
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

249

Manuscript received August 5, 2022
Manuscript revised August 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.8.31

Implementation of DevOps based Hybrid Model for Project
Management and Deployment using Jenkins Automation Tool

with Plugins

Poonam Narang†, and Pooja Mittal†

†Department of Computer Science and Applications, Maharshi Dayanand University, Rohtak, Haryana, India

Summary
Project management and deployment has gone through a long
journey from traditional and agile to continuous integration,
continuous deployment and continuous monitoring. Software
industry benefited with the latest buzzword in the development
process, DevOps that not only escalates software productivity but
at the same time enhances software quality. But the
implementation and assessment of DevOps practices is
expository as there are no guidelines to assess and improvise
DevOps application in software industries. Hence, there was a
need to develop a hybrid model to assist software practitioners in
DevOps implementation. The intention behind this paper is to
implement the already proposed DevOps hybrid model using
suggested tool chains including Jenkins, Selenium, GitLab,
Ansible and Nagios automation tools through Jenkins project
management environment and plugins. To achieve this
implementation objective, a java application is developed with a
web-based graphical interface. Further, in this paper, different
challenges and benefits of Jenkins implementation shall also be
outlined. The paper also presents the effectiveness of DevOps
based Model implementation in software organizations. The
impact of considering other automation tools and models can also
be considered as a part of further research.
Keywords:
Automation, Automation Tools, DevOps, Project Management,
Software development

1. Introduction

Successful software development is always a major
concern for every organization. Traditional software
development methodologies suffered from many failures
like late or run-away projects, risk mitigation, discontented
customers and much more. DevOps being an emerging and
new software engineering paradigm is adopted by different
software organizations to develop within schedule and
within budget quality software. In spite of so many
benefits, implementation of DevOps culture suffers from
different challenges and issues like the existence of lots of
alternative automation tools and hence their accurate
selection along with lack of performance measurement. To
overcome these problems or issues, many tool chains or
hybrid models were proposed. These models in the form of
Integrated Tool Chain (ITC) not only accelerate the
development process of software but also speed up the

delivery process up to much greater extent. [1] These
models or process improving techniques are also not
similar for each and every organization so selection of
appropriate model or automation tool becomes of utmost
importance. This initial idea has been published already as
a hybrid automated model from alternative DevOps
automation tools for each stage of Continuous Integration,
Continuous Testing, Continuous Delivery, Continuous
Deployment and Continuous Monitoring. Our hybrid
automated model [2], attempts to implement a “best of
breed” solution with performance evaluative analytical
comparisons of alternative automation tools available at
different stages of software development. In this paper, we
extend the work by implementing a hybrid model for
project management and deployment using their best
performer tools. Therefore, the prime objective of this
paper is to develop an implementation model in DevOps
culture through different tools like Jenkins, Selenium,
GitLab, Ansible and Nagios. All these tools were
incorporated as different plugins in Jenkins project
management environment. To achieve this target,
following steps have been developed and followed under
this work –

(i) Installation of JDK for writing web based
application in Java and that can be deployed to
Tomcat
(ii) Setup of Jenkins, a DevOps continuous
integration and build tool
(iii) Installing different required Plugins including
suggested by hybrid automated model to extend the
functionality of Jenkins
(iv) Final stage of CI/CD Pipeline is to deploy War
file to application server Apache Tomcat

The rest of the paper is assembled as follows: Section

2 represents related background study. Next sections
highlight already existing models, motivation behind the
work, research design, and hybrid automation model
followed by implementation through different alternative
automation tools. Finally implications and findings along
with conclusions and future work shall be discussed.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

250

2. Related Study

Project development and deployment also termed as
Software Development Life cycle or SDLC involves
standard procedure or process for formulation of software.
SDLC lists different phases in the life cycle of software
which are followed by development industries to deliver
software products. SDLC has gone through many revisions
from traditional and agile models to recent DevOps culture.
Different existing and related renowned literature is
reviewed and studied in terms of DevOps research papers.

