonstrate superior imperceptibility of 1-LSB
when compared with 2-LSB and 4-LSB for all kinds of
genre. Further, 4-LSB has imperceptibility that is worse
when compared to 1-LSB and 2-LSB. The average PSNR
values are correspondingly 73.8674, 68.8632, and 57.8575
for embedding the secret message in 1, 2, and 4 LSBs. The
highest values for 1-LSB (75.6018), 2-LSB (70.6062), and
4-LSB (59.5504) occur in the Metal genre. The lowest
values for 1-LSB (72.2153), 2-LSB (67.1305), and 4-LSB
(56.2055) occur in the Classical genre. The Rap and
Reggae content has the same file size (9.14 MB) and time
(3:59 min), but the values for 1-LSB, 2-LSB, and 4-LSB are
different. Rap achieves better values for 1-LSB (73.5747),
2-LSB (68.5646), and 4-LSB (57.4667) than Reggae.

Table 5 PSNR results for Data-1 at 96 kbps compression rate

Genre

Time

(min)

Size

(MB)

1-LSB

1st

position

2-LSB

1st and

2nd

4-LSB

1st , 2nd

and 4th

Blues 4:41 3.22 74.29 69.29 58.20

Classical 2:54 2 72.21 67.13 56.20

Country 3:42 2.54 73.15 68.30 57.27

Dance 6:12 4.26 75.56 70.41 59.43

Hip-Hop 5:27 3.74 74.90 69.89 58.85

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

439

Jazz 3:12 2.2 72.55 67.55 56.58

Metal 6:28 4.4 75.60 70.60 59.55

Pop 4:00 2.75 73.58 68.53 57.60

R&B 3:51 2.64 73.36 68.34 57.39

Rap 3:59 2.74 73.57 68.56 57.46

Reggae 3:59 2.74 73.48 68.57 57.59

Rock 4:33 3.13 74.11 69.13 58.12

Figure 12 compares the results of PSNR for Data-1 with the
application of the LSB technique for MP3 files embedding
that involves the embedding of secret message in 1-LSB for
various genres (Blues, Classical, Country, Dance, Hip-Hop,
Jazz, Metal, Pop, R&B, Rap, Reggae, Rock) under different
compression rates (96 kbps, 128 kbps, 192 kbps, 256 kbps,
and 320 kbps). The 320-kbps compression rate gives the
highest PSNR values. For all compression rates, the Metal
genre achieves the highest score, because there is less noise
in this channel and the file size is large, followed by Dance.
Classical scores the lowest because of the high noise level
in this channel and small file size; Jazz scores the second
lowest.

Figure 12. Compression results for PSNR with 1-LSB.

Figure 13 compares the results of PSNR for Data-1 with the
utilization of the LSB technique for MP3 files embedding
that involves the embedding of secret message in 2-LSB for
a number of genres (Blues, Classical, Country, Dance, Hip-
Hop, Jazz, Metal, Pop, R&B, Rap, Reggae, Rock) under
different compression rates (96 kbps, 128 kbps, 192 kbps,
256 kbps and 320 kbps). The 320-kbps compression rate
gives the highest PSNR values. For all compression rates,
the Metal genre scores highest, because there is less noise
in this channel and the file size is large, followed by Dance.
Classical scores lowest because of the high noise level in
this channel and small file size, followed by Jazz.

Figure 13. PSNR for 2-LSB with different genres under different
compression rates.

Figure 14. compares the results of PSNR for Data-1 with
the utilization of the LSB technique for MP3 files
embedding that involves the embedding of secret message
in 4-LSB for several genres (Blues, Classical, Country,
Dance, Hip-Hop, Jazz, Metal, Pop, R&B, Rap, Reggae,
Rock) under different compression rates (96 kbps, 128 kbps,
192 kbps, 256 kbps, and 320 kbps). The 320-kbps
compression rate gives the highest PSNR values. For all
compression rates, the Metal genre scores highest, because
there is less noise in this channel and the file size is big,
followed by Dance. Classical scores the lowest, because of
the high noise level in this channel and small file size,
followed by Jazz.

66

68

70

72

74

76

78

96 Kbps

128 Kbps

192 Kbps

256 Kbps

320 Kbps

66

68

70

72

74

76

78

96 Kbps

128 Kbps

192 Kbps

256 Kbps

320 Kbps

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

440

Figure 14. PSNR for 4-LSB with different genres under different
compression rates.

As can be observed in Figure 15, for all genre types, 1-LSB
shows better imperceptibility when compared to that shown
by 2-LSB and 4-LSB. Meanwhile, imperceptibility in 4-
LSB appears to be inferior when compared to that of 1-LSB
and 2-LSB. Accordingly, the average PSNR values are
correspondingly 64.2147, 61.4541, and 57.2901 for
embedding in 1, 2, and 4 LSBs. Also, the table shows that
the Jazz genre scored the highest value for 1-LSB (64.3768).
For 2-LSB, the highest value was scored by the genre of
Folk/country (61.8968), while the highest value for 4-LSB
(57.8767) can be observed in the Blues genre. On the other
hand, the lowest value for 1-LSB (64.1456) can be observed
in the Alternative genre. For 2-LSB, the value was scored
by the Blues genre was the lowest (61.1305), and for 4-LSB,
the Rap/Hip-Hop genre scored the lowest value (57.1153).

