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Abstract  
For space signal processing systems, reliability, accuracy, 
and performance are major concerns for the detection of 
accurate phase estimation, for and most of the functionality 
of the system, the data is acquiring high speed and 
supervising continuously for validation of correct data. For 
more accuracy, fixed points arithmetic operations have got 
lot of data losses and single-precision floating point 
operations also has data losses. All existing double-
precision floating point arithmetic operations utilizes dual 
rail coding to perform complete detections and also 
required the circuit to receive acknowledge on completion 
execution and it leads to worst-case delay irrespective of 
the actual completion time. With help of modified double 
precision floating point operations, we can obtain more 
reliability by using memory based synchronization 
architecture and high accurate phase detection. In space 
applications, milli degree estimation is major challenge 
and plays important role, in order to estimation milli 
degree, the Double Precision Floating Point (DPFP) based 
arithmetic operations are designed using Verilog hardware 
description language and synthesized with help of Xilinx 
Design Suite 14.7 ISE software tool and finally 
implemented on Virtex-5 FPGA development board. All 
arithmetic operations use ternary logic at lower level 
module design to optimize area and latency. The proposed 
architecture of double precision floating point arithmetic 
operations is good enough in terms of power optimization, 
high speed, optimal delays, hardware utilizations (Slices 
and LUT’s) and smaller-sized edge device. The 
synthesized results show that proposed DPFP based ALU 
design for estimation of milli-degree reduces the overall 
latency to 23%, throughput is improved by 13% and power 
consumption is reducing to 31% as compared to existing 
works.  
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1. Introduction  

In general, division has a substantially larger latency 
than other arithmetic operations. Despite their infrequent 
use, in [1] division is focused and have a considerable 
impact on total different delays. As a result, high-
performance divider design has become a hot topic in high 
throughput and speed computational operations. Efficient 
parallel divisions are necessary for application of 3D 
graphics in computers, image/video/signal processing 
applications that rely heavily on division computational [2] 
[6]. It has effective parallel division’s technique is often 
widely required for optimization of power optimization in 
terms of consumptions and latency in image/signal 
processing and multimedia applications [7]. An Improving 
of performance by lowering pipeline delay is more 
challenging than expanding hardware size in current 
microprocessors. The primary applications for latest 
complex operations which are used in semiconductor area 
is that hardware utilization grows rapidly while clock 
speeds get congested. Furthermore, reducing pipeline 
delay might cause for elimination of various hardware 
logic elements. For specialised ASIC processor, like GPU 
and these processors utilizes more number of registers per 
bits in parallel, it can reduce the number of register bits 
required by minimising parallel latency. Furthermore, 
because the pipeline latency decision may have an impact 
on the overall architecture, _xing the pipeline latency of a 
specific unit may be required [9] describes a Taylor series 
expansion-based high-radix pipelinable division algorithm. 
In these algorithms having more LUT than other 
techniques, variation to this pipelinable division technique 
was presented in [4] to drastically reduce the LUT size. In 
contrast to [4,] [5] suggests a further adjustment for DPFP 
values that greatly decreases chip space, particularly by 
optimizing number of LUT size from 62 KB to 3.7 KB 
using taylor series [10]. The performance and 
dependability of space-based systems are critical in DSP 
applications. To ensure the authenticity of obtained data, 
perfect functionality of system should often repeatedly be 
testing and monitoring are necessary. We create a new 
digital circuit in this study that can detect minute phase 
deviations in time-varying analogue signals. The angle 
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estimations for 

a single channel input vs a known signal system, also 
for two channels with data collected simultaneously. In 
space borne systems, phase shift data can be utilised to 
either confirm correct system performance or highlight 
potential problems. Data capture system with giga samples 
per second (GSamp/s). NASA Surface Water Ocean 
Topography was created mainly for space related 
applications. Microwave waves will be used to monitor the 
Earth's environment by a number of planned NASA remote 
sensing satellite projects. The use of signal phase to 
characterise obtained data is a typical feature of these 
missions [1].  In each mission will use signal phase in a 
unique way, the fact that their research outcomes are 
dependent on it emphasises the importance of precise 
signal phase measurement [2]. 