2.1 Traditional, Agile and DevOps-an Overview

DevOps – Development and Operations is a recent,
emerging paradigm in software evolution. It bridges the
communication gap between development and operations
teams and targets to reduce the discrepancies of different
teams [3]. Traditional methodologies do not focus on
these tasks explicitly. Lwakatare et al in their research on
case study of five companies [4] also agrees for
coordination between development and operations teams.
As many renowned researchers restrict the adoption of
DevOps in practice though there are multiples of theories
that are against DevOps application and talk about its
challenges and lack of performance measure [5]. For
example, Leite, Roacha and others conducted a survey in
their paper [6] and discussed different challenges in
DevOps adoption. Other researches also force the
compulsion of DevOps practices for the organization to
move towards delivering higher performance and quality
software [7].
Similarly, Ronny Olguin [8] and Ramtiin Jabbari et al [9]
in their explicit papers on DevOps highlight that DevOps
acts as a movement to automate the tasks of continuous
delivery of new software updates while at the same time
guaranteeing their correctness and reliability. Authors [9]
also conducted systematic literature review on the
definition of DevOps and agrees that DevOps extends the
agility component in software development paradigm.

2.2 Existing Models of DevOps

The literature shows the development of several
models for the guidance of industry or software
practitioners for fruitful and successful implementation of
DevOps in practice. Many models have been proposed in
this context like the unicorn framework proposed by
Trihinas and others [10], to overcome different challenges
of DevOps through continuous releases. Similarly, other
model DORA proposed by Forsgren et al [11] talks about
successful product delivery and Syed W. Hussaini in
DevOps paper [12] accepts the emerging DevOps
paradigm as a response to the growing knowledge of the
existing gap of 4 Cs (Communications, Cooperation,

Culture and Collaboration) between development and
operation teams functions of an organization. Authors also
accept “Wall of Confusion” between these teams. This
“Wall'' is caused by a combination of conflicting
motivations among people, processes and
technology/tooling. Hence, the need for strengthening the
harmonization of Dev and Ops teams arises. The model
was also outlined in [12] for enhancing effectiveness and
efficiency of DevOps stakeholders interest.

2.3 Motivation

Many DevOps models exist in literature and all talk
about quality software delivery and development paradigm.
Talks also include the existence of many alternative
automation tools to achieve the targets of DevOps [13] but
no model speaks about the difficulties in the accurate
selection of these alternative automation tools. Therefore,
it becomes of utmost importance to propose the inclusion
or introduction to hybrid automated tool model [2] to
automate the tasks of tool selection through Integrated
Tool Chain (ITC) based on several performance evaluators.
Our previous work involves the proposal of ITC and
current underlying research work is the extension of [2]
towards implementation. On the basis of existing models,
their findings and by following their suggested road map,
this paper implements the hybrid model.

3. Research Design

For this research, we have used Jenkins project
management and deployment tools along with different
tools of hybrid models like Selenium, GitLab, Ansible, and
Nagios in the form of different Jenkins Plugins. A web
based graphical interface as sample software application is
also developed for the purpose of implementation. The
details are as follows:

Phase 1:

(i) This step aims to develop the best web based
graphical interface application for implementation in
Jenkins Climate
(ii) A Java application with web-based graphical
interface is developed and provided as Git repository
in source code management

Phase 2:
(i) The aim of this step is to identify the hybrid model
tools recommended in the tool chain and required
environment for their proper installation as reported
in the literature survey.
(ii) Setup of Jenkins Project Management tool from
Java pipeline
(iii) Installing different required Plugins suggested by
hybrid automated model to extend the functionality
of Jenkins

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

251

Phase 3:
(i) The objective of this step is to evaluate quality
parameters based on implementation outcome.
(ii) Finally the delivery pipeline is shown to include
each build/release with verification of different
metrics as quality parameters.

Figure1. Research methodology followed for the current research work

Figure (1) above includes diagrammatic representation of
all phases and different steps to follow as per the
methodology and also defined as research design.

4. Proposed DevOps based Hybrid Model

The proposed hybrid model paper [2] discussed
DevOps culture in IT industries. It was found that DevOps
provides complete automation in development and
operations using different tools, and attempts to solve
many industrial issues like delayed software releases,
delivery or deployment to maintenance problems. In this
work, performance evaluative comparison of different
automation tools was done which further accelerated
towards the design of an integrated tool chain (ITC). This
tool chain of selective automation tools optimizes the
performance of the delivery life cycle by removing
different impediments at each stage. The ITC design in
turn leads towards the evolution of DevOps based hybrid
model of automation tools for software development.
Following diagram clearly depicts the hybrid automated
model consisting of these selective tool chains at different
stages of DevOps culture –

Figure2.DevOps based hybrid model of selective automation tools [2]

Figure (2) above, shows our proposed hybrid model of
selective tools from an alternative set of DevOps
automation tools. The underlying paper implements
hybrid automation models to check the reliability of work
for which it was not possible to consider already existing
case studies. We have created a web based application
under the JDK environment to evaluate an automation
model that works as a data set for this paper.

