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Abstract 
Sleep stage scoring is frequently done manually by sleep analysts 
who examine polysomnographic (PSG) data collected in sleep labs. 
The inspection procedure, on the other hand, is time-consuming 
and complex. Because of these limits, an ASSC system is more 
important than ever. As previously stated, the ASSC, which is the 
identification of discrete phases of sleep, is widely used to 
diagnose and treat numerous sleep disorders. The evolution and 
problems of multiple existing approaches for sleep stage 
categorization based on Electroencephalogram (EEG) data are 
examined in this research. The ASSC largely depends on 
numerous signal processing modification techniques to extract 
characteristics from EEG data. Previous feature extraction 
techniques may be classified into four categories based on their 
domain: time-domain, frequency-domain, time-frequency domain, 
and nonlinear features. We cover the benefits and downsides of 
various techniques in each section. We also learnt about the 
fundamentals of electroencephalography (EEG), the many forms 
of sleep disorders, and the standard EEG databases used to 
evaluate investigations.              

Keywords: Sleep stage scoring, Electroencephalogram, time-
frequency features, machine learning, sleep disorders. 

1. Introduction   

Sleep is an essential human requirement that is vital for 
their health. Sleep substantially influences the brain and 
plays an essential part in a person's performance, physical 
activity, and learning ability [1-3]. Sleep is thought to be a 
reversible state in which the eyelids close and many neural 
systems become dormant. Thus, sleep can render an 
individual fully or partially unconscious, resulting in 
reduced brain activity. A human spends about one-third of 
their life sleeping. In general, the amount of sleep required 
varies according to age. The National Sleep Foundation 
(NSF) recommends that most individuals get seven to nine 
hours of healthy sleep each night. The NSF changed their 
recommendations in 2015 based on rigorous literature, and 
they are displayed in Table 1. 

 

 

 

Table.1 Sleep Recommendations 
Name  Age  Required hours of sleep 

Infant  4 - 11 months 12 – 15 hours 

Toddler  1 – 2 Years  11 – 14 hours 

Pre-schooling  3 – 5 years   10 – 13 hours 

School-age child 6 – 13 years  9 – 11 hours 

Teen  14 - 17  years  8 – 10 hours 

Young Adult  18 – 25 years 7 – 9 hours 

Adult  26 – 64 years 7 – 9 hours 

Older adult  65+ years 7 – 8 hours 

Sufficient sleep is essential due to the presence of a 
direct relationship between sleep quality and an individual's 
mental and physical function. Sleep problems are on the rise 
in the modern world as a result of a stressful and mechanical 
lifestyle. Furthermore, several studies have found that 
certain neurological and physiological conditions can 
interfere with regular sleep patterns [8].According to a 
report [4, 5], roughly 50–70 million people in the United 
States suffer from sleep disturbances. Furthermore, sleep 
disturbances are responsible for more than 90% of 
depressive disorders [6].Only around 30% of adults receive 
fewer than six hours of sleep every night, whereas only 
about 30% of high school kids get at least eight hours [15]. 
Furthermore, sleep difficulties can lead to a variety of issues, 
including melancholy, tiredness, and even mortality. 
According to a survey conducted by the National Highway 
Traffic Safety Administration in the United States, sleeping 
while driving was responsible for at least 100,000 
automobile accidents [7]. In Germany, one out of every four 
accidents is caused by sleep problems, while in Australia, 
more than a billion dollars has been spent on deaths caused 
by tiredness. Based on these findings, sleep may be viewed 
as a severe issue that must be addressed by humans. 
Furthermore, it is necessary to create automatic sleep 
analysis technologies that can identify sleep-related 
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illnesses such as sleep apnea, insomnia, narcolepsy, 
sleepiness, exhaustion, and so on. 

There are 84 different categories of sleep disorders 
based on the international classification of sleep disorders 
(ICSD-II) criteria [9].Sleep issues not only have an 
influence on physical activity throughout the day, but they 
also have a long-term impact on cognitive processes such as 
learning, attention, and memory. Excessive daytime 
sleepiness, neurocognitive impairments, and cardiovascular 
illness are some of the possible consequences of 
Obstructive Sleep Apnea Syndrome (OSAS) [10]. Accurate 
sleep-scoring prediction based on numerous biological 
records is essential to safeguard people from these 
calamities. The primary goal of sleep stage scoring is to 
identify sleep phases that are important in the diagnosis and 
treatment of sleep disorders. In general, sleep stage grading 
is performed using polysomnographic (PSG) recordings 
obtained from patients during their nightly sleep at the 
hospital [11]. Electromyogram (EMG), Electrocardiogram 
(ECG), Electrooculogram (EOG), and 
Electroencephalogram (EEG) are the greatest examples of 
PSG data (EEG). Visual scoring approaches, in which 
diverse signals are subjected to visual interpretation, have 
achieved extensive use to date [12]. However, visual 
scoring systems have various drawbacks, such as the 
expert's experience, which might result in different results 
from different experts [13, 14]. Furthermore, the visual 
examination is a time-consuming process in which the 
expert must identify the EEG all night. As a result, 
automated scoring entered the picture, which was an 
efficient way of sleep stage scoring. 

