
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

808

Manuscript received September 5, 2022
Manuscript revised September 20, 2022

https://doi.org/10.22937/IJCSNS.2022.22.9.105

Design of High Throughput and Low Latency Double Precision
Floating Point Arithmetic Unit for Space Signal Applications

Ponduri Sivaprasad 1, Dr.V.Anandi 2, Dr.Satyanaryana Murthy 3

 1Research Scholar, Visvesvaraya Technological University, Belagavi, Karnataka 590018, India

2Associate Professor, Ramaiah Institute of Technology, MSRIT Post, Bangalore-560054, Karnataka, India
3Principal, Gonna Institute of Information Technology and Sciences, Visakhapatnam,Andhra Pradesh 530053, India

Abstract
For space signal processing systems, reliability, accuracy,
and performance are major concerns for the detection of
accurate phase estimation, for and most of the functionality
of the system, the data is acquiring high speed and
supervising continuously for validation of correct data. For
more accuracy, fixed points arithmetic operations have got
lot of data losses and single-precision floating point
operations also has data losses. All existing double-
precision floating point arithmetic operations utilizes dual
rail coding to perform complete detections and also
required the circuit to receive acknowledge on completion
execution and it leads to worst-case delay irrespective of
the actual completion time. With help of modified double
precision floating point operations, we can obtain more
reliability by using memory based synchronization
architecture and high accurate phase detection. In space
applications, milli degree estimation is major challenge
and plays important role, in order to estimation milli
degree, the Double Precision Floating Point (DPFP) based
arithmetic operations are designed using Verilog hardware
description language and synthesized with help of Xilinx
Design Suite 14.7 ISE software tool and finally
implemented on Virtex-5 FPGA development board. All
arithmetic operations use ternary logic at lower level
module design to optimize area and latency. The proposed
architecture of double precision floating point arithmetic
operations is good enough in terms of power optimization,
high speed, optimal delays, hardware utilizations (Slices
and LUT’s) and smaller-sized edge device. The
synthesized results show that proposed DPFP based ALU
design for estimation of milli-degree reduces the overall
latency to 23%, throughput is improved by 13% and power
consumption is reducing to 31% as compared to existing
works.

Keywords:
Floating point based ALU, Ternary logic, Signal
processing, milli-degree estimation, FPGA.

1. Introduction

In general, division has a substantially larger latency
than other arithmetic operations. Despite their infrequent
use, in [1] division is focused and have a considerable
impact on total different delays. As a result, high-
performance divider design has become a hot topic in high
throughput and speed computational operations. Efficient
parallel divisions are necessary for application of 3D
graphics in computers, image/video/signal processing
applications that rely heavily on division computational [2]
[6]. It has effective parallel division’s technique is often
widely required for optimization of power optimization in
terms of consumptions and latency in image/signal
processing and multimedia applications [7]. An Improving
of performance by lowering pipeline delay is more
challenging than expanding hardware size in current
microprocessors. The primary applications for latest
complex operations which are used in semiconductor area
is that hardware utilization grows rapidly while clock
speeds get congested. Furthermore, reducing pipeline
delay might cause for elimination of various hardware
logic elements. For specialised ASIC processor, like GPU
and these processors utilizes more number of registers per
bits in parallel, it can reduce the number of register bits
required by minimising parallel latency. Furthermore,
because the pipeline latency decision may have an impact
on the overall architecture, _xing the pipeline latency of a
specific unit may be required [9] describes a Taylor series
expansion-based high-radix pipelinable division algorithm.
In these algorithms having more LUT than other
techniques, variation to this pipelinable division technique
was presented in [4] to drastically reduce the LUT size. In
contrast to [4,] [5] suggests a further adjustment for DPFP
values that greatly decreases chip space, particularly by
optimizing number of LUT size from 62 KB to 3.7 KB
using taylor series [10]. The performance and
dependability of space-based systems are critical in DSP
applications. To ensure the authenticity of obtained data,
perfect functionality of system should often repeatedly be
testing and monitoring are necessary. We create a new
digital circuit in this study that can detect minute phase
deviations in time-varying analogue signals. The angle