5. Automation Tools Installed as Plugins In
Jenkins

Multiple tools have been used from the
development to the deployment of the project. These tools
have been selected from Integrated Tool Chain (ITC) in
our hybrid model for software development using DevOps
automated tools [2]. Followed tools are explained below
briefly –

(i) JDK1.2

Java Development Kit includes major features
 and enhancements to the Java platform. This is
 used to develop java based projects from the
 GitHub repository. Along with JDK, Tomcat
 Server is also used as a server to deploy java
 based applications. Tomcat server also supports
 continuous changes made to the project in terms
 of continuous integration by simply stopping
 and restarting the server.
(ii) Jenkins

Jenkins is a continuous integration tool that
 helps developers to deliver more predictable and
 reliable software. It restricts developers to
 integrate their updated code with the central
 repository periodically to maintain a more stable
 version of available code without any conflicts.
 Jenkins tool has been compared with other CI
 tools Teamcity and Bamboo. Based on different
 performance evaluators, a tabular comparison
 table has been shown in our work [2]. Current
 research has chosen Jenkins as a continuous

 Phase 1: Preparation of Sample Software Application

1. Web –based Java Application Development with
graphical interface through JDK installation

Phase 2: Setup of Jenkins Climate for the purpose of
implementation of sample application

 2. Installation of Jenkins with required plugins

3. Implementation of Java application in Jenkins DevOps
automation tool

Phase 3: Verification of specified quality parameters

 4. Checking of specified quality parameters through
defined metrics

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

252

 integration or build tool with different plugins to
 support the development.
(iii) Selenium

Selenium has been selected as the best
 continuous testing tool with the scheduling of
 automation tests after every feature update
 performed by the developers. It overcomes
 many problems encountered in the traditional
 way of software testing and also ensures quality
 and best deployment on the other hand. A
 tabular comparison of Selenium has been made
 with other continuous test automation tools
 Jmeter and TestComplete on the basis of
 different performance evaluators and parameters
 [2]. Selenium has been installed as a separate
 Jenkins Plugin to automatically support test
 automation in an uninterrupted manner and also
 on a continuous basis.
(iv) GitLab

GitLab is selected as a continuous delivery tool
 that helps in automatic release and delivery of
 applications to reduce the deployment time. In
 hybrid model [2], GitLab is compared with
 other CD tools – Azure DevOps and GitHub
 Actions based on parametric table and market
 trend graph and concludes GitLab as the best
 continuous delivery tool. It supports automatic
 build creation of multiple code changes and also
 preparing for release or production. GitLab is
 also installed as Jenkins Plugins to incorporate
 its features into Jenkins itself.
(v) Ansible

Ansible is termed as the best Continuous
 deployment tool as chosen by hybrid
 automation model. Ansible allows software
 release process that is used for immediate
 autonomous deployment to the production
 environment after automated test validation.
 Continuous deployment offers remarkable
 benefits to modern software businesses. It also
 allows businesses to respond to teams along
 with meeting changing and increasing market
 demands to deploy and validate new features
 rapidly. [2]
(vi) Nagios

Nagios is chosen as the most commonly
 followed continuous monitoring tool in hybrid
 automation models as it enables faster and better
 response to changing needs of customers in
 contrast to traditional monitoring methods.

Current research work considers Jenkins, Selenium and
GitLab automation tools along with Tomcat Server for the
purpose of continuous deployment. Following section
shows the usage of automation tools as implementation for

the ToDoReact project.

6. Implementation of Model through Sample
Application In Jenkins Environment

This paper follows three phased architecture to
implement DevOps hybrid automation tool model. These
three phases and different steps which are followed for the
smooth implementation of the model are shown in the
flowchart below –

Figure3. Process flow of DevOps implementation approach

Jenkins being an Open-source CI/CD tool is used as a
continuous integration and build tool as depicted through
above figure (3). It allows continuous integration as well
as continuous delivery of the software. Management of
code is done through GitLab and GitHub repository.
Different automation tools as in ITC [2] are installed as
plugins of Jenkins. Selenium as Plugin for test case writing
and execution is used. Ansible will take care of
deployment, Nagios for managing operational procedures.

