
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

840

Manuscript received September 5, 2022
Manuscript revised September 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.9.109

Adopting Graph-Based Machine Learning Algorithms to Classify
Android Malware

Abdelrahman Elsharif Karrar
College of Computer Science and Engineering

Taibah University, Medina, Saudi Arabia

Abstract
As mobile device usage grows, it is worth noting that smartphones
are among the most important inventions of the century. The
evolution of smartphones and access to affordable internet has
made technology an integral part of our daily lives. Android
operating systems have provided an adaptable environment for
hackers to develop new mobile applications loaded with malware
through which attacks such as denial of service and privacy
breaches are executed. Malware developers exploit vulnerabilities
in the installation and runtime files to execute cyberattacks on the
devices. The present study adopts a graph-based machine learning
algorithm to manage imperative permissions and API
functionalities using application data from the Drebin project, in
which 15,036 applications were tested to determine the most
important features for malware detection. Machine learning
techniques such as Logistic Regression Algorithm (LR), Decision
Tree Algorithm (DT), K-Nearest Neighbor Algorithm (KNN), and
Random Forest (RF) Algorithm are used in the classification and
training of malware detection programs. The findings suggest that
the RF technique achieves the highest rate of recall (96%) and
accuracy (97%) while KNN and DT deliver (96%) accuracy while
LR delivers (95%).

Keywords:
 Graph-Based Model; Machine Learning;
Classification Algorithms; Android Malware Detection.

1. INTRODUCTION

Smartphones are the most popular mobile devices
used to perform a wide range of functions to aid users' day-
to-day activities. The devices have created a new social
connectivity aspect, especially due to the rapid adoption in
military systems, enterprises, and state agencies[1].
Smartphones expose users to potential cybersecurity threats
caused by black market applications freely accessed by
unregulated developers. Successful exploitation of Android
vulnerabilities by black market applications could
potentially limit user activity and modify or transmit
sensitive data without authorization[2].

It is noticeable that the Android operating system
is the most popularly used in smartphones. Also, the
market for Android applications is largely unregulated,
creating a potential risk of malicious applications being
downloaded into user devices. Due to the rapid

proliferation of freely available Android applications,
users are exposed to a significant risk of undetected
malware.

Therefore, mobile app developers must introduce
novel configurations to guarantee the integrity and
privacy of user information[3] using countermeasures
such as signature-based antivirus scanners and malware
classification programs[4][5]. Such countermeasures
deliver varying rates of accuracy depending on their
functional mechanisms.

Machine learning approaches have been broadly
utilized in detecting malware through classic pattern
recognition based on static and dynamic mechanisms to
ensure scalability to cybersecurity's changing scope [6].
Machine learning techniques outperform traditional
static and dynamic time consumption and scalability
approaches since they thoroughly explore the
substances and software details[7]. Feature selection
and learning rate are the main factors that influence the
performance of ML-based cybersecurity solutions due
to their superior performance in detecting false
positives[8].

This study aims to develop a graph-based model for
classifications of Android malware utilizing machine
learning strategies and detect unidentified malware by
utilizing machine learning techniques with low resource
requirements and computation costs by exploring the
mobile device security from the context of API calls and
sensitive permissions, which are integrated, trained, and
tested by embedding classifier models in feature vectors
space[1]. This paper is focused on adopting an adaptable
feature security approach to deliver superior feature
generation performance with reduced resource
consumption.

The rest of this paper is structured as follows:
Section 2 reviews related work. Section 3 demonstrates
the proposed methodology. Section 4 evaluates the
experiments and discusses the results. Finally, Section 5
concludes the paper by identifying limitations and
recommendations for future work.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

841

2. RELATED WORK

2.1. Mobile Android systems and Mobile Android
apps

Android started as a project of the U.S technology
corporation Android Inc. in 2003 to design OS for a
digital camera [9]. In November 2007, the present
Android version was called "Beta" as the original formal
commercial version. The Android version has been
coded under Sweet since April 2009 and distributed
alphabetically[10]. Android operating system is
established on the Linux kernel and operates for cellular
computers and phones[4]. Typically, the Android phone
comes with various in-built apps. Also, it supports third-
party software and apps[11]. Designers can develop
software for Androids using the free SDK (Android
software designer kits)[12]. Android software is
published in Java and runs via Java virtual machines
(JVMs) that are improved for mobile gadgets.
Also known as mobile apps or just apps, mobile
applications care software applications or computer
programs developed to operate mobile gadgets like
watches, phones, and tablets[13]. Mobile applications
are downloaded from app distribution networks run by
OS owners such as Google Play Store or APP Store
(iOS), who provide certain free applications and others
at a fee.