Several academics have recently presented several 
strategies for automated sleep stage scoring processing. To 
generate an appropriate sleeping stage score for a patient 
based on biological inputs, several signal processing 
approaches and machine learning methods have been 
developed [16]. All of these approaches are roughly 
classified into two types: single-channel and multi-channel 
processing methods. Only EEG is employed in the first 
technique to analyze sleep problems. EEG provides the 
most important information about brain activity, which is 
employed not only in brain research but also in the study of 
neurological illnesses [17]. Sleep neurology is an active 
issue in contemporary biological research, in which EEG 
data are utilized to investigate and assess the functionality 
of the brain during sleep, as well as to diagnose various 
types of sleep disorders. There are several ways for 
classifying sleep phases that involve single channels [18-
20]. Multi-channel approaches, on the other hand, use 
several biological signals for sleep stage categorization, 
such as EMG [21] and EOG. Although multi-channel 
approaches [22, 23] are more successful than single-channel 
methods, they impose an exorbitant expense on patients, 

particularly in the sleep test at home. Furthermore, the 
increased number of wires attached to the patient causes 
sleep disruption [24].  This research examines numerous 
cutting-edge automated sleep staging approaches, as well as 
their benefits and drawbacks. The whole evaluation is 
divided into four sections based on the characteristics 
gathered from EEG signals: time-domain features; 
frequency domain features; time-frequency features; and 
nonlinear features. We addressed the advantages and 
disadvantages of each of these feature models. Furthermore, 
we investigated the specifics of typical visual examination 
methods used in the past for sleep stage categorization. 
Along with the cutting-edge methodologies, we addressed 
the specifics of various typical datasets.  The remainder of 
the study is organized as follows: Section II examines 
preliminary EEG studies in depth, such as fundamental 
EEG features, different forms of sleep disorders, and 
different datasets utilized in previous research. Section III 
delves into the specifics of cutting-edge procedures and was 
completed in four sub-phases. The final part addresses the 
analysis and concludes with observations made during this 
survey. 

2. Preliminaries 

In this section, we go over preliminary elements 
including EEG acquisition, EEG frequency bands, and the 
many categories of sleep disorders recognized by 
conventional researchers. 

2.1 Electroencephalogram 

In general, the human brain is seen as a dynamic 
network made of millions of neurons linked together by 
dendrites and axons. The primary function of neurons is to 
enable adequate communication from and to the brain. 
According to [25], the entire brain may be split into three 
primary structures: the stem, cerebellum, and cerebrum. 
The cerebrum is the largest of these three structures and is 
separated into two hemispheres that each have an outer 
surface known as the cerebral cortex. Again, this cortex is 
divided into four lobes: occipital, temporal, parietal, and 
frontal [26]. To evaluate brain activity, many forms of 
biological signals are produced, including Positron 
Emission Tomography (PET) [28], functional Near-
Infrared Spectroscopy (fNIRS) [29], functional Magnetic 
Resonance Imaging (f-MRI), Magnetoencephalography 
(MEG), and EEG. Among these signals, EEG is proven to 
be the most effective and powerful signal, carrying the most 
relevant information and having the greatest practical 
recommendations in clinical neurology. EEG is a non-
invasive technique for measuring the electrical activity of 
the cerebral cortex. EEG is recorded by putting many 
electrodes in different places on the scalp of the head.  PSG 
data are typically collected in one night by monitoring the 
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patient's sleep EEG, chin and leg surface EMGs, EOG 
signals, blood oxygen level, respiratory rate, and airflow 
through the mouth and nose [30]. The visual evaluation of 
complete night PSG data is done using two standard 
procedures: Rechtschaffen and Kales [31] and the 
American Academy of Sleep Medicine (AASM) [32]. 
According to the R&K and AASM standards, the EEG 
signal is a more informative bio-signal than other signals. 
EEG signal experts first divide the signal into tiny epochs 
depending on certain intervals. Then they graphically mark 
each era depending on the rhythm of its standards 
(frequency bands) [33]. The four standard EEG rhythms are 
Beta, Alpha, Theta, and Delta (shown in Table.2). 
Furthermore, two additional rhythms that occur mostly 
during the second sleep period are called K-complexes and 

spindles. Figure 1 depicts examples of EEG signals from 
various frequency bands. 