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

809

estimations for

a single channel input vs a known signal system, also
for two channels with data collected simultaneously. In
space borne systems, phase shift data can be utilised to
either confirm correct system performance or highlight
potential problems. Data capture system with giga samples
per second (GSamp/s). NASA Surface Water Ocean
Topography was created mainly for space related
applications. Microwave waves will be used to monitor the
Earth's environment by a number of planned NASA remote
sensing satellite projects. The use of signal phase to
characterise obtained data is a typical feature of these
missions [1]. In each mission will use signal phase in a
unique way, the fact that their research outcomes are
dependent on it emphasises the importance of precise
signal phase measurement [2].

2. Related Work On Floating Point
Operations

Explaining research chronological, including research

design, research procedure (in the form of algorithms,
Pseudocode or other), how to test and data acquisition [5]–
[7]. Floating point implementation on a Field
Programmable Gate Array (FPGA) is a newer field that has
seen significant achievements, due to FPGA development
advantages like speed and latency and low cost than ASIC
design. [2] Proposed DPFP and Single Precision Floating
Point (SPFP) arithmetic operations, which were
subsequently validated on an FPGA for image/signal
processing HDL programming scripts. This study's main
purpose is to look at the area and timing of single and
DPFP and MAC units. On the Spartan 6 FPGA, the
described model is both simulated and implemented [1].
The complex module's floating-point multiplication, i.e.
mantissa multiplications, was performed using an efficient
Karatsuba technique, allowing for more efficient use of the
in-built DSP48E blocks on Xilinx Virtex-5[2]. The
suggested technique beats current solutions in terms of
throughput; additionally, due to changes in the DSP slice
multiplier architecture, a few Altera FPGAs achieve higher
clock rates [3]. The framework's floating-point multiplier
takes care of overflow, underflow, and rounding.
Traditional floating-point multipliers are written in Verilog
programming language, synthesised, and verified using the
ISE Simulator [4]. They are based on Vedic mathematics
and are written in Verilog programming language.

In [5] proposed semi-parallel iterative design is built

and validated using FPGA, and the findings show that the
proposed work outperforms with less latency when
compared to fixed point multipliers with double precision

presented in this study work [5]. Based on the examination
of numerous look-up table-based algorithms in the previous
work, the fundamental blocks of algorithms such as
multiplier(s) and adder(s)) are re-engineered to enable the
advantages of area and timing to operate efficiently. We
use Wong and Goto's algorithms as a foundation for our
optimization approaches, and the suggested algorithm's
performance is compared to that of other algorithms in the
literature based on performance and scalability measures.
The Wong and Go to division algorithms' precision, i.e.
latency area, is improved by 26.94 percent [6]. Binary
addition is the most basic function in arithmetic modules,
and the adder is the processor's basic arithmetic component.
A full adder is an important feature in DSP architecture,
microprocessor, and microcontroller applications, as well
as data processing modules. The most common purpose of
parallel multipliers is to achieve faster processing rates at
the expense of improved area efficiency [7]. This research
paper presents an adaptive design of a speed, power
optimized multipliers using shift and add techniques. In [8]
also covers the design of the Braun multiplier and Wallace
multiplier and tested in RTL Compiler using Cadence, as
well as simulation and the development of test circuits for
each module that makes up the multiplier. Additionally,
with the assistance of the Cadence tool [8]. MOSFETS,
which operate in a weak inversion zone, are frequently
utilised in this design to achieve low power dissipation. On
a 0.5V supply, the multiplier is built up of four Exponential
approximation circuits. Tanner tool produces findings and
simulations using 180nm technology [9].