2.2. Android security architectures

Android architectures make applications of
isolation models to design operating systems with
security features [12]. As illustrated in Fig. 1, the
Android operating systems are developed on top of the
Linux kernel. The Linux kernels are responsible for
integrating primary system services like physical device
access through network management, driver, power
management, process management, and memory
accessibility. Libraries and the Linux kernel are the
major building blocks of Android platforms. Linux
kernel, the bottom Android architecture layer, offers
fundamental model functionality such as device
management like system drivers, Bluetooth, displays,
keypads, cameras, and process management[14].
Libraries, the top Android architecture consists of SSL
libraries accountable for internet security, libraries for
playing and recording audios and videos, SQLite
database for application data sharing and storage, Free
Type, SGL, media frameworks, well-known labs, and
open-source web browser engines and web-kits.

Fig. 1. Android Software Stacks

Android runtime is the third part in the second
section from the bottom in Android architecture. This
part offers major components known as Dalvik Virtual
Machines, particularly developed and optimized for
Androids [15]. The application framework section
offers multiple high-level services to apps in the form of
java programs. The app framework directly interacts
with the Android architecture blocks [12].

2.3. The Android attack surfaces

Attack surfaces are the target features that make
android applications susceptible to intrusions or attacks.
Attack vectors refer to the ways by which intruders
exploit vulnerabilities to engage in malicious
activities[9]. Contrary to attack vectors, attack surfaces
do not rely on intruder activities or existing
vulnerabilities as they are often undiscovered code
susceptibilities. The system can be secured or exploited
more rapidly by focusing on specific attack surfaces.
Therefore, it is essential to categorize android devices
because they have such complex attack surfaces, which
may be difficult to detect using standard techniques [10].
Some of the more basic attack surfaces for android
gadgets, along with certain prorogation mechanisms and
attack vectors, are exemplified in Fig. 2;

Fig. 2. Android Attack Surfaces

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

842

2.4. Mobile Malware definition and Malware life
cycle

Mobile malware is malicious software or
programs that are particularly developed to target phone
gadgets like tablets and smartphones to get accessibility
to confidential information [16].

Malware for phone devices in general and
Androids in specific replicate the virus behaviors
experienced on desktops [17]. Their life cycle is
designed in seven major stages.

In the creation stage, the programmers design and
execute all malicious codes that will be integrated into
the malware.

In the Gestation stage, the malicious apps infiltrate
and settle in the systems they want to infect [18].
Malicious apps remain inactive throughout this phase,
so their presences remain completely unknown to the
users.

The infection or reproduction stage is where the
malware reproduces many times before manifestation
[9]. The malware authors seek to access confidential
information by remotely controlling gadgets. The
malware spreads through social engineering or file-
sharing approaches on Androids [19]. They use Wi-Fi,
SMS, and Bluetooth as communication techniques and
usually disguise themselves as ordinary applications.
Inactivation stage, some malware activates their damage
routines when specific conditions are met [12]. The
users notice strange behaviors and suspect the presence
of malicious apps in the discovery phase.

The strange behaviors can include the
unavailability of some system functions, performance
losses, and current changes in the homepage of a web
browser [20]. Antivirus updates its virus databases after
new malware discovery in the assimilation stage.

Antidotes or fixes are also recommended -if
possible- to remove these threats[21]. The elimination
phase is when the antiviruses discover the malware and
prompt the users to eliminate them [18]. It marks the
malware's death.

2.5. Mobile Malware types

The various malware intrusions include Trojans,
spyware, ransomware, mobile phishing attacks, mobile
bots, worms, and viruses. Computer worms are malware
types that infect the device and remain active on the
infected system. Mobile bots are malware types that
automatically run after users install them on their
devices [13]. They gain full access to the devices and
their contents and start getting instructions and
communicating with one or more control servers and
commands [22].

Mobile phishing attacks usually come in SMS or
email text messages. The attacks masquerade reputable
entities or people and distribute malicious attachments
and links that can account for data from a victim or
extract login information.

Ransomware is malware that locks the information
on victims' devices and the devices themselves,
typically through encryption. The intruders then
demand payments before the devices, or data ace are
returned to the victims or decrypted [23].

Spywares synchronize with personal data sources
such as notes, email accounts, passwords, and calendar
applications and gather that information and data and
send them to remote servers.

Trojan horse viruses require users to activate
them[24]. Intruders insert Trojan into non-malicious
executable apps or files on mobile devices.