Table.2 Rhythms (Frequency bands) of EEG 

Name of Band (Rhythm) Frequency range (Hz)  

Delta 0.5 – 4 

Theta  4 – 8 

Alpha  8 – 13 

Beta 13 – 30 

Spindles  12- 1 4 

K-Complexes  0.5 – 1.5 

 

 

 

 

 

 

 

 

 

 

Fig.1 samples of EEG signals at different frequency bands. (a) Beta (12-30), (b) Alpha (8-12), (c) Theta (4-8) and (d) Delta (0.5-4) 

2.2 Types of Sleep disorders 

For about three decades, the R&K sleep categorization 
paradigm controlled sleep stage research, and it is now a 
generally acknowledged standard for determining human 
sleep problems [34]. The sleep study is divided into seven 
phases, according to R&K standards: Movement Time 
(MT), Rapid Eye Movement (REM), Non-rapid Eye 
Movement (NREM) includes stages 1, 2, 3, and 4, and 
Wakefulness (W). Even if the R&K standardized sleep via 
seven phases, there are still several concerns to be handled 
[35]. A minimum of three  electrodes must be put on the 
occipital, central, and frontal head regions, according to the 
most recent AASM model. This scenario focuses on REM 
sleep, slow-wave sleep, microarousal, K-complexes, sleep 

spindles, sleep phases, and sleep and waking transition. In 
contrast to the R&K standard, the MT stage is retraced in 
AASM, and sstages 3 and 4 are integrated into N3. The new 
AASM trend eliminates the R&K norm and has little 
influence on the REM phases, Sleep Efficiency, and Total 
Sleep Time. It does, however, have a significant effect on 
sleep latency measurement, NREM sleep distribution 
phases, and Wakes After Sleep Onset (WASO). These 
consequences have a substantial influence on both scientific 
and clinical investigations. There are five sleep phases, as 
described by AASM standards, and they are listed in Table 
3. 
 
 
 

Table.3 Different types of sleep disorders according to AASM 

(a)

(b)

(c)
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Stage Description  

Wake 
(W) 

This stage is rendered through the help of alpha or faster 
frequency bands that occupy more than 50% of the epoch, 
larger EMG tone, and frequent eye movements.    

REM This stage is characterized if any saw-tooth wave is 
observed in the epoch along with rapid eye movements and 
a lower EMG signal.      

N1 This stage is characterized by the alpha that occupies more 
than 50% epoch during theta activity, evidenced by vertex 
waves and slow rolling eye movements.  

N2 This stage is characterized by when the epoch is observed 
to have K-complexes (less than three minutes) and sleep 
spindles.   

N3 This stage is characterized by the detection of delta 
activity over 20% of epoch length.  

 
 

2.3 Databases used in research  

Several databases are created by past researchers 
for the stud and analysis of sleep disorders in human beings. 
Some of them are briefly outlined here. 

2.3.1 Sleep-EDF database 

The Sleep EDF database [36] has a total of 197 PSG 
recordings from a single night. This database contains 
several biological signals such as chin EMG, EOG, EEG, 
and Event markers. Some of the records additionally 
include body temperature and breathing. The sleep patterns 
are manually graded by well-trained professionals using the 
R&K standard visual assessment procedure. These patterns 
(Hypnograms) are not rated and consist of sleep phases W, 
R, 1, 2, 3, 4, M. 

2.3.2 St. Vincent's University Hospital EEG 

This dataset [37] contains 25 PSG recordings collected 
over the course of a single night using a three-channel 
HolterEEG. Adults are submitted to suspected sleep 
problem breathing for the purpose of creating this database. 
Subjects are chosen at random throughout a six-month 
period beginning in September 2002 and ending in February 
2003. Patients referred to the sleep disorders clinic at St. 
Vincent's University Hospital in Dublin for a probable 
diagnosis of primary snoring, central sleep apnea, and 
obstructive sleep apnea were used to identify the 
participants. All of the patients are over the age of 18, and 
none of them has heart illness or autonomic dysfunction and 
is not taking medication. Twenty-five people (4 females and 
21 men) were chosen for PSG recordings. A well-trained 
technician assessed the sleep phases according to R&K 
standards and labelled each epoch with eight annotations: 
Wake, REM, Stage 1, 2, 3, 4, Artifact, and Indeterminate. 