An array multiplier and a Booth multiplier were used

to create the Finite Impulse Response Filter, and the results
were compared to various constraints. The suggested filters
are written in Verilog HDL and run on the Xilinx 14.7 ISE
platform. In the area of delay, there has been progress [10].
The design's functionality is tested using simulation [11]
multiplier is a more sophisticated version of the tree-based
multiplier. The Wallace tree multiplier uses the Carry-Save
addition method to reduce latency. Vedic mathematics is
used to create the Vedic multiplier. In Vedic multiplication,
there are 16 tantras, commencing with "Urdhva
Tiryakbhyam" [12]. In VLSI systems, cutting the
consumed power requires reducing the minimum supply
needs. This study offers a high-performance capacitance
multiplier that can run on as little as 0.25 V of power.
Furthermore, using the same CMOS method, The output
currents generated are 98 times more than the quiescent
[13]. A stopband filter with a complementary-defected
ground structure is presented in this study (DGS)[15]. The
IEEE 754 standard is used to express binary floating-point
numbers [17]. The Karatsuba multiplication method is

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

810

written in Verilog HDL and does not require a pipelined
design. This multiplier can do significant multiplication,
sign bit operations, and exponent arithmetic. With an 8-
clock cycle delay, the system uses three steps of pipelining
[16].

3. Proposed Double Precision Floating Arithmetic
Operation For Estimation Of MILLI Degree

Multiplication, division, subtraction, and addition are

3.1 Double precision floating point Multiplication

The standard for floating-point arithmetic [1] includes
three upgraded operations as new proposed operations:
augmented Addition, augmented Subtraction, and
augmented Multiplication. This is these homogeneous
functions take two binary floating-point values as input and
return two FP numbers in the 754 format as the input. a
problem that our multiplication algorithms do not seek to
solve

Algorithm 1: Double precision floating point
multiplication

 : Inputs: A and B operands of 64 bits,: Output: double
precision product

Step1: Separate mantissa’s (Ma and Mb), exponents (Ea
and Eb) and sign bits from given 64 bits operands

Step2: Add exponents and bias value i.e 1023 is subtracted
from its value. i.e compute Eout = Ea + Eb
 - Ebias. (Ebias = 1023),
Step3: Implicit bit addition at MSB side of each mantissa’s
({1’b1,Ma}, {1’b1, Mb}). M=53 bit, Step4: Multipliy
mantissa’s like normal integer multiplier and output is 106
bit.
Step5: Keep MSB 53 bit in one variable i.e Mout=
output[105:54],
Step6: Check MSB of it. (Mout[53]), whether MSB bit is
logic 1 or logic 0,
Step7: If it is one then Efinal= Eout + 1 is called post
normalization

Step8: Finally the product is Mfinal= {Mout << 1} is
called post normalization.

In exiting floating point format, directly combining
sign bit, exponents and mantissa’s to final product of
multiplications as shown in Fig. But this process will
consume more delay, area and power consumption and not
suitable for complex operations like estimation of milli
degree for space signal applications or any other complex
applications. The mantissa’s output are measured with help
normal integer multiplication of both operands as shown
step4 in algorithm 1. At last mantissa’s bits rearranged
through exponents value and then combine to produce final
product which is in terms of double precision floating point
format as shown in Fig. After successful completion of all
arithmetic operations using double precision floating point
format as shown in Fig, the following points are
summarized. When the computation is finished, the input
operands are divided into sign, exponent, mantissa’s. Each
segments perform a calculation appropriate for the
operation, such as addition, subtraction, division, and
multiplication.

Sign: The sign of both inputs is determined by performing
an XOR operation on the two input signs.

Exponents: If an exponents differ; then larger exponent
value is subtracted from lessor. The mantissa bits are
shifted to the right for the input with a smaller exponent to
align the two integers to the same decimal point.