2.6. Android Malware Detection Tools

Antivirus software, firewalls, and intrusion
detection system (IDS) are the three tools used for
malware discovery [25]. An intrusion detection system
(IDS) monitors the networks for policy violations and
malicious activities. Antivirus designers initially used
the attack signatures to scan system files for malicious
activity evidence. Signature-oriented detection systems
monitor inbound network traffics for patterns and
sequences that match particular intrusion signature [26].
Anomaly-based or behavior IDS solutions identify
particular intrusion signatures to identify and review
unusual or malicious behavior patterns[27]. It utilizes
machine learning, statistical and artificial intelligence
approaches to evaluate huge data amounts and network
traffics and detect deviations. Specification-oriented
IDS detections also monitor for any anomalies to detect
the occurrences of intrusion trends [16][28]. It monitors
for their behavior deviations from the normal
specifications.

2.7. Android Malware Detection Techniques

As indicated in Fig. 3, hybrid detection, static
detection, and dynamic detection are the major Android
malware detection classification algorithms.

Fig. 3. Android Malware Detection Techniques

The static detection technique handles the attributes
that are mined from the appellations or suspect files
without execution [29]. This technique analyses

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

843

malware files without running the applications,
detecting the malware without activating the inbuilt
defense mechanisms[7]. Static detection is the safest
and most secure approach to examining malware
because executing the codes could potentially infect the
android systems [18], [29]. Static detections, in their
most fundamental forms, glean information from
malware without even inspecting the codes. Basic static
detections involve analyzing the executable files
without observing or programming the real instructions.
Fundamental static analyses can verify whether files are
malicious, offer information about their functionalities,
and sometimes provide data that will enable the android
systems to generate modest network signatures [30].
Static analysis can be meaningful in identifying packed
files, malicious infrastructures, and libraries[18].
Technical indicators are detected, such as file header
data, domains, and strings like IP addresses, hashes, and
file names can be utilized to establish whether those
files are malicious.

The dynamic detection approaches to monitor and

reviews the executed codes' interactions with the
systems [16]. Dynamic analyses are examinations
conducted after executing malware. Dynamic detection
approaches are the second stage in the malware
assessment process. The closed system is the process of
analyzing and testing programs while the software is
running. Also known as dynamic code scanning,
dynamic analyses improve the diagnoses and
corrections of application crashes, bugs, and memory
issues during their implementation [31]. Dynamic
malware analyses execute suspected malicious codes in
safe environments known as sandboxes. The dynamic
analysis allows security experts to look out for the
malware in action without the risks of allowing them to
escape into the enterprise networks or infect their
systems [32]. The advantage of this approach to
malware analysis is that it identifies dynamic code
loading and records app behavior during the operation
period (29). The dynamic analysis takes time, but it is
effective against the obfuscation of malware.

The hybrid analysis provides advanced security
tools to identify and classify android malware [18].
Hybrid Intrusion Detection (HID) systems offer
intrusion detection capabilities by integrating artificial
neural networks with advanced pattern recognition
engines for effective identification of suspicious
activities within a network. Hybrid detection reliably
identifies known and unknown vectors and
intruders[30]. The integrated system provides a
framework for effective filtering and grouping of
malware threats while providing routine breach
notifications to the users. The security warnings
minimize the number of signals sent to the network

administrators [33]. The hybrid intrusion detection
systems are acquired by integrating Network Traffic
Anomaly Detections (NETADs) and Packet Header
Anomaly Detections (PHADs). These are anomaly-
oriented IDSs with misuse-oriented IDS Snorts that are
open-source projects [29]. Investigators prefer
combining hybrid detection to enhance malware
discoveries because of its dynamic and static detection
approaches[34]. The goal of this study is to develop a
graph-oriented strategy model for the identification and
classification of android malware, applying ML
algorithms with low resource requirements.

3. METHODOLOGY

3.1. Methods

A three-pronged research methodology is applied
in the detection model. Creating connected flow graphs
(CFG) is the first step. CFGs are graphs of the Android
malware datasets that identify the classifications. They
extract characteristics of classifications after that and
select two features of categories, including API calls
and permissions.

The second stage is to choose the most critical
characteristics by utilizing IPA calls and permissions of
graph forms and developing training datasets. The third
stage is to produce classifiers based on four particular
machine learning algorithms from random forest
regressions to K-Nearest neighbor regressions[35],
decision tree regressions, and logistic regressions, and
then identify malware utilizing the classifiers.

3.2. Schemes

Generally, as explained in Fig. 4, the classical
learning strategies have five phases data collection, data
pre-processing, feature extractions[36], feature
selections, and classifications.

Fig. 4. An Overview of Basic Classical Machine Learning Systems

Phases shown in Fig. 5 are used to construct

graph module approaches for Android malware
detections. The Fig. 6 illustrates a series of steps
followed. Dataset is the first phase. Datasets from the
Derbin projects were utilized for this phase. The second

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

844

phase is the pre-processing of Android apps. Static
characteristics such as system API calls and permissions
are obtained in the third phase. The feature selection
phase is the fourth phase. The features obtained in the
feature mining phase are minimized to small sets of
appropriate features in the fourth phase. The fifth phase
is the classification phase. Machine learning models are
trained in this stage. Then, the machine learning
techniques are analyzed utilizing confusion matrix
approaches in the final phase. Fig. 6 depicts the entire
architecture of this model.