2.3.3 Cyclic Alternating Pattern EEG database 

The CAP sleep database [38, 39] contains a total of 108 
PSG recordings obtained at the Ospedale Maggiore of 
Parma, Italy's centre for sleep disorders. The EEG 
waveforms include three EEG channels (C3 or C4, F3 or F4, 
and O1 or O2, also known as A1 or A2), two EOG channels, 
EMG signals from the submentalis muscles, bilateral 
anterior tibial EMG, respiration signals (SaO2, thoracic 
effort, abdominal, and airflow), and an EKG. A total of 16 
health subjects are used, all of whom are free of medicines 
that influence the central nervous system and do not suffer 
from any neurological problems. Among the 108 recordings, 
92 are abnormal recordings (2-bruxism, 4-SBD, 5-
narcoleptic, 9-insomnia, 10-PLM 22-RBD, and 40 NFLE). 
The scoring is supplied by experienced neurologists in 
accordance with the R&K regulations. Each epoch is 
denoted by the letters W, S1-S4, R, and MT. EEG signals 
are captured at 512 Hz, and pre-filtering such as LP (30 Hz), 
HP (0.3 Hz), and Notch Filter are used (50 Hz). 

2.3.4 HMC Sleep Staging database 

The sleep staging database at Haaglanden Medisch 
Centrum (HMC) [40] comprises of 154 PSG recordings 
obtained in a whole night with the assistance of 154 
individuals (66 Female and 88 Male) in the year 2018. This 
database contains ECG, Chin EMG, EOG, and EEG data. 
Annotations that proclaim the grading of sleep patterns 
(hypnograms) are also accessible and are annotated with the 
assistance of a well-trained specialist at HMC. All epochs 
are assigned to one of five sleep disorders: W, N1-N4, and 
R. 

3. Literature Survey 

The conventional approach for sleep stage 
classification consists of three stages: pre-processing, 
feature extraction, and classification. Figure 2 depicts the 
total sleep stage classification approach. The input EEG 
data is pre-processed in the first phase, which removes 
external artefacts and disturbances. Following that, the 
feature extraction phase entails extracting a collection of 
features from the EEG. Finally, the final phase uses 
machine learning techniques to classify the input EEG 
based on the extracted characteristics by comparing them to 
pre-trained features. We concentrated on feature extraction 
in this part because each technique uses a machine learning 
algorithm for classification. There are four types of 
comprehensive feature extraction methods: time-domain 
features, frequency domain features, time-frequency 
domain features, and nonlinear features. 
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Fig.2 General Schematic of Automatic sleep stage classification system 

3.1 Time domain features   

Time-domain characteristics may be immediately 
retrieved from the EEG data and are easy to understand and 
use. Due to their straightforward interceptive nature, they 
are easily suitable for real-time application and may depict 
the signal's morphological characteristics. For the PSG 
records of 20 healthy patients, K. Susmakova and A. 
Krakovska [41] assessed time-domain variables such as 
distribution characteristics and linear spectra measurements. 
They divided each epoch into five stages, such as waking 
and four stages of sleep, after analyzing 818 measurements. 
In the instance of a one-dimensional signal, they used the 
Fisher Quadratic classifier for classification. For the 
characterization of the sleep stage, B. Weiss et al. [42] 
performed a spatio-temporal analysis of the multifractal and 
monofractal properties of EEG data. The range of fractal 
spectra (dD) and approximated Hurst exponent (H) in 10 
healthy participants was measured. At all electrodes, they 
saw higher levels of H for NREM stage 4 compared to 
tREM stage 2 and REM. The dD measure, however, reveals 
the opposing contribution. They only archived a substantial 
performance in the categorization of REM and NREM stage 
2 as a result of this contentious resolution. Using the EOG, 
EMG, and EEG recordings of five healthy people, S. Ozsen 
[43] proposed a novel approach for classifying sleep stages. 
They extracted the characteristics from EEG epochs using a 
modified sequential feature selection technique. They 
utilized five distinct designs of an artificial neural network 
(ANN) for classification, each of which made use of various 
features and network parameters. In order to categorize 
sleep into six phases, M. Diykh et al. [44] collected 
statistical data in the temporal domain and used the 
structural graph similarity and the K-means method 
(SGSKM). Every EEG signal is originally divided into 
numerous segments since they are thought of as single-
channel signals. The next step is to extract statistical 
characteristics from each segment and feed them to 

SGSKM for classification of sleep phases. The 
categorization of EEG data is then performed by O.K. Fasil 
and R. Rajesh [45] using an exponential energy 
characteristic. The upper and lower bounds of the time 
domain exponential energy, which are better suited for low 
and high amplitude data, were used to represent each EEG 
epoch. 