As shown in the above flowchart, the research approach
begins with a sample java application written using a local
repository and uploading the same on GitHub for which
connection is already built with Jenkins. In Jenkins, a
build is created using Maven that contains details of a java
application. Selenium performs unit tests along with
integration testing. Jenkins will perform continuous
integration by itself followed by continuous delivery and
deployment using different plugins without any manual
intervention.The results of implementation of the system
with detailed description is shown in screenshots below –

Step1. For installation of JDK and developing Java based
web application named ToDoReact which provides user
interface to add or delete new tasks to do or delete the
completed tasks.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

253

Figure4. Java Code developed in JDK environment for todo tasks

ToDoReact java web based code as shown in above figure
(4) maintains a list of tasks to do along with the list of active
and completed tasks.

Figure5. Different status of tasks according to their being done or
completed

These tasks' status can be updated according to incomplete
/active /complete or it can be deleted from the list as
depicted in above java code figure (5). The local structure
of the code is shown in the figure (6) below –

Figure6. ToDoReact Java application stored in system folder

After writing the code in the src directory of the application,
the corresponding xml file is also updated.

Step2. After completing java code next step includes the
installation of Jenkins tool for continuous integration and
build purpose as shown in figure (7) below –

Figure7 Jenkins automation tool for CI/CD

For Jenkins build job, it is needed to create a freestyle
project type for which ToDoReact path is given as a
repository address.

Figure8 Building a freestyle project in Jenkins and configuring different

environments

Figure (8) above shows the development of a Java project
and for building java code in Jenkins it also requires
inclusion of different plugin tools as given by hybrid model
in [2]. Many of these plugins named – Ansible, Selenium,
Nagios are already installed and GitLab is installed as
shown in following figure (9) below –

Figure 9.Jenkins list of installed/ available plugins to enhance the tool
functionality

Inclusion of all tools as plugins under a single window not
only enhances the functionality of the tool but at the same
time bridges the gaps between developers and operations
team.
Next step includes the installation of Tomcat server to make
war file of web application as depicted in following figure

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

254

(10)–

Figure10. Directory structure of Tomcat after inclusion of ToDoReact
application code

Above figure (10) clearly depicts the directory structure of
Tomcat to make a war file of the application. With the
Jenkins Tomcat deployment plugin installed, it's time to
create a new Jenkins build job that can build an application
and deploy a package WAR file to Tomcat as displayed in
the following figure (11) –

Figure11. Deployment of war files from Jenkins to Tomcat to run the
application

Above figure (11) shows the successful

implementation of a java web based application in Jenkins
environment through different plugins. Any changes in the
code requires the rebuild of application and restart of the
Tomcat server as depicted in figure (12) below –

Figure12. Adding or deleting tasks and restarting of Tomcat server

to include the changes
Above figure (12) shows the inclusion of different tasks

after application deployment in Tomcat server under
DevOps continuous environment.

7. Metric Selection and Evaluation to Analyze
Software Quality

Software or system performance is always an
essential criterion to decide quality of software. Software
Quality describes desirable properties of not only software
products but also its individual components as well as
process followed. Different metrics are defined to quantify
the quality of each software product and process. These
metrics are required to evaluate the accuracy and
performance levels of software. Performance measurement
of developed software is also a significant step towards the
improvement of software productivity and efficiency.

Software metrics are broadly classified into Process
metrics (to assess different attributes of deployed
methodology), Project metrics (to evaluate software project
attributes like project status, cost, employees count or skill
set etc.) and Product metrics (to assess or evaluate phase
wise development of product) [14]. We have selected some
already defined software metrics from existing literature for
the purpose of software product and process validation.
Considered metrics and their desirable outcome is shown in
the following table –

Table 1.Software Metric Classifications for validation of the software
developed.

Type of

software

metric

Software Metric

Expected

Outcome or

Results

Process Risk Identification High

Project

Project Defect Density Low

Release Deployment Frequency High

Product Process Productivity High

Above Table (1) shows the inclusion or consideration of
different software metrics along with their expected or
desirable outcome.