Fig. 5. Description of Module Detection Architectures

Fig. 6. The Graph Module Feature Detection Architecture

The study utilized a three-pronged methodology in
the Android malware detection model. The first step is
to create connected flow graphs (CFG) of the Android
malware datasets to establish the classifications. The
feature categories are then categorized from graphs, and

two feature categories are selected with API calls and
permissions.
Select is the second phase. The most critical features are
extracted by utilizing API calls and graph form
permissions. The features are used to establish training
datasets. Generating classifiers on the basis of particular
four machine learning algorithms is the third stage.

The experiments' goals are to examine the
performances of classifiers utilizing characteristics from
Android APK files like permission and API calls to
design accurate detection techniques of malware [9].
F1-scores, logistic regression, k-nearest neighbor,
decision tree, and random forest are the four distinctive
machine learning classifiers employed in this study.
Better outcomes are obtained by taking more
measurements. There are tradeoffs between precisions
and recalls, but recalls are more critical than precisions.

The researchers conducted different experiments to
analyze the four classifiers and respond to the study
questions. The experiments utilized 66% cross-
validation and ten-fold split analysis approaches [37].
The study included features selection evaluation
experiments and machine learning classifiers evaluation
experiments.

3.3. Algorithms

3.3.1. Graph Construction Algorithm

Input: • Datasets (D), the features set (F) are

represented by columns, and the values of
Android apps are represented by rows.
• Categories datasets (D2), the rows
describe each special feature (Fi)
classification (Ci).

Process:

• Extract the columns (F1, F2… Fn) of D in
F.
• Let C = (C1, C2… Cn) set of categories in
(D2).
• For each category Ci ∈ D2, add node Vi to
the set of nodes V if Vi ∈/ V.
• For each feature Fi ∈ D2, add edge Ei to
set of edges E if Ei ∈/ E.

Outputs:

• Return graphs G (V, E) for all
classification (Ci) permission, intents,
command signatures, API calls and other
attributes.
• The classes of attributes that compose
datasets were identified after applying
algorithm one. API calls and data
permission are the two sets we
concentrate on since they are robust
attributes for identifying malware in the
Android system.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

845

Second stage:
The attribute selection stage was executed by choosing
the most common API calls and permissions in
malicious apps and benign to accomplish this.

3.3.2. Graph Extraction Features Algorithm

Input: • Set of apps (Applications) in datasets
(D2)
• Datasets (D2) that have Fi categories ci
(APIs and permissions).

Process:

• StarƟng V ← 0 and E ← 0
• Open the file X // X contain all
connected graph node
• For App Fᵢ ∈ Cᵢ in D2 do // Extract the
(F1, F2… Fn)
• Let F = (F1, F2… Fn) set of categories in
(D) draw node V
• If w (Fᵢ,…., Fn = = 0)
• Then drop the V (single
feature)
• else
• for every Features Fi ∈ X, create edge
between every Features node
• if (Fi connected to Fj, Fn) ∈/ E then
• weight W (Fi, Fj…., Fn) = 1
 (connected graph edge)
• else
• weight W (Fi, Fj…., Fn) =+1 mean the
same connected graph in other Apps
• end if
• end if
• write X in the new dataset D2
• open file Y // contain highest F‐ Score
Form (permissions &API)
• for (Fi ∈ X) do in D2
• use ANOVA filter (Analysis of Variance)
SelectKBest method
• Return frequency Graph G (V, E) highest
F‐score for all features
• write result in file Y
• end for
• end for

Outputs:

• Return frequency graphs G (V, E) greatest
F‐scores Form (APIs and permissions) in file
Y.

3.3.3. Classification Features Algorithm

 Input: Set all Applications (App1, App2, Appn) to
be

Process:

• for each App in D do
• Let F = (F1, F2, F3...Fn) be set of Features
in X
• if (F=0) or (F=1) then
(means=0=benign,1= Malware)

• Return the graph G (V, E). (connected
graph)
• else
• Mal =0; Ben=0
• for Every feature in D (Fi, Fj ……, Fn) ∈ X
do
• Mal = W (Fi, Fj...Fn) ∈ G(Malware)
• Ben = W (Fi, Fj…., Fn) ∈ G(Benign)
• end for
• if Malware score > Benign score then
• Return App ᵢ as malware
• else
• Return Appᵢ as Benign
• end if
• end if
• end for

Outputs:

• Output every app as normal or malware

4. RESULTS AND DISCUSSION

4.1. Features selection evaluation experiments

The datasets went through various steps, such as
cleaning and transforming data. Then, the processed
data was utilized to mine extra representative attributes
using the graph construction algorithms [38]. The
processed data, as a result, was utilized to extract four
kinds of attributes: intents, command signatures, API
calls, manifest permissions, and other command signs
of other features, as indicated in Fig. 7;

Fig. 7. Dataset Categories

The experiments aimed to examine the

characteristics and establish the best vector feature
using the graph construction algorithms. Permissions
and API calls were the two categories extracted from the
datasets (27). The features were selected from the API
and permission graphs for each app according to
algorithms. The number of every attribute is indicated
in Table 1;

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

846

TABLE 1. ATTRIBUTES CLASSIFICATIONS

Number Attributes
Classification

Number of
features

1 Permissions only 110

2 API call only 73

3 API calls and
permissions

183

The ANOVA SelectKBest filter method was used

to extract the most important N-features from each
application. Fig. 8 and Fig. 9 show that the best features
were selected in Table 2 and Table 3.

Fig. 8. Maximum F-Score Characteristics for API Calls

Fig. 9. Maximum F-Score Characteristics for Permissions

TABLE 2. ATTRIBUTE NAMES FOR API CALL AND FREQUENCIES

Attribute Name for API Call Frequencies

['Ljava.lang.Class.cast'] 0.12441

['Ljava.lang.Class.getMethods'] 0.16038

['Ljava.lang.Class.getCanonicalName'] 0.16718

['Android.os.Binder'] 0.17238

['ServiceConnection'] 0.17477

['attachInterface'] 0.19082

['bindService'] 0.19324

['onServiceConnected'] 0.19362

TABLE 3. ATTRIBUTE NAMES FOR PERMISSIONS AND FREQUENCIES

Feature Name for
Permission

Frequencie
s

['WRITE_SMS'] 0.04694

['MANAGE_ACCOUNTS'] 0.07984
['USE_CREDENTIALS'] 0.08330

['READ_SMS'] 0.08864
['RECEIVE_SMS'] 0.09923
['GET_ACCOUNTS'] 0.10792

['READ_PHONE_STATE'] 0.14790

['SEND_SMS'] 0.18394

Besides, attribute classification selections are

utilized in evaluating attribute classifications like API
calls, permission, and other attributes. Evaluations of
attribute classifications were separately performed by
testing or training the classifiers on every attribute
classification (23). The recall values were calculated
and utilized as metrics using a 66% split evaluation
technique, as indicated in the Table 4;

TABLE 4. ATTRIBUTE CLASSIFICATIONS AND EXPERIMENTAL
RESULTS

Num
ber

Attribute
Classifications

Number of
Attributes

Recall
s

1 Permissions only 110 95
2 API calls only 73 96
3 Permissions and API

calls
183 97.3

Android permission is developed to safeguard

Android by stopping Android apps from using the
devices' hardware without permission from users of the
devices or accessing sensitive information and data. The
dataset analyses show that benign apps need less
permission than malware apps. While about 66.4% of
malware apps need over ten permissions, over 90% of
benign apps need lesser than ten permissions, as
indicated in Fig. 10;

Fig. 10. Analysis Results of Benign App Permissions

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

847

4.2. Machine learning classifiers and experiments
evaluations

The major study goal is to recommend approaches
for detecting malware under Android devices. To
accomplish this, the researchers have conducted various
steps from datasets to training, testing, and evaluation of
machine models. The feature matrices were developed
ruing the attribute selection phase. Then, the matrices
were utilized for machine learning systems' training,
testing, and evaluation. To analyze them, four diverse
classifiers were used. Table 5 below shows the four
metrics FPR and TPR, computed for this model of
supplying the datasets.

TABLE 5. FPR AND TPR OF EXISTING PROPOSED TECHNIQUES

ML Methods FP
R

TP
R

Logistic Regressions 60 96
K-Nearest Neighbors 46 97
Random forests 16 96
Decision trees 47 97

The results in this study indicate that the classifiers

with the best accuracies were random forests, then k-
nearest neighbors, followed by a decision tree, and then
logistic regressions while utilizing two diverse splitting
datasets.

4.3. Splitting Dataset

Dividing the datasets into percentages was the first
technique. This implied that categorization findings
were analyzed on the original data subsets [39]. The
datasets were then divided for evaluations by 66%. The
F-measures and Pre., Recalls, the two metrics, are
displayed in Fig. 11;

Fig. 11. F-measures and Accuracies of Splitting Datasets for all
Classifiers

While logistic regressions rated the lowest
accuracy (95%) in malware detection, the random forest
had the greatest accuracy (97%) in malware detection,
as shown in Table 6.