Figure 15. Different compression rates with different LSBs.

5. Conclusions

This paper highlighted the subject of MP3 audio
steganography, with the focus on MP3 files post
compression. In time domain, LSB has been formulated to
use randomly position from cover file for the concealment
of the secret message with the application of 1, 2 and 4 bits.
A new model was proposed in this study; it fulfils the three
most crucial requirements of audio steganography namely
imperceptibility, capacity, and robustness. It is crucial that
a technique with the purpose of improving the capacity or
robustness would also maintain imperceptibility. The new
proposed method was able to increase the capacity and
robustness, while improving imperceptibility. The model
established in this paper could effectively conceal data in
Audio file while preserving the high accuracy of the audio.
The secret message could still be unveiled but message
extraction was challenging to execute.

Acknowledgments

This work was funded by the University of Jeddah, Jeddah,
Saudi Arabia, under grant No. (UJ-22-DR-63). The authors,
therefore, acknowledge with thanks the University of
Jeddah technical and financial support.

References
[1] Fridrich, J. & Goljan, M.(2002). Practical

steganalysis of digital images: State of the art.

Electronic Imaging 2002, International Society for

Optics and Photonics, 1‐13.

[2] Kim, D.‐S., Lee, G.‐J. & Yoo, K.‐Y.(2014). A

reversible data hiding scheme based on histogram

shifting using edge direction predictor. Proceedings of

the 2014 Conference on Research in Adaptive and

Convergent Systems, ACM, 126‐131.

[3] Atoum, M. S.(2015) New MP3 Steganography Data

Set. IT Convergence and Security (ICITCS), 2015 5th

International Conference on, 2015b. IEEE, 1‐7.

[4] Quackenbush, S. (2012). MPEG Audio

Compression Advances. The MPEG Representation of

Digital Media. Springer.

[5] Sterne, J. (2012). Mp3: The meaning of a format,

Duke University Press.

[6] Sayood, K. (2012). Introduction to data

compression, Newnes.

[7] Brandenburg, K.(1999). MP3 and AAC explained.

Audio Engineering Society Conference: 17th

International Conference: High‐Quality Audio Coding,

Audio Engineering Society.

[8] Sinder, D. J., Varga, I., Krishnan, V., Rajendran, V.

& Villette, S. (2015). Recent speech coding technologies

and standards. Speech and Audio Processing for

Coding, Enhancement and Recognition. Springer.

56
57
58
59
60
61
62
63
64
65
66

96 Kbps

128 Kbps

192 Kbps

256 Kbps

320 Kbps

56
57
58
59
60
61
62
63
64
65

A
lt
er
n
at
iv
e

B
lu
es

El
ec
tr
o
n
ic

Fo
lk
co
u
n
tr
y

Fu
n
ks
o
u
lr
n
b

Ja
zz

P
o
p

R
ap
H
ip
H
o
p

R
o
c

1‐LSB

2‐LSB

4‐LSB

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

441

[9] Supurovic, P. (1998). MPEG audio frame header.

Available In Internet.

[10] Nilsson, M. (2000). ID3 tag version 2.4. 0‐Main

Structure. http//www. id3. org/id3v2.

[11] Salih, M. M. (2015). A New Audio Steganography

Method Using Bi‐LSB Embedding and Secret Message

Integrity Validation. Middle East University.

[12] Jhaveri, N. V., Vaughan, G. B., Anderson, I. W.,

Gardner, J. J., & Tao, P. T. (2019). U.S. Patent

Application No. 16/357,128.

[13] Di Angelo, M., & Salzer, G. (2019, July). Mayflies,

breeders, and busy bees in Ethereum: smart contracts

over time. In Proceedings of the Third ACM Workshop

on Blockchains, Cryptocurrencies and Contracts (pp. 1‐

10).

[14] Castelan, Y. & Khodja, B. (2015) MP3

Steganography Techniques. Proceedings of the 4th

Annual ACM Conference on Research in Information

Technology, ACM, 51‐54.

[15] Zebari, D. A., Zeebaree, D. Q., Saeed, J. N., Zebari,

N. A., & Adel, A. Z. (2020). Image Steganography Based

on Swarm Intelligence Algorithms: A

Survey. people, 7(8), 9.

[16] Fridrich, J. (2009). Steganography in digital media:

principles, algorithms, and applications. Cambridge

University Press.

[17] Chhikara, S. & Singh, P. (2013b.) SBHCS: Spike

based Histogram Comparison Steganalysis Technique.

International Journal of Computer Applications, 75.