The implementation or evaluation of DevOps
development approach is performed through Jenkins
automation tool along with inclusion of different required
plugins. Much of the existing metrics generally considered
evaluation of source code through different quantifiable

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

255

measures. Our paper has taken specifically defined DevOps
metrics [15] for the proper evaluation of underlying concept,
process and their relationships. Table (1) above shows the
metrics considered to assess or evaluate the performance of
deployed software and its components. All these mentioned
metrics are defined and evaluated below –

(i) System Risk Coverage Estimate (SRCE)

Many principles and methods were developed to
conceptualize, assess and manage different software risks
[16]. Software metrics provide a quantifiable vehicle for
evaluating and managing quality factors along with early
detection of risks involved in a given software product [17].
It will also be helpful in prioritizing risk in order to give
them more weightage for consideration of removal. SRCE
involves computation of risk coverage in individual
software components followed by their sum up to get the
same for the whole system or deployed software.

Risk coverage of individual components is given as –

RC = (1)

Where W is weightage assigned to the risk involved

 And n is total number of requirements

The expression for system risk coverage estimate is given
as –

SRCE = , n > 0 (2)

 Where n is total number of components/ modules in
system

Estimate or measure of system risk coverage informs about
percentage of risk coverage in designed test cases.
Coverage of risk can be at higher with the consideration of
more critical risks than testing the trivial ones.

(ii) System Defect Density Estimate (SDDE)

Defects or errors are the inevitable part of any
software. Many of the defects can be ignored depending
upon the severity of the defect / fault but developers should
always look at incurred defects or defects that can be a risk
to the software as inculcation of defects can hamper
software performance drastically. In a study on defect
density by US Authors [18], it was concluded that defect

density has a greater impact on software quality and it also
judges whether software is ready to deploy or not. Defects
can be in many variants like post – deployment issues of
code or any kind of error in connectivity to the back end
databases etc.

Expression for defect density for individual software
components is given as –

CDD = (3)

Where KLOC (Kilo Lines of Code) = LOC /1000

To compute system defect density estimates for the
software, we are to sum up individual components defect
density to reach the final measure. It is given by the
following expression –

SDDE= , n>0 (4)

 Where n is total number of components/ modules
in system

Defect density, thus, affects the overall quality of the
software.

(iii) System Deployment Frequency Estimate (SDFE)

Perera et al and Ziadoon Otaiwi et al in their work
on DevOps Quality [19] [20], examined deployment
frequency as one of the major goals of DevOps. In their
study it was also noticed that higher deployment frequency
leads to DevOps shine more than 40 times as compared to
non DevOps performers. Deployment frequency, in general,
refers to the frequency of code deployment with smaller
size. As frequent deployments or releases with less
requirement of changes is far better than less deployments
with high requirement of changes. It is also directly
correlated with continuous delivery and hence, measure of
success for top-performing companies.

Expression for deployment frequency measure of
individual components is given as –

DF= (5)

Here Time unit is the function of project size. For example,
if project size is Kilo Lines of Code (KLOC), deployment
frequency can be weeks but in our research, size of data set
is less so time unit is in hours.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

256

Deployment Frequency Estimate for whole system is given
by the expression below –

SDFE= , n>0 (6)

 Where n is total number of components in the
system

High value of SDFE indicates efficient and smooth
functioning of the system.

(iv) System Productivity Estimate (SPE)

Continuous deployment is the practice of
automatically deploying the software to the production
environment. Increase in system productivity is an apparent
benefit of continuous deployment [21] [22] Productivity is
directly associated with process throughput. It indicates the
amount of work done in a unit time interval. Thus it can be
said that productivity is a clear measure of release count and
success stories.

Productivity of individual components of software is given
as –

P= (7)

Where, User stories completed indicate the amount of work
done. Time elapsed includes total time taken to complete
the task.

Similarly, estimate or measure of productivity of the whole
system/ software is expressed as below –

SPE= , n>0 (8)

 Where n is total number of components in the
system.

To compute the quality of the produced or developed
system, all above metric numbers should be high, except
defect density. During this research work, defect density
comes very low and that achieves the major requirement of
DevOps quality deployment.

8. Java Based Web-based Application
Todo-React As Data Set

A todo application, using React-Redux , is java based
application that includes many features like user can add
to do items in the list, added to do will be active by default
and display under All and Active section. Also once to do is

checked as completed it won't be displayed under the
Active section. Again user cannot add a, to do task if that to
do is still active (case-sensitive).