The Hjorth feature component was created by B. 
Hjorth [46] and was based on the statistical motions of the 
EEG power spectrum. It has been discovered that this novel 
feature is less complicated than traditional time-domain and 
frequency-domain features. Complexity, Mobility, and 
Activity are Hjorth characteristics that, respectively, 
quantify the variance of time series, the fraction of standard 
deviation of the power spectrum, and the variation in 
frequency. Three specific feature groups were constructed 
by B. L. Su et al. [47]. The EEG signal's waveform pattern 
is intercepted by the first group. The next two groups were 
made to deal with problems caused by differences in EEG 
signals between people.  

3.2 Features of the Frequency Domain 

When measuring frequency domain characteristics, the 
appropriate features are assessed after the EEG signals are 
converted to the frequency domain. Higher-order spectra 
and spectral characteristics are the two types of frequency 
features (HOS). The EEG signal is first converted into the 
frequency domain using the Fourier transform in order to 
extract spectral characteristics (FT). Following the 
computation of the autocorrelation across the frequency 
domain signal, an estimation of power spectral density is 
made. PSD can be estimated using non-parametric or 
parametric approaches, respectively. 

Non-parametric techniques derive the PSD values 
from the signal samples in a specified time range. The 
Welch and Periodogram non-parametric techniques are the 
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two most used. In their technique for sleep staging based on 
rules, S. F. Liang et al. [48] investigated analyzing twelve 
characteristics. They collected spectral and temporal 
information from EMG, EOG, and EEG data. They created 
a hierarchical decision tree with fourteen rules for 
categorization. The K-Means Clustering-Based Feature 
Weighting (KMCFW) mechanism is a mix of the K-NN (k-
nearest Neighbor) method and decision tree classifiers, as 
suggested by S. Gunes et al. [49]. Each EEG signal is 
represented by 129 characteristics according to the feature 
extraction method they used, Welch spectral analysis [50]. 
Additionally, they calculated the mean, standard deviation, 
maximum, and lowest values for 129 characteristics in order 
to lower the feature count. Although the fundamental 
benefit of FT is its ease of implementation, they have also 
benefited from low-frequency resolution at shorter length 
signals. 

On the other hand, model-based approaches are used 
in parametric methods to estimate the PSD. Moving 
Average (MA), Autoregressive (AR), and Autoregressive 
Moving Average are examples of model-based methods 
(ARMA). Using EEG data, T. Kayikcioglu et al. [51] 
suggested a quick approach for classifying sleep stages. By 
monitoring the changes in the frequency spectrum, they 
assessed the frequency domain characteristics. They used 
the AR approach to extract coefficients for each 5-s epoch. 
Partial Least Squares (PLS) was used to categorize three 
features for classification purposes, with an optimal beta 
determined using k-fold cross-validation. In order to 
monitor the poles of a second-order time-varying AR model 
fitted over an EEG signal, M. Rahbar et al. [52] constructed 
a reliable model based on Kalman filtering. By segmenting 
the broad frequency bands into several subbands depending 
on the brain's rhythms, they were able to increase the 
frequency resolution. Only when the length is large and the 
SNR is low do the parametric approaches work. Since it is 
necessary for the other two models, the decision of the AR 
order has a greater influence. 

Another frequency domain feature extraction 
technique used in several biological applications is HOS [53, 
55]. The frequency content of higher-order statistics of 
signals is represented by HOS. Because the signal in HOS 
has a second-order spectrum, phase information is lost 
during the power spectrum computation. The capacity of 
HOS to examine the non-linearity and non-Gaussian 
properties of the EEG signal is by far its greatest benefit. 
The HOS are particularly helpful in the analysis of sleep 
EEG signals since the EEG signal is a complicated type 
signal that requires nonlinear interaction of frequency 
components. HOS was utilized by U. Acharya et al. [54] to 
extract secret data from EEG sleep signals. For various 
stages of sleep, they suggested bi-coherence and bi-
spectrum plots that may be utilized as visual motifs in a 

variety of diagnostic applications. These plots are used to 
extract a variety of HOS characteristics from NREM stages 
1-4, REM, and W sleep phases. The Gaussian Mixture 
Model (GMM) is then given the information to 
automatically identify the various phases of sleep. 