 
 

2. Related Work On Floating Point 
Operations 

 
Explaining research chronological, including research 

design, research procedure (in the form of algorithms, 
Pseudocode or other), how to test and data acquisition [5]–
[7]. Floating point implementation on a Field 
Programmable Gate Array (FPGA) is a newer field that has 
seen significant achievements, due to FPGA development 
advantages like speed and latency and low cost than ASIC 
design. [2] Proposed DPFP and Single Precision Floating 
Point (SPFP) arithmetic operations, which were 
subsequently validated on an FPGA for image/signal 
processing HDL programming scripts. This study's main 
purpose is to look at the area and timing of single and 
DPFP and MAC units. On the Spartan 6 FPGA, the 
described model is both simulated and implemented [1]. 
The complex module's floating-point multiplication, i.e. 
mantissa multiplications, was performed using an efficient 
Karatsuba technique, allowing for more efficient use of the 
in-built DSP48E blocks on Xilinx Virtex-5[2]. The 
suggested technique beats current solutions in terms of 
throughput; additionally, due to changes in the DSP slice 
multiplier architecture, a few Altera FPGAs achieve higher 
clock rates [3]. The framework's floating-point multiplier 
takes care of overflow, underflow, and rounding. 
Traditional floating-point multipliers are written in Verilog 
programming language, synthesised, and verified using the 
ISE Simulator [4]. They are based on Vedic mathematics 
and are written in Verilog programming language. 

 
In [5] proposed semi-parallel iterative design is built 

and validated using FPGA, and the findings show that the 
proposed work outperforms with less latency when 
compared to fixed point multipliers with double precision 

presented in this study work [5]. Based on the examination 
of numerous look-up table-based algorithms in the previous 
work, the fundamental blocks of algorithms such as 
multiplier(s) and adder(s)) are re-engineered to enable the 
advantages of area and timing to operate efficiently. We 
use Wong and Goto's algorithms as a foundation for our 
optimization approaches, and the suggested algorithm's 
performance is compared to that of other algorithms in the 
literature based on performance and scalability measures. 
The Wong and Go to division algorithms' precision, i.e. 
latency area, is improved by 26.94 percent [6]. Binary 
addition is the most basic function in arithmetic modules, 
and the adder is the processor's basic arithmetic component. 
A full adder is an important feature in DSP architecture, 
microprocessor, and microcontroller applications, as well 
as data processing modules. The most common purpose of 
parallel multipliers is to achieve faster processing rates at 
the expense of improved area efficiency [7]. This research 
paper presents an adaptive design of a speed, power 
optimized multipliers using shift and add techniques. In [8] 
also covers the design of the Braun multiplier and Wallace 
multiplier and tested in RTL Compiler using Cadence, as 
well as simulation and the development of test circuits for 
each module that makes up the multiplier. Additionally, 
with the assistance of the Cadence tool [8]. MOSFETS, 
which operate in a weak inversion zone, are frequently 
utilised in this design to achieve low power dissipation. On 
a 0.5V supply, the multiplier is built up of four Exponential 
approximation circuits. Tanner tool produces findings and 
simulations using 180nm technology [9].  

 
An array multiplier and a Booth multiplier were used 

to create the Finite Impulse Response Filter, and the results 
were compared to various constraints. The suggested filters 
are written in Verilog HDL and run on the Xilinx 14.7 ISE 
platform. In the area of delay, there has been progress [10]. 
The design's functionality is tested using simulation [11] 
multiplier is a more sophisticated version of the tree-based 
multiplier. The Wallace tree multiplier uses the Carry-Save 
addition method to reduce latency. Vedic mathematics is 
used to create the Vedic multiplier. In Vedic multiplication, 
there are 16 tantras, commencing with "Urdhva 
Tiryakbhyam" [12]. In VLSI systems, cutting the 
consumed power requires reducing the minimum supply 
needs. This study offers a high-performance capacitance 
multiplier that can run on as little as 0.25 V of power. 
Furthermore, using the same CMOS method, The output 
currents generated are 98 times more than the quiescent 
[13]. A stopband filter with a complementary-defected 
ground structure is presented in this study (DGS)[15]. The 
IEEE 754 standard is used to express binary floating-point 
numbers [17]. The Karatsuba multiplication method is 
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written in Verilog HDL and does not require a pipelined 
design. This multiplier can do significant multiplication, 
sign bit operations, and exponent arithmetic. With an 8-
clock cycle delay, the system uses three steps of pipelining 
[16]. 