Mantissa: Mantissa measures the value of the Mantissa’s
help fixed point operations. The Mantissa bit
addition/subtraction operation may produce a result that is
one bit greater than the Mantissa bit of both inputs. To
acquire exact results, we increased the number of Mantissa
bits for both inputs, then performed Mantissa
addition/subtraction based on the Mantissa calculation
findings, whether MSB is 0 or 1, and a normalizer is not
necessary if MSB is zero. If MSB is 1, the normalizer
moves the previously calculated Exponent and Mantissa
bits to obtain the final combined values. At last, each
measured values are combined into one common floating
point format to get final results of each arithmetic operation
output

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

811

Fig.1. Proposed internal architecture of divider 64bit double precision floating point operation using signed
array

Fig.2. Proposed architecture of double precision floating point multiplication

Exponent A

Exponent B

APU APU APU -------

APU APU APU -------

APU APU APU -------

Am Bm Am-1 Bm-1 Am-n Bm-n

Q(n-1)

Q(n-2)

Q(n-3)

1

1

1

Subtractor &
Compensator

Output double
precision 64-bit

floating point format

Double precision
64-bit floating
point format

A

Sign A

Double precision
64-bit floating
point format

B

Sign B

Mantissa B

Mantissa A

XOR

Divider final results

Signed Array

Mantissa A
Double precision

64-bit floating
point format

Double precision
64-bit floating
point format

Compensator &
adder

Conventional
Multiplier

Product Output
double precision
64-bit floating
point format

A

B

XOR

Exponent B

Exponent A

Mantissa B

Exponent & Mul

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

812

Fig.3. Existing floating point operations process [8, 12].

Fig.4. Proposed detailed double precision floating point operation of all arithmetic operations for Milli degree estimation.

Read data for two
operands

Separate of data in both
operands

Sign bit Separate of Exponents Separate of Mantissa’s

Combination of sign bit, Exponents and Mantissa’s

End

Input B:
Mantissa

Double precision
64-bit floating
point format B

Sign B

Comparison
of both sign

bits

Sign Add/Sub
Double precision

64-bit floating
point format A

Integer
Subtraction/Adder

Compensator

Product Output double
precision 64-bit

floating point format

Sign A

Input A:
Mantissa

Mantissa after
Sub/Add

Sign
Add/Sub

Final product

MUX Sign B

~Sign

Exponent A

Exponent B

Normalization
before final results

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

813

4. Results and Discussion

 The Xilinx Design Suite 14.7 ISE software
tool's Design Compiler, which can synthesise Verilog
HDL designs to digital circuits for SoC, is used to
compare several existing formats and proposed
double precision arithmetic operations. The floating-
point format for each bit width is N (S, E, M), where
N is the total number of bits, S is a sign bit, E is an
exponent, and M is a Mantissa. The lower the space
and energy used in floating-point multiplication, as
shown in Table 1, the fewer bits used. The multiplier
circuit's most remarkable feature is that, unlike the
adder/subtractor, its energy consumption skyrockets.
Finally, Table compares division operators in a
variety of floating-point formats. Despite the fact that
the operation delay time remains constant when

compared to other operators, the smaller the number
of bits employed for the floating-point division
operation, the lower the area or energy consumption.
Many test cases have been run to determine the
appropriate arithmetic architecture without sacrificing
millidegree estimation accuracyBased on testing, we
fed our trained models 10K test images from the
MNIST dataset to measure inference accuracy as
shown Fig.. It can operate at frequencies 271 MHz
and verified the throughput. It uses 5.44 times less
energy and takes up five times less space than its
predecessors. We tested our mixed-precision
architecture on Virtex-7 handwritten dataset and were
able to reach over 63 percent accuracy. Our
accelerator is ideal for IoT applications due to its
small size, power consumption, and accuracy.

.