3.3 Time-Frequency Domain Features  

Since the EEG signal is non-stationary, or has 
changing properties over time, many time-frequency 
approaches are used to analyze it. A time-domain EEG 
signal may be converted into a time-frequency signal in a 
general sense using modelling, energy distribution, and 
decomposition. Applications involving sleep often employ 
the final two techniques [56, 57]. There are primarily two 
techniques for signal decomposition: the Short Time 
Fourier Transform and the Wavelet Transform. The STFT 
breaks down the EEG signal into a number of fundamental 
operations. The technique of time-frequency analysis is 
both easy and efficient. The signal is initially evenly 
windowed in STFT, and then each window is put through a 
frequency domain transformation using FT. The most 
common decomposition technique is WT, which uses 
several types of filters to break down a signal into dyadic 
frequency scales. The mother wavelet function is where all 
of the various filters have their roots. Both the continuous 
and discrete varieties of WT can be used for the 
investigation of sleep stages. WT is an effective instrument 
since it provides many frequency resolutions for the signal 
description. After decomposition, the signals are orthogonal 
to the mother wavelet function. Furthermore, the complete 
wavelet characteristics cannot be invaded by coloured noise 
at different scales. 

As a result, several writers created various time-
frequency feature-based sleep stage categorization 
techniques. For the categorization of sleep stages, T. H. 
Sanders et al. [58] introduced the cross-coupling system 
(CFC). To increase classification accuracy, they also 
integrated average power with CFC. A wide range of 
feature extraction techniques, including those in the 
frequency, temporal, and time-frequency domains, were 
used by S. Khaligi et al. [59]. They sought to identify the 
ideal signal combination by taking into account three 
signals, including EEG, EOG, and EMG. For the extraction 
of time-frequency features, they used a shift-invariant 
transform known as the Maximum Overlap Wavelet 
Transform (MODWT). They then used a support vector 
machine (SVM) for classification after using histogram 
analysis for feature selection. et al. [60] extracted 
characteristics from an ECG to identify tiredness using the 
Discrete Wavelet Transform (DWT). They first applied a 
bandpass filter with cut-off frequencies of 0.5 Hz and 100 
Hz to the original ECG recordings to extract the noise from 
them in order to remove the muscle movements. Then, 
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using a 3rd order Debauchies' wavelet filter with five stages 
of decomposition, the filtered signal is submitted to DWT. 
The bands are then classified using K-means clustering by 
computing various statistical parameters, such as the mean, 
standard deviation, variance, and median for each band. 

With the use of three time-frequency-based techniques, 
including the Hilbert Huang Transform (HHT), Continuous 
Wavelet Transform (CWT), and Choi-Williams 
Distribution, Fraiwan L et al. [61] adopted single-channel 
EEG-based sleep staging (CWD). They calculated Renyi's 
entropy for the retrieved characteristics and then fed them 
to classification using a random forest approach. A two-
stage sleep categorization approach was suggested by T. 
Sousa et al. in [62]. Each epoch was initially classified into 
various nodes of a decision tree using SVM.The 
misclassified epochs are identified and a new classification 
is proposed in the next phase. Through the use of the 
wavelet transform, spectral analysis, and fuzzy c-means 
algorithm (FCM), M. Obayya et al. [63] sought to 
categorize six phases of sleep. Every 30 epochs, a total of 
12 health recordings are examined. For the purpose of 
detecting sleepiness, Khushaba, R.N. et al. [64] employed 
three signals, including the ECG, EEG, and EOG. For 
feature extraction, they created the effective fuzzy mutual 
information-based wavelet packet transform (FMIWPT). 
Fuzzy memberships that accurately reflect the content are 
used to calculate the MI. To extract useful features from 
EEG, EMG, and EOG for apnea-hypopnea detection, 
Schlüter, T., and S. Conrad [65] employed FT in 
conjunction with wavelet transform and Dyadic Dynamic 
Time Warping (DDTW) in conjunction with waveform 
recognition. They were classified using a decision tree 
algorithm and adhered to R&K sleep phases. Jain V. P. et 
al. [66] used wavelet transformations and ANN to classify 
sleep stages using EEG information. Time-frequency 
analysis for feature extraction was used by Tsinalis, O. et al. 
[67] to identify different phases of sleep in accordance with 
the AASM guidelines. For classification, they applied an 
ensemble learning technique using a group of stacked 
sparse autoencoders. Transfer SVM (TSVM), a modified 
form of SVM created by Wu and Wen [68], is used to 
classify different phases of sleep using an ECG. 
Additionally, they used DWT to extract features. They 
divided the EEG into four subbands by raising the 
frequency of each band by four, assuming that the majority 
of sleep material is present in the ECG at 0–30 Hz. After 
DWT, four approximate and four precise bands are obtained. 