[18] Kekre, H. B., Athawale, A., Rao, B. S. & Athawale,

U. (2010). Increasing the capacity of the cover audio

signal by using multiple LSBs for information hiding.

Emerging Trends in Engineering and Technology

(ICETET), 2010 3rd International Conference on, 2010.

IEEE, 196‐201.

[19] Ozighor, E. R., & Izegbu, I. (2020). INFORMATION

PROTECTION AGAINST SECURITY THREATS IN

AN INSECURE ENVIRONMENT USING

CRYPTOGRAPHY AND STEGANOGRAPHY. GSJ,

8(5).
[20] Devaraj, S., Singh, U. & Jialal, I. (2009). The

evolving role of C‐reactive protein in atherothrombosis.

Clinical Chemistry, 55, 229‐238.

[21] Shirali‐Shahreza, S., Manzuri‐Shalmani, M. &

Shirali‐Shahreza, M. H. (2007). A Skew resistant

method for persian text segmentation. Computational

Intelligence in Image and Signal Processing, 2007. CIISP

2007. IEEE Symposium on, 2007. IEEE, 115‐120.

[22] Gopalan, K. & Shi, Q. (2010). Audio Steganography

Using Bit Modification‐A Tradeoff on Perceptibility

and Data Robustness for Large Payload Audio

Embedding. ICCCN, 2010.

[23] Fan, X., Cao, J.: A Survey of Mobile Cloud Computing. ZTE
Communications 9(1), 4–8 (2011)

[24] Huerta-Canepa, G., Lee, D.: A virtual cloud computing
provider for mobile devices. In: Proc. of the 1st ACM
Workshop on Mobile Cloud Computing & Services: Social
Networks and Beyond (2010)

[25] Giurgiu, I., Riva, O., Juric, D., Krivulev, I., Alonso, G.:
Calling the Cloud: Enabling Mobile Phones as Interfaces to
Cloud Applications. In: Bacon, J.M., Cooper, B.F. (eds.)
Middleware 2009. LNCS, vol. 5896, pp. 83–102. Springer,
Heidelberg (2009)

Alaa Abdulslam Alarood
received the B.E. and M.E.
degrees, from Yarmouk Univ.
in 2001 and 2005, respectively.
He received the Ph.D. degree
from University of Technology
Malaysia (UTM). in 2017.
After working as, a research
assistant and lecturer (from

2006), an assistant professor (from 2017) in the Dept. of
Computer Science in College of Computer Science and
Engineering, University of Jeddah, Saudi Arabia (from
2018), His research interest includes Security, Multimedia
Security, Machine Learning, Internet of Things (IoT).

AHMED MOHAMMED ALGHAMDI
is an assistant professor at the Software

Engineering Department, College
of Computer Science and
Engineering, University of
Jeddah, Saudi Arabia. He got
his Ph.D. in Computer Science
from King Abdulaziz
University, Jeddah, Saudi
Arabia. He received his B.Sc.
degree in Computer Science

from King Abdulaziz University, Jeddah, Saudi Arabia, in
2005 and the first M.Sc. degree in Business Administration
from King Abdulaziz University, Jeddah, Saudi Arabia, in
2010. He received the second master's degree in Internet
Computing and Network Security from Loughborough
University, UK, in 2013. Dr. Ahmed also has over 11 years
of working experience before attending the academic carrier.
His research interests include high-performance computing,
big data, distributed systems, programming models,
software engineering, BYOD, and software testing.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.7, July 2022

442

Ahmed Omar Alzahrani is
currently an Assistant Professor at
Faculty of Computer Science and
Engineering, University of Jeddah.
He holds a Ph.D. degree in
Information Systems and
Technology from Claremont
Graduate University. He received
a Master’s of Computer Science
from California Lutheran

University and a Master’s degree in Information Systems
and Technology from Claremont Graduate University. His
research interest is centered primarily around Geographic
Information Systems (GIS), Energy Informatics, Remote
Senescing, and Machine Learning,

Abdulrahman Alzahrani is an
assistance professor in the
College of Computer Science
and Engineering at university
of Jeddah, Kingdom of Saudi
Arabia. Alzahrani’s research
is focused on the field of
information technology and
innovations in the area of
Data Science, Machine
Learning, and Health
Informatics. He published

his dissertation titled “Exposome Factors: Exploratory
Study Approach and the Role of Persuasive Technology to
Raise Awareness About the Exposome Concept” in 2020.
Abdulrahman teaches several courses to bachelor and
master students. He teaches E Commerce, Data
Visualization classes. He is currently holding the head of
academic and exam affair unit within the college.

Eesa Alsolami is Associate
professor of computer science
and engineering at university of
Jeddah Currently, he is a dean
of Admission and registration
of university of Jeddah. He gets
his PhD in 2012 from
Queensland University of
technology from Australia. His
research projects involve
feature selection techniques for

continuous biometric authentication. Eesa graduated in
computer science in 2002 from King Abdulaziz University,
and then in 2008 he received MSc in IT from Queensland
university of technology.