This Java web-based, ToDoReact application that keeps
track of different status of tasks – active, pending and
completed, has been taken as a sample project or case study
to evaluate our selected set of DevOps metrics. Different
parameters of code measurement is calculated as –

Figure13. LOC, Components count for current data set with online Count
LOC [23]

Above figure (13), shows calculation for the ToDoReact
data set like total number of components, lines of code in
total along with comments and blanks included. Following
table covers different descriptive measures of selected
project or application –

Table 2.Description of selected data set with different measures

Project Name
Size of Project

(LOC)
Number of
components

ToDoReact
(Web-based Java Application)

12102 36

Table (2) above shows different descriptive measures of
sample java based web applications taken or designed for
the purpose of a data set to evaluate DevOps performance
through a selective set of metrics.

9. Results and Discussions

Metric analysis of releases and final deployment is
essential for measuring progression of project, expected
outcomes and for overall success of the project.
Experimental analysis of different features of DevOps is

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

257

performed on the basis of metrics defined above and tabular
results are shown for the underlying data set in table (2).

Risk coverage in software includes risk
identification, assessment and management. Inclusion of
risk was established as a scientific field around 40-45 years
ago. Many advances have also been made to previously
developed ways of risk assessment. [16] Risk coverage
estimate for individual components and for the whole
system measures total amount of risks covered in terms of
risks tested, resolved, executed and skipped or not being
executed. Risk coverage also covers the fact that some of
the tests have more priority over others so have more
weightage. Risk metric executes high weights risk first with
the consideration of being more critical risks. Some risks
are also not even executed or simply skipped on the basis of
their weightage / priority. Table (3) below includes this
detailed risks coverage analysis –

Table3. Individual Components and Risk coverage estimate for whole
system with current data set

Total
number of
risk sets

Number of
Risks not

tested

Count
of

broken
risks

Number of
risk sets
skipped

Number
of
executed
risk sets

Risk
coverage %ag
e

1200 200 150 50 800 66.67%

Risk metric table (3) above shows detailed analysis of

risks covered for the underlying data set of Todo project
based on eq (1) and eq (2). DevOps hybrid model
approach followed for this data set clearly shows high value
of risk coverage percentage which indicates better
inclination towards risk coverage. Risk assessment and
proper coverage ensures increased customer satisfaction
along with fast product delivery.

Another metric, defined to assess quality of process
followed for product development, is defect density
estimate. Defect density, alternatively, covers risks included
in a project in the form of defects or bugs confirmed in the
application or project. System defect density estimate or
SDDE metric, measures total number of defects available
divided by the size of project in terms of kilo lines of code.
Number of total components in our data set is 36 and
defects introduced in the system or individual components
is 1,2 or none and considering 2 defects in each components
on an average, gives total defects as 36*2=72, also, kilo
lines of code are given as 12.102 KLOC. Thus,
Component Defect density is calculated as using eq (3) –

CDD = = 0.1652

For System estimate of defect density present in application
or project, as given by eq (4) using CDD value as well –

SDDE = 0.1652 * 36 = 5.949

Table (4) below shows the values or figures of defect
density computed for the current data set –

Table4. Component and system defect density estimate with the
underlying data set

Project Name Total number
of
Components

Project
Size

(LOC)

Total no of
available
defects

System defect
density estimate
(SDDE)

ToDoReact 36 12102 72 5.949

SDDE value as computed in the above table (4) indicates a
good estimate of defect density by the DevOps tool chain
hybrid model that yields a good quality product, on the
other hand. Also verified from the above table, less value of
defect density indicates measuring or defect detection much
early in software development making the process more
persistent and reliable.

Next project based metric, included in current research
for the testing of software quality through usage of DevOps
hybrid model approach, is deployment frequency.
Development processes taking much time for deployment
of intermediate or final products are less adaptable to
customers as compared to frequent deployments or releases.
Generic value of deployment frequency also allows major
changes in the software without big hampering of budget or
schedule. SDFE measures the total number of deployments
per unit time. Using eq (5) & (6), deployment frequency for
different components and for the whole system is calculated
as –

SDFE= = 10

System frequency of code deployment comes out to be 10
for total time taken for development is 3.6 hours. Following
table (5) shows value of deployment frequency for the
considered web based java project to verify the quality
delivered with hybrid model approach –

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

258

Table5. System deployment frequency estimate for current data set of
Java application

Total number
of
Components

Project Size
(LOC)

Total number
of
deployments

Total time
taken to
deploy
(hr)

System
deployment
frequency
estimate
(SDDE)

36 12102 36 3.6 10

As per the results obtained in table (5), it appears that
DevOps hybrid model deploys 10 components or modules
per hour. The high number of deployment frequency is
achieved and this also indicates increased number of
releases with more acceptability of major changes or
updates.