An Optimized Flexible Analytic Wavelet Transform 
(OFAWT) was created by Sachin Taran et al. [69] for the 
categorization of sleep phases using EEG data. By resolving 
the inequality constraint, they used a genetic algorithm to 
optimize the parameters of OFAWT. The time domain 
measurements are used as EEG features, and OFAWT 

decomposes the signal on a band-limited basis. The 
classification is then carried out sub-band-wise using a 
variety of techniques, including decision trees, ensemble 
classifiers, k-NN, and discriminant analysis. By combining 
Dual State-Space Models (DSSMs) and Local Energy (LE), 
H. Shen et al. [70] suggested improved model-based 
essence features (IMBEFs) for the categorization of sleep 
phases. Initially, they used Wavelet Packet Decomposition 
to break down the EEG data into specifics and 
approximations (WPD). The LE is then estimated using 
specifics, while DSSMs are measured using approximations. 
After that, the sleep is categorized in accordance with R&K 
principles, using the collected IMBEFs as input to the 
proper classifier. Two recurrent neural network (RNN) 
models were used by F. Moradi et al. [71] to categorize the 
different phases of sleep. To determine the connection 
between EEG signals and musical tones, they used DWT 
and WPD. CWT was used to extract EEG characteristics 
while playing musical rhythms. Then, music is produced 
using the pre-trained RRNs. 

The EEG was divided into six subbands using five 
layers of wavelet decomposition by Sharma M. et al. [72]. 
They modified it for a time-frequency two-band energy 
localization filter. They then construct discriminating 
characteristics from the decomposed coefficients, such as 
log energy and fuzzy entropy, and feed them to various 
supervised machine learning algorithms for classification. 
Empirical Mode Decomposition (EMD) [74] was used by 
Hasan A. R. et al. [73] to segment the baseline ECG data 
before computing characteristics based on statistical 
movements. Then, for classification purposes, they used 
adaptive boosting algorithms and decision trees. As soon as 
possible, Hasan A. R. et al. [75] enhanced their approach by 
using the EMD instead of the Ensemble EMD (EEMD). The 
calculated statistical movements are sent to the newly 
created classifier known as Random Under Sampling 
Boosting for each segment (RUSBoost). 

Additionally, other writers used time-frequency 
characteristics to achieve the categorization of sleep phases 
using deep learning methods like Convolutional Neural 
Network (CNN). The Hilbert-Hubert Transform (HHT) was 
first applied to the EEG data by Zhang et al. [76] before the 
generated features were sent to orthogonal CNN (OCNN) 
for classification. Similar to this, XU et al. [77] classified 
sleep stages using several CNN architectures on multi-
channel EEG recordings. The EEG input was directly fed 
by Mousavi [78] to a deep CNN that has nine convolutional 
layers and two fully linked layers. They used no feature 
extraction or feature selection techniques; hence, they saw 
very low accuracy followed by increased complexity. They 
created a classifier that could interpret both the EEG data 
and the pictures using an LSTM-based RNN. With a single-
channel EEG, Korkalainen et al. [79] employed a CNN and 
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LSTM neural network combination to analyze public 
datasets. For the categorization of sleep phases using single-
channel EEG recordings, Michielli et al. [80] used a 
cascaded RNN architecture based on LSTM. The 
classifications of classes two and four were tested by the 
writers. 