TABLE 6. EVALUATION OF ALGORITHMS FOR SPLITTING DATASET
VALIDATIONS

ML Algorithms Precision Recalls

Logistic
Regressions

96 96

K‐Nearest
Neighbors

97 97

Random forests 99 96.80

Decision trees 97 97

4.4. Cross Validation

The datasets are divided into ten sections known as
folds by WEKA [18]. Each part is held in turn. WEKA
averages the results to conduct ten-fold cross-validation.
The results acquired by using four diverse machine
learning category approaches are displayed in the tables
and figures below. Fig. 12 and Table 7 show the
accuracy percentages accomplished by all four
classifiers and indicate that logistic regressions have the
least accuracy (86.5%) in malware detection, and the
random forest has the greatest accuracy in malware
detection (97%). The decision tree and k-nearest
reported a 96.50% accuracy level each. Table 8
illustrates that. And Fig. 13 explains the error rates.

Fig. 12. F-measures and Accuracy of Cross Validations for All

Classifiers

TABLE 7. TEN-FOLD VALIDATION OF ALGORITHM EVALUATION

ML Algorithms Precision Recalls

Logistic
Regressions

83 85.2

K‐Nearest
Neighbors

94.9 95

Random forests 98 96.2

Decision trees 97 96

TABLE 8. EVALUATION RESULTS OF ALGORITHMS

ML

Algorithm

Splitting Datasets Cross Validations

ACCURA

CIES
F-

MEASUR

ES

ACCURACI

ES
F-

MEASUR

ES

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

848

Logistic
Regressions

95.4 96.5 86.5 85.5

K-Nearest
Neighbors

96.6 97.4 96.5 96

Random
forests

97.3 97.9 97 97.6

Decision trees 96.5 97.3 96.5 96.8

Fig. 13. The Error Rates

4.5. Processing Time

Processing time is described as the time amount
needed to finish the activity that is expressed in seconds.
According to the analysis results, the recommended
random forest needs less processing time compared to
other techniques. Logistic regressions and decision trees
need more processing time[35]. It takes fewer periods to
categorize malware since the suggested method
minimizes calculation complexity to five seconds. Fig.
14 below shows the recommended and existing methods
of processing times based on the attribute choice.

Fig. 14. Classifier Processing Time

5. CONCLUSION

The Android smartphone is greatly vulnerable to
malware attacks and intrusions. The Android
smartphones are prone to these attacks because of their
intrinsic fragility that allows apps to access internal
resources when users unintentionally or intentionally
get permission. Therefore, the investigators have

concentrated on detecting the malicious permission that
results in malware identification. Common to malware
and normal apps, most permissions present themselves
in diverse patterns and lead to intrusions. It is thus
important to get a great combination of the permissions
that can be hazardous. Static analyses are recommended
to identify Android malware in this study. Static
techniques focus on feature selection and production
utilizing graphs. API calls and permissions were the two
natural characteristics to develop new attributes and
train the classifiers utilizing machine learning methods.
Logistic regressions, decision tree regressions, K-
nearest neighbor regressions, and random forest
regressions are the four machine learning algorithms
utilized to categorize the datasets when they are benign
or malicious. The analysis findings show that random
forest regressions are the best classification methods for
feature sets. The recommended technique also needed
less than ten seconds for analyses averagely,
accomplishing recall and accuracy of 96.80% and
97.30%, respectively.

Future studies on the implementation of graph-
based machine learning algorithms to detect and classify
android malware would focus on assessing the
performance of integrated dynamic feature extraction
techniques on larger datasets to generate privacy
protection insights for the growing android users. Since
the present study has not assessed variations in the
attributes of malware detected using the binary
classification approach, future research is recommended
to differentiate the impacts of different types of malware
on application performance to enable users to adopt
issue-specific remediation strategies.

 REFERENCES
[1] P. Yan and Z. Yan, “A survey on dynamic mobile malware detection,”

Software Quality Journal, vol. 26, no. 3, pp. 891–919, 2018, doi:
10.1007/s11219-017-9368-4.

[2] L. He, X. Wang, H. Chen, and G. Xu, “Online Spam Review Detection:
A Survey of Literature,” Human-Centric Intelligent Systems, Jun.
2022, doi: 10.1007/s44230-022-00001-3.

[3] M. S. Adrees, A. E. Karrar, and W. I. Osman, Adoption of Smart Cities
Models in Developing Countries: Focusing in Strategy and Design in
Sudan, vol. 72. 2021. doi: 10.1007/978-3-030-70713-2_84.

[4] M. Alazab, M. Alazab, A. Shalaginov, A. Mesleh, and A. Awajan,
“Intelligent mobile malware detection using permission requests and
API calls,” Future Generation Computer Systems, vol. 107, pp. 509–
521, 2020, doi: https://doi.org/10.1016/j.future.2020.02.002.