 
 
 

3. Proposed Double Precision Floating Arithmetic 
Operation For Estimation Of MILLI Degree 
 
Multiplication, division, subtraction, and addition are  

 
3.1 Double precision floating point Multiplication 
 

The standard for floating-point arithmetic [1] includes 
three upgraded operations as new proposed operations: 
augmented Addition, augmented Subtraction, and 
augmented Multiplication. This is these homogeneous 
functions take two binary floating-point values as input and 
return two FP numbers in the 754 format as the input. a 
problem that our multiplication algorithms do not seek to 
solve 

 
Algorithm 1: Double precision floating point 
multiplication 
 
       : Inputs: A and B operands of 64 bits,: Output: double 
precision product 
 
Step1: Separate mantissa’s (Ma and Mb), exponents (Ea 
and Eb) and sign bits from given 64 bits operands 
 
Step2: Add exponents and bias value i.e 1023 is subtracted 
from its value. i.e compute Eout = Ea + Eb       
            - Ebias.   (Ebias = 1023),  
Step3: Implicit bit addition at MSB side of each mantissa’s   
({1’b1,Ma},  {1’b1, Mb}).  M=53 bit, Step4: Multipliy 
mantissa’s like normal integer multiplier and output is 106 
bit. 
Step5: Keep MSB 53 bit in one variable i.e Mout= 
output[105:54],  
Step6: Check MSB of it.  (Mout[53]), whether MSB bit is 
logic 1 or logic 0,  
Step7: If it is one then Efinal= Eout + 1  is called post 
normalization 

Step8: Finally the product is Mfinal= {Mout << 1} is 
called post normalization. 
 

In exiting floating point format, directly combining 
sign bit, exponents and mantissa’s to final product of 
multiplications as shown in Fig. But this process will 
consume more delay, area and power consumption and not 
suitable for complex operations like estimation of milli 
degree for space signal applications or any other complex 
applications. The mantissa’s output are measured with help 
normal integer multiplication of both operands as shown 
step4 in algorithm 1. At last mantissa’s bits rearranged 
through exponents value and then combine to produce final 
product which is in terms of double precision floating point 
format as shown in Fig.  After successful completion of all 
arithmetic operations using double precision floating point 
format as shown in Fig, the following points are 
summarized. When the computation is finished, the input 
operands are divided into sign, exponent, mantissa’s. Each 
segments perform a calculation appropriate for the 
operation, such as addition, subtraction, division, and 
multiplication.  
 
Sign: The sign of both inputs is determined by performing 
an XOR operation on the two input signs.  
 
Exponents: If an exponents differ; then larger exponent 
value is subtracted from lessor. The mantissa bits are 
shifted to the right for the input with a smaller exponent to 
align the two integers to the same decimal point.   
 
Mantissa: Mantissa measures the value of the Mantissa’s 
help fixed point operations. The Mantissa bit 
addition/subtraction operation may produce a result that is 
one bit greater than the Mantissa bit of both inputs. To 
acquire exact results, we increased the number of Mantissa 
bits for both inputs, then performed Mantissa 
addition/subtraction based on the Mantissa calculation 
findings, whether MSB is 0 or 1, and a normalizer is not 
necessary if MSB is zero. If MSB is 1, the normalizer 
moves the previously calculated Exponent and Mantissa 
bits to obtain the final combined values. At last, each 
measured values are combined into one common floating 
point format to get final results of each arithmetic operation 
output 
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Fig.1. Proposed internal architecture of divider 64bit double precision floating point operation using signed 
array 

 
 

Fig.2. Proposed architecture of double precision floating point multiplication 
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Fig.3. Existing floating point operations process [8, 12]. 