Fig. Simulated results of Double precision floating point for multiplication for two operand values such as A=
342.9 (in Hexadecimal= 40756e6666666666) and B= 672.4 (in Hexadecimal= 4085033333333333) and result
(A*B) is 2,30,565.96 (in Hexadecimal= 410c252fae147ae0)

Fig. Simulated results of Double precision floating point for ALU for two operand values

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

814

 Table.1. Traditional multiplier and proposed Multiplier comparisons

Multiplier
Slices
(area)

LUT Delay (ns)
Power
(mW)

Narjes Hasanikhah [3] 140,818 230,751 7.86 5,264
Niu [4] 12710 --- 4.69 263.5

Proposed ZP & FRBM 2231 5000 4.11 88

5. Conclusion

The impact of efficient FP ALU for high-speed FP
formats on the implementation of FP arithmetic in FPGAs
without native FP capability is investigated in this work. In
comparison to the IEEE-754 standard, the proposed
converters to/from any radix allow working at high speeds
inside the FPGA and returning output numbers in IEEE-
754 format if required for applications using data from an
IEEE-754 FP source, all while increasing the number of
significant bits used and dynamic range. The results show
that the large area and latency benefits of utilising FPGAs
to build high-speed FP adders may outweigh the limitations
of using FPGAs to implement high-radix FP multipliers.

This work allows determining the optimal allowable
radix of the FP arithmetic representation as a function of
the ratio between the amount of additions and
multiplications in the targeted algorithm for algorithms that
comprise both addition and multiplications. Depending on
the needs of the designer's unique application, this
guidance allows the designer to pick between maximum
speed, area, or a trade-off option. In several operations,
such as dot product, matrix by matrix multiplications,
convolutions, and others, the number of addition equals the
number of multiplications. Many other operations, such as
matrix and vector addition or average computation, rely on
addition. Signal processing, machine learning, deep
learning, computer graphics, wireless communications, and
other disciplines all make extensive use of these techniques.
Engineers can utilise this method to build more efficient
structures in FPGA-based systems while preserving or even
improving the precision of operations across the board.

References
[1]. B. Zhou, G. Wang, G. Jie, Q. Liu and Z. Wang, "A High-

Speed Floating-Point Multiply-Accumulator Based on
FPGAs," in IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 29, no. 10, pp. 1782-1789,
Oct. 2021, doi: 10.1109/TVLSI.2021.3105268.

[2]. W. Mao et al., "A Configurable Floating-Point Multiple-
Precision Processing Element for HPC and AI Converged
Computing," in IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 30, no. 2, pp. 213-226, Feb.
2022, doi: 10.1109/TVLSI.2021.3128435.

[3]. L. Gao et al., "DPF-ECC: A Framework for Efficient ECC
With Double Precision Floating-Point Computing Power," in
IEEE Transactions on Information Forensics and Security,
vol. 16, pp. 3988-4002, 2021, doi:
10.1109/TIFS.2021.3098987.

[4]. Z. Galias, "Periodic Orbits of the Logistic Map in Single and
Double Precision Implementations," in IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 68, no. 11, pp.
3471-3475, Nov. 2021, doi: 10.1109/TCSII.2021.3081604.

[5]. M. Fasi and M. Mikaitis, "Algorithms for Stochastically
Rounded Elementary Arithmetic Operations in IEEE 754
Floating-Point Arithmetic," in IEEE Transactions on
Emerging Topics in Computing, vol. 9, no. 3, pp. 1451-1466,
1 July-Sept. 2021, doi: 10.1109/TETC.2021.3069165.

[6]. F. Zaruba, F. Schuiki, T. Hoefler and L. Benini, "Snitch: A
Tiny Pseudo Dual-Issue Processor for Area and Energy
Efficient Execution of Floating-Point Intensive Workloads,"
in IEEE Transactions on Computers, vol. 70, no. 11, pp.
1845-1860, 1 Nov. 2021, doi: 10.1109/TC.2020.3027900

[7]. N. S. Mangalath, R. A. Priya and P. Malathi, "An efficient
universal multi-mode floating point multiplier using Vedic
mathematics," 2014 International Conference on Advances
in Communication and Computing Technologies (ICACACT
2014), 2014, pp. 1-4, doi: 10.1109/EIC.2015.7230724.