Next metric for process improvement is system
productivity or efficiency estimates. Productivity metric is
used to measure or track the team efficiency of tasks done.
These metrics are different from other quality metrics as
these can also be used to get feedback from customers or
employees for any project/ team. So, productivity metrics
are concerned with system throughput which is given by the
total number of user stories completed per unit time. User
story, also referred to as epics, is an expressed requirement
from the viewpoint of the end-user. This count for
individual components on an average is 25, which gives the
total number of user stories to be 25 multiplied by 36. Table
(6) below computes system throughput or system
productivity estimate (SPE), in other words –

Table6. Component and system productivity estimate (SPE) with the
current data

Total number
of

Components

Project Size
(LOC)

Total number
of user stories

Total time
taken to
complete
(in weeks)

System
productivity

estimate
(SPE)

36 12102 900 13.5 66.7

In the above table (6), SPE, for current data, shows
an increased value for SPE or throughput with DevOps
automation tool approach. DevOps, thus, increased
efficiency or productivity in terms of better throughput.
Results shown in above tables (3)-(6), clearly show much
better outputs in terms of good increased reliability, high
risk coverage, better defect density along with much higher
deployment frequency and system throughput or
productivity.

10. Conclusion and Future Work

This research focuses on implementation of already

proposed hybrid model of DevOps automation tools that is
used to deliver quality software product with reduced
deployment and delivery time. The present research work is
the combination of Jenkins CI/CD tool and JDK web based
application with Tomcat deployment server. This composite
framework consists of inclusion of different required
plugins in Jenkins. This inclusion of Continuous
environment of DevOps not only reduces the development
and delivery time but also accepts frequent changes in
software and delivers continuously with the same quality
and speed as shown in terms of tabular metric values. These
continuous features of DevOps make it the latest buzzword
of IT industry. Tabular results can be of great help to our
young researchers/ students to understand the mode of
operation of DevOps and its automation tools. Software
developers will also benefit faster along with accurate
selection of tool chain for speedy and quality delivery.
Current research can also further be extended to cover more
metric comparison for DevOps with other existing
traditional models.

References
[1] Poonam and Pooja Mittal, DevOps Tools at different stages of

Software Development: Analysis and Review, National Conference

on Emerging Trends in Smart Computing, ETSC-2019, Organized

by Department of Computer Science and applications, Maharshi

Dayanand University, Rohtak (Hry), ISBN 978-93-80544-35-9

[2] Poonam Narang, Pooja Mittal, Hybrid Model for Software

Development: an Integral Comparison of DevOps Automation

Tools, Indonesian Journal of Electrical Engineering and Computer

Science (IJEECE), IAES Publishers, ISSN 2502-4752, Scopus, SJR

2020 (Q3 0.241), Vol 27, No 1, July 2022, pp 456-465.

[3] Debois P., (2008), Agile infrastructure and operations: how

infra-gile are you? Agile 2008 Conference, IEEE, Toronto, ON,

Canada, ISBN: 978-0-7695-3321-6

[4] Lwakatare, L. E., Kilamo, T., Karvonen, T., Sauvola, T., Heikkilä,

V., Itkonen, J., Kuvaja, P., Mikkonen, T., Oivo, M., & Lassenius, C.

(2019). DevOps in practice: A multiple case study of five

companies. Information and Software Technology, 114, 217-230.

[5] Khan AA, Shameem M. Multicriteria decision-making taxonomy

for DevOps challenging factors using analytical hierarchy process. J

Softw-Evol Proc. 2020; 32(10):11-13, e2263.

[6] Leite L, Rocha C, Kon F, Milojicic D, Meirelles P. (2019), A survey

of DevOps concepts and challenge, ACM Computing Surveys

(CSUR). 2019; 52(6):1-35

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.8, August 2022

259

[7] Bolscher R, Daneva M. (2019), Designing software architecture to

support continuous delivery and DevOps: a systematic literature

review, ICSOFT. 2019: 27-39.