[5] M. Algarni, M. Alkhelaiwi, and A. Karrar, “Internet of Things
Security: A Review of Enabled Application Challenges and Solutions,”
International Journal of Advanced Computer Science and
Applications, vol. 12, no. 3, 2021, doi:
10.14569/IJACSA.2021.0120325.

[6] A. G. Akintola et al., “Performance Analysis of Machine Learning
Methods with Class Imbalance Problem in Android Malware
Detection,” International Journal of Interactive Mobile Technologies,
vol. 16, no. 10, pp. 140–162, 2022, doi: 10.3991/ijim.v16i10.29687.

[7] J. Sahs and L. Khan, “A Machine Learning Approach to Android
Malware Detection,” in 2012 European Intelligence and Security

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

849

Informatics Conference, 2012, pp. 141–147. doi:
10.1109/EISIC.2012.34.

[8] A. G. Akintola et al., “Performance Analysis of Machine Learning
Methods with Class Imbalance Problem in Android Malware
Detection,” International Journal of Interactive Mobile Technologies,
vol. 16, no. 10, pp. 140–162, 2022, doi: 10.3991/ijim.v16i10.29687.

[9] Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, “A Combination Method
for Android Malware Detection Based on Control Flow Graphs and
Machine Learning Algorithms,” IEEE Access, vol. 7, pp. 21235–
21245, 2019, doi: 10.1109/ACCESS.2019.2896003.

[10] F. Martinelli, F. Marulli, and F. Mercaldo, “Evaluating Convolutional
Neural Network for Effective Mobile Malware Detection,” Procedia
Comput Sci, vol. 112, pp. 2372–2381, 2017, doi:
https://doi.org/10.1016/j.procs.2017.08.216.

[11] A. E. Karrar and M. F. I. Fadl, “Security protocol for data transmission
in cloud computing,” International Journal of Advanced Trends in
Computer Science and Engineering, vol. 7, no. 1, 2018, doi:
10.30534/IJATCSE/2018/01712018.

[12] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J.
Hoffmann, “Mobile-Sandbox: Having a Deeper Look into Android
Applications,” in Proceedings of the 28th Annual ACM Symposium on
Applied Computing, 2013, pp. 1808–1815. doi:
10.1145/2480362.2480701.

[13] “Stephen A. Ridley,” in Tribe of Hackers, John Wiley & Sons, Ltd,
2019, pp. 208–212. doi: https://doi.org/10.1002/9781119643395.ch53.

[14] H. Zhang, S. Luo, Y. Zhang, and L. Pan, “An Efficient Android
Malware Detection System Based on Method-Level Behavioral
Semantic Analysis,” IEEE Access, vol. 7, pp. 69246–69256, 2019, doi:
10.1109/ACCESS.2019.2919796.

[15] I. U. Haq, T. A. Khan, A. Akhunzada, and X. Liu, “MalDroid: Secure
DL-enabled intelligent malware detection framework,” IET
Communications, Jun. 2021, doi: 10.1049/cmu2.12265.

[16] S. and S. S. and C. R. Raghuraman Chandni and Suresh, “Static and
Dynamic Malware Analysis Using Machine Learning,” in First
International Conference on Sustainable Technologies for
Computational Intelligence, 2020, pp. 793–806.

[17] H. Yuan, Y. Tang, W. Sun, and L. Liu, “A detection method for
android application security based on TF-IDF and machine learning,”
PLoS One, vol. 15, no. 9 September, Sep. 2020, doi:
10.1371/journal.pone.0238694.

[18] J. T. McDonald, N. Herron, W. B. Glisson, and R. K. Benton,
“Machine learning-based android malware detection using manifest
permissions,” in Proceedings of the Annual Hawaii International
Conference on System Sciences, 2021, vol. 2020-January, pp. 6976–
6985. doi: 10.24251/hicss.2021.839.

[19] X. Jiang and Y. Zhou, Android Malware. 2013. doi: 10.1007/978-1-
4614-7394-7.

[20] M. Kakavand, M. Dabbagh, and A. Dehghantanha, “Application of
machine learning algorithms for android malware detection,” Nov.
2018. doi: 10.1145/3293475.3293489.

[21] Y. Liu, K. Guo, X. Huang, Z. Zhou, and Y. Zhang, “Detecting
Android Malwares with High-Efficient Hybrid Analyzing Methods,”
Mobile Information Systems, vol. 2018, 2018, doi:
10.1155/2018/1649703.

[22] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey
of mobile malware in the wild,” in Proceedings of the ACM
Conference on Computer and Communications Security, 2011, pp. 3–
14. doi: 10.1145/2046614.2046618.

[23] G. D’Angelo, F. Palmieri, and A. Robustelli, “A federated approach
to Android malware classification through Perm-Maps,” Cluster
Comput, Aug. 2022, doi: 10.1007/s10586-021-03490-2.