[8]. M. K. Jaiswal and N. Chandrachoodan, "Efficient
Implementation of IEEE Double Precision Floating-Point
Multiplier on FPGA," 2008 IEEE Region 10 and the Third
international Conference on Industrial and Information
Systems, 2008, pp. 1-4, doi: 10.1109/ICIINFS.2008.4798393.

[9]. Shanmugapriyan S and Sivanandam K, "Area efficient run
time reconfigurable architecture for double precision
multiplier," 2015 IEEE 9th International Conference on
Intelligent Systems and Control (ISCO), 2015, pp. 1-6, doi:
10.1109/ISCO.2015.7282355.

[10]. A. P. Ramesh, A. V. N. Tilak and A. M. Prasad, "An FPGA
based high speed IEEE-754 double precision floating point
multiplier using Verilog," 2013 International Conference on
Emerging Trends in VLSI, Embedded System, Nano
Electronics and Telecommunication System (ICEVENT),
2013, pp. 1-5, doi: 10.1109/ICEVENT.2013.6496575.

[11]. S. Nair and T. S. B. Sudarshan, "An asynchronous double
precision floating point multiplier," 2015 IEEE International
Conference on Electrical, Computer and Communication

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

815

Technologies (ICECCT), 2015, pp. 1-5, doi:
10.1109/ICECCT.2015.7226153.

[12]. A. Jain, R. Jain and J. Jain, "Design of Reversible Single
Precision and Double Precision Floating Point Multipliers,"
2018 International Conference on Advanced Computation
and Telecommunication (ICACAT), 2018, pp. 1-4, doi:
10.1109/ICACAT.2018.8933712.

[13]. Y. S. Rao, M. Kamaraju and D. V. S. Ramanjaneyulu, "An
FPGA implementation of high speed and area efficient
double-precision floating point multiplier using Urdhva
Tiryagbhyam technique," 2015 Conference on Power,
Control, Communication and Computational Technologies
for Sustainable Growth (PCCCTSG), 2015, pp. 271-276, doi:
10.1109/PCCCTSG.2015.7503923.

[14]. F. Mhaboobkhan, K. Kokila, R. Jothikha and K. L.
Preethikha, "Design of Pipelined Parity Preserving Double
Precision Reversible Floating Point Multiplier Using 90 nm
Technology," 2020 6th International Conference on
Advanced Computing and Communication Systems
(ICACCS), 2020, pp. 739-744, doi:
10.1109/ICACCS48705.2020.9074209.

[15]. P. Anuhya and R. Dhanabal, "Asic Implementation of
Efficient Floating Point Multiplier," 2018 4th International
Conference on Electrical Energy Systems (ICEES), 2018, pp.
138-141, doi: 10.1109/ICEES.2018.8443236.

[16]. K. Manolopoulos, D. Reisis and V. A. Chouliaras, "An
efficient multiple precision floating-point multiplier," 2011
18th IEEE International Conference on Electronics, Circuits,
and Systems, 2011, pp. 153-156, doi:
10.1109/ICECS.2011.6122237

[17]. M. K. Jaiswal and H. K. -. So, "DSP48E efficient floating
point multiplier architectures on FPGA," 2017 30th
International Conference on VLSI Design and 2017 16th
International Conference on Embedded Systems (VLSID),
2017, pp. 1-6, doi: 10.1109/ICVD.2017.7913322.

Right Shifter

SWAPING

2’c Complement
adder

Cont Inverter

Left

Sign(d

Overflow=

LZOD

Contd. Inverter

01.10101

Unbiase
d

M M

(0)1.1010(1 (0)1.0100(1

(0)1.1000(1

Mz

Operation: Adder
P= Sx, MxEx

Q= Sy, MyEy

Z S M E

Cop

d=1

d=0