3.4 Nonlinear Features 

Some writers employed the nonlinear feature 
extraction approach to categorize the various stages of sleep 
since the EEG data includes nonlinear features and 
complicated dynamics [81, 84]. The goal of F. Karimzadeh 
et al. [83] was to identify and analyze cyclic alternative 
patterns (CAP), a crucial component of ECG signals. To 
distinguish CAPs from non-CAPs, they used SVM, k-NN, 
and LDA to assess a family of entropy characteristics. T. 
Nakamura et al[87] .'s goal was to use fuzzy entropy and 
permutation entropy to automatically classify sleep stages 
from EEGs. Multi-scale entropy analysis starts with these 

two entropies as its kernels. They took into account a sleep 
transition signal that comes before epoch data by 30 seconds. 
They used SVM for categorization as well. To describe 
EEG recordings, J. L. R. Sotleo et al. [88] extract entropy 
characteristics from them. The Q-alpha technique is then 
used to optimize them for relevance. The last sleep step is 
obtained by feeding the generated characteristics to a 
clustering method [89]. An entropy-based strategy for the 
categorization of sleep phases using multi-channel EEG 
recordings was put out by R. K. Tripathy et al. [90]. They 
first used a novel Multivariate projection-based fixed 
boundary empirical wavelet transform to divide signals into 
subbands (MPFBEWT). Then, using the multi-channel data, 
they calculate entropy characteristics like dispersion and 
bubble entropies. Finally, a mixed learning algorithm is 
employed to categorize the various stages of sleep. This 
approach employs sparse representation and distances from 
nearest neighbours and is based on class-specific residuals. 

 

  Table.4: Literature survey comparison on the Automatic sleep stage classification 
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4. Discussion and Conclusion 

The primary goal of this work is to present a clear and 
extensive analysis of several automated approaches to classifying 
different stages of sleep. Clinical applications of sleep staging to 
evaluate brain function are numerous. Furthermore, the success of 
a visual inspection strategy relies heavily on the analyst's level of 
experience and training. In addition, there should be no more than 
an 83% similarity between two experts' assessments on the same 
sleep signal [91]. However, the age of the expert also has a 
substantial influence on accuracy since the eyes and brain 
weariness varies greatly amongst experts. 

4.1 Discussion on features  

The results of the study show that four main categories of 
variables are used for EEG sleep stage categorization. Features can 
be classified as either time-based, frequency-based, time-
frequency-combination, or nonlinear. The survey's observations 
on these four classes of traits are addressed in detail below. 

4.1.1 Time features   

According to the cited study, time domain characteristics 
were the first to be applied to the automated stage categorization 
of sleep. Therefore, measures of central tendency and dispersion 
including mean, variance, skewness, kurtosis, and so on are 
recommended for sleep research. AR [92] is widely utilized for 
EEG analysis and has shown promising results in sleep stage 
discrimination [93]. As a result, the AR coefficients are widely 
regarded as a useful tool in a variety of contexts. However, time-
domain characteristics suffer greatly from being too sensitive to 
additive disturbances. 

4.1.2 Frequency features  

Each sleep stage is given its own set of frequencies in the 
context of frequency characteristics aided sleep stage 
categorization. Various strategies, including HOS, parametric, and 
non-parametric, are used to depict various spectral bands under 
this heading. Research shows that the characteristics derived from 
the Welch approach are superior than those derived from any other 
method. This is because non-parametric approaches are more 
successful than parametric ones since they are less sensitive to 
noise and more resistant to motion artefacts and disturbances. 
Since the calculation of a single autocorrelation function is all that 
is required by the non-parametric approaches. The HOS 
characteristics, on the other hand, probe the frequency behaviour 
of the relevant cumulant and offer phase coupling within the signal. 
When compared to other frequency-domain characteristics, the 
HOS of a signal provides unique information and allows for the 
extraction of many features since it reflects the surface qualities in 
bi-frequency space. On the other hand, the HOS capabilities place 
a significant computational strain due to the many signal 

multiplications with its shifted counterparts. The limited 
frequency range of EEG is the biggest drawback of using HOS. 

4.1.3 Time-Frequency features         

The time and frequency information of the signal are both 
readily available, which is the major benefit of time-frequency 
characteristics. These characteristics may be broken down into two 
broad classes: linear and nonlinear. Spectrogram and Choi-
Williams are used to extract linear characteristics from the EEG 
data, whereas Wavelet and STFT are used to obtain nonlinear 
features. The wavelet properties are effective in identifying the 
sleep stage transition because the onset of sleep is related to both 
amplitude fluctuations and frequency band shifts. In contrast to 
frequency features, which often need proper auto-correlation 
function computations, wavelet features have this step eliminated. 
The wavelet features are robust over long time periods because 
they are insensitive to the non-stationary nature of EEG signals. In 
summary, the wavelet transform offers greater benefits in EEG 
analysis than the alternative time-frequency domain 
characteristics. In this specific context, the CWT outperforms the 
DWT with regard to frequency resolution inside the sub-band. For 
classifying sleep phases, CWT gives more stable and elicited 
characteristics, and the features are more redundant than those 
given by DWT [94].  
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