[24] A. Karrar and K. Dahbur, Computing Ethics. New York: Nova
Science Publishers, Inc., 2021. [Online]. Available:
http://www.scopus.com/inward/record.url?eid=2-s2.0-
85109665455&partnerID=MN8TOARS

[25] S. Wang et al., “Krrecover: An auto-recovery tool for hijacked devices
and encrypted files by ransomwares on android,” Symmetry (Basel),
vol. 13, no. 5, May 2021, doi: 10.3390/sym13050861.

[26] O. A. Alzubi, J. A. Alzubi, A. M. Al-Zoubi, M. A. Hassonah, and U.
Kose, “An efficient malware detection approach with feature
weighting based on Harris Hawks optimization,” Cluster Comput, vol.
25, no. 4, pp. 2369–2387, 2022, doi: 10.1007/s10586-021-03459-1.

[27] M. Elmubarak, A. Karrar, and N. Hassan, “Survey in Anomaly and
Misuse Intrusion Detection System,” IOSR Journal of Engineering,
vol. 9, p. 65, Jun. 2019.

[28] Mohamed Elmubarak, Abdelrahman Karrar, and Nafeesa Hassan,
“Implementation Hybrid (NIDS) System using Anomaly Holtwinter
Algorithm and Signature based Scheme,” International Journal of
Advances in Scientific Research and Engineering (IJASRE),
ISSN:2454-8006, DOI: 10.31695/IJASRE, vol. 5, no. 6, pp. 141–148,
Jun. 2019, doi: 10.31695/IJASRE.2019.33278.

[29] M. Dhalaria and E. Gandotra, “Android Malware Detection
Techniques: A Literature Review,” Recent Patents on Engineering,
vol. 14, Jul. 2020, doi: 10.2174/1872212114999200710143847.

[30] M. Ijaz, M. H. Durad, and M. Ismail, “Static and Dynamic Malware
Analysis Using Machine Learning,” in 2019 16th International
Bhurban Conference on Applied Sciences and Technology (IBCAST),
2019, pp. 687–691. doi: 10.1109/IBCAST.2019.8667136.

[31] J. Tang and H. Zhao, “AmandaSystem: A new framework for static
and dynamic Android malware analysis,” Journal of Intelligent &
Fuzzy Systems, vol. Preprint, pp. 1–15, 2022, doi: 10.3233/JIFS-
220567.

[32] T. S. John and T. Thomas, “Evading Static and Dynamic Android
Malware Detection Mechanisms,” in Communications in Computer
and Information Science, 2021, vol. 1364, pp. 33–48. doi:
10.1007/978-981-16-0422-5_3.

[33] A. Rodríguez-Mota, P. J. Escamilla-Ambrosio, and M. Salinas-
Rosales, “Malware Analysis and Detection on Android: The Big
Challenge,” in Smartphones from an Applied Research Perspective,
InTech, 2017. doi: 10.5772/intechopen.69695.

[34] A. Martín, R. Lara-Cabrera, and D. Camacho, “Android malware
detection through hybrid features fusion and ensemble classifiers: The
AndroPyTool framework and the OmniDroid dataset,” Information
Fusion, vol. 52, pp. 128–142, 2019, doi:
https://doi.org/10.1016/j.inffus.2018.12.006.

[35] A. E. Karrar, “The Effect of Using Data Pre-Processing by
Imputations in Handling Missing Values,” Indonesian Journal of
Electrical Engineering and Informatics (IJEEI), vol. 10, no. 2, Apr.
2022, doi: 10.52549/ijeei.v10i2.3730.

[36] M. Umair et al., “Main path analysis to filter unbiased literature,”
Intelligent Automation and Soft Computing, vol. 32, no. 2, 2022, doi:
10.32604/iasc.2022.018952.

[37] M. A. Jerlin and K. Marimuthu, “A New Malware Detection System
Using Machine Learning Techniques for API Call Sequences,”
Journal of Applied Security Research, vol. 13, no. 1, pp. 45–62, 2018,
doi: 10.1080/19361610.2018.1387734.

[38] A. E. Karrar, “Investigate the Ensemble Model by Intelligence
Analysis to Improve the Accuracy of the Classification Data in the
Diagnostic and Treatment Interventions for Prostate Cancer,”
International Journal of Advanced Computer Science and
Applications, vol. 13, no. 1, 2022, doi:
10.14569/IJACSA.2022.0130122.

[39] A. E. Karrar, “A Proposed Model for Improving the Performance of
Knowledge Bases in Real-World Applications by Extracting Semantic
Information,” International Journal of Advanced Computer Science
and Applications, vol. 13, no. 2, 2022, doi:
10.14569/IJACSA.2022.0130214.