[8] Ronny Olguin (2019), DevOps Challenges and Implications,

University of Murcia, Spain, 2019.

[9] Ramdin Jabbari, Nauman Bin Ali, Binish Tanveer, Kai Petersen

(2016), what is DevOps? A Systematic Mapping Study on

Definitions and Practices, ACM Digital Library, published in Proc.

of The Scientific Workshop Conference XP2016.

[10] Trihinas D, Tryfonos A, Dikaiakos MD, Pallis G (2018). DevOps as

a service: pushing the boundaries of microservice adoption. IEEE

Internet Comput;22(3):65-71

[11] Forsgren N, Tremblay MC, VanderMeer D, Humble J (2018).

DORA platform: DevOps assessment and benchmarking.

International Conference on Design Science Research in

Information System and Technology, Springer, Cham.

2018:436-440.

[12] S. W. Hussaini (2014), Strengthening harmonization of

development (dev) and operations (ops) silos in its environment

through systems approach, In IEEE 17th International Conference

on Intelligent Transportation Systems (ITSC), 2014.

[13] Prashant Agrawal, Neelam Rawat (2019), DevOps, A New

Approach to Cloud Development and Testing, International

Conference on Issues and Challenges in Intelligent Computing

Techniques (ICICT), IEEE publications 2019.

[14] Norman E. Fenton and Shari Lawrence Pfleeger (1997). Software

Metrics: A Rigorous and Practical Approach. PWS Publishing

Company 1997.

[15] Pooja Batra, Aman Jatain (2021), Hybrid Model for Evaluation of

Quality Aware DevOps, International Journal of Applied Science

and Engineering, Chaoyang University of Technology, ISSN:

1727-2394.

[16] Terje Aven (2016), Risk assessment and risk management: Review

of recent advances on their foundation, European Journal of

Operational Research, Elsevier, Vol 253, Issue 1, pp 1-13.

[17] Dr Issa Traore (2006), Software Architecture, Chapter 6, EOW 415.

[18] Cobra Rahmani and Deepak Khazanchi (2010), A Study on Defect

Density of Open Source Software, 9th IEEE/ACIS International

Conference on Computer and Information Science, IEEE/ ACIS

ICIS, Yamagata, Japan, 18-20 Aug 2010.

[19] Pulasthi Perera, Roshali Silva, Indika Perera (2017), Improve

Software Quality through Practicing DevOps, 2017 Seventeenth

International Conference on Advances in ICT for Emerging Regions

(ITCer): 013-018.

[20] Alok Mishra, Ziadoon Otaiwi (2020), DevOps and software

quality: a systematic review, Computer Science Review, Elsevier,

Vol 38, 100308.

[21] Leppänen M., Mäkinen S., Pagels M., Eloranta V.P., Itkonen J., Mä

ntylä .M.V., Männistö T. (2015), The highways and country roads to

continuous deployment IEEE Software, 32 (2), pp. 64-72

[22] Parnin C., Helms E., Atlee C., Boughton H., Ghattas M., Glover A.,

et al. The top 10 adages in continuous deployment, IEEE

Software, 34 (3), pp. 86-95

[23] https://codetabs.com/count-loc/count-loc-online.html (accessed

2022)

Poonam Narang, Research Scholar,
pursuing PhD from the Department
of Computer Science and
Applications, Maharishi Dayanand
University, Rohtak, Haryana
under the supervision of Respected
Dr. Pooja Mittal (Research Guide
and Second Author). Author’s
Qualification is M.Phil. (CS), MCA.
She had attended many National and

International Conferences including Springer and IEEE and also
published many research papers. She can be contacted at email:
poonam.mehta20@gmail.com.

Dr. Pooja Mittal obtained her Ph.D.
degree from Maharshi Dayanand
University. Her area of research and
specialization include Data Mining,
Data Warehousing, and Computer
Science. She had published more
than 50 research papers in renowned
International and National Journals
and attended more than 30
Conferences. Currently she is
working as Assistant Professor in the

Department of Computer Science & Applications, Maharishi
Dayanand University, Rohtak (Haryana). She can be contacted at
email: mpoojamdu@gmail.com.