 
 
Fig.4. Proposed detailed double precision floating point operation of all arithmetic operations for Milli degree estimation. 
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4. Results and Discussion  
 
            The Xilinx Design Suite 14.7 ISE software 
tool's Design Compiler, which can synthesise Verilog 
HDL designs to digital circuits for SoC, is used to 
compare several existing formats and proposed 
double precision arithmetic operations. The floating-
point format for each bit width is N (S, E, M), where 
N is the total number of bits, S is a sign bit, E is an 
exponent, and M is a Mantissa. The lower the space 
and energy used in floating-point multiplication, as 
shown in Table 1, the fewer bits used. The multiplier 
circuit's most remarkable feature is that, unlike the 
adder/subtractor, its energy consumption skyrockets. 
Finally, Table compares division operators in a 
variety of floating-point formats. Despite the fact that 
the operation delay time remains constant when 

compared to other operators, the smaller the number 
of bits employed for the floating-point division 
operation, the lower the area or energy consumption. 
Many test cases have been run to determine the 
appropriate arithmetic architecture without sacrificing 
millidegree estimation accuracyBased on testing, we 
fed our trained models 10K test images from the 
MNIST dataset to measure inference accuracy as 
shown Fig.. It can operate at frequencies 271 MHz 
and verified the throughput. It uses 5.44 times less 
energy and takes up five times less space than its 
predecessors. We tested our mixed-precision 
architecture on Virtex-7 handwritten dataset and were 
able to reach over 63 percent accuracy. Our 
accelerator is ideal for IoT applications due to its 
small size, power consumption, and accuracy. 

 
. 

 
 

 
Fig. Simulated results of Double precision floating point for multiplication for two operand values such as A= 
342.9 (in Hexadecimal= 40756e6666666666) and B= 672.4 (in Hexadecimal= 4085033333333333) and result 
(A*B) is 2,30,565.96 (in Hexadecimal= 410c252fae147ae0) 
 

 
 
Fig. Simulated results of Double precision floating point for ALU for two operand values 
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 Table.1. Traditional multiplier and proposed Multiplier comparisons 
 

Multiplier 
Slices 
(area) 

LUT Delay (ns) 
Power 
(mW) 

Narjes Hasanikhah [3] 140,818 230,751 7.86 5,264 
Niu [4] 12710 --- 4.69 263.5 

Proposed ZP & FRBM 2231 5000 4.11 88 

 
5. Conclusion  
 

 

The impact of efficient FP ALU for high-speed FP 
formats on the implementation of FP arithmetic in FPGAs 
without native FP capability is investigated in this work. In 
comparison to the IEEE-754 standard, the proposed 
converters to/from any radix allow working at high speeds 
inside the FPGA and returning output numbers in IEEE-
754 format if required for applications using data from an 
IEEE-754 FP source, all while increasing the number of 
significant bits used and dynamic range. The results show 
that the large area and latency benefits of utilising FPGAs 
to build high-speed FP adders may outweigh the limitations 
of using FPGAs to implement high-radix FP multipliers.  

This work allows determining the optimal allowable 
radix of the FP arithmetic representation as a function of 
the ratio between the amount of additions and 
multiplications in the targeted algorithm for algorithms that 
comprise both addition and multiplications. Depending on 
the needs of the designer's unique application, this 
guidance allows the designer to pick between maximum 
speed, area, or a trade-off option. In several operations, 
such as dot product, matrix by matrix multiplications, 
convolutions, and others, the number of addition equals the 
number of multiplications. Many other operations, such as 
matrix and vector addition or average computation, rely on 
addition. Signal processing, machine learning, deep 
learning, computer graphics, wireless communications, and 
other disciplines all make extensive use of these techniques. 
Engineers can utilise this method to build more efficient 
structures in FPGA-based systems while preserving or even 
improving the precision of operations across the board.  
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