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Summary 
The paper extends Shannon's classical theory of ciphers. Here 
ciphers are modeled by Latin rectangles and their resistance to 
brute force attack is assessed through the valence of cryptograms. 
The valence of a cryptogram is defined as the number of all 
meaningful messages produced by decrypting the cryptogram with 
all possible keys. In this paper, the mean cryptogram valence of an 
arbitrary modern cipher with K keys, N outputs and N inputs, of 
which M inputs are messages, is derived. Furthermore, the lower 
bound on the valence of the cryptograms of entire ciphers is 
derived in this paper. The obtained parameters allow to assess the 
resistance of cryptograms, resp. ciphers against brute force attack. 
The model is general, illustrative and uses a simpler mathematical 
apparatus than existing theory. Therefore, it can also be used as an 
introduction to the theory of resistance of ciphers to brute force 
attack. 
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1. Introduction 

People communicate with each other using messages, 
which are sequences of symbols in which are encoded 
information. The symbols used can be expressed in terms of 
numbers, and so each message can be represented as a 
unique number m. Encryption cryptosystems or ciphers are 
used to hide the contents of messages (see Fig. 1). On the 
sender's side, an encryption function E is used to assign a 
seemingly random number c to the input number m. This 
pseudo-random number is called a cryptogram. The func-
tion E is randomly selected from K of possible encryption 
functions using a parameter called the encryption key e. We 
will therefore formally write the encryption as c = E(m, e). 

 

Fig. 1: Encryption cryptosystem 

The sender sends the cryptogram c over the 
transmission channel to the counter-party. The recipient 
uses a secret parameter, called the decryption key d, to 
select from all K possible decryption functions this function 
D that is the inverse of the encryption function E used. Thus, 

the output of the decryption function will be the original 
message m. Formally, we express this in the notation m = 
D(c, d). 

A possible attacker can intercept on the cryptogram c 
in the transmission channel. However, since he does not 
know the secret decryption key d, he cannot invert the 
cryptogram into the form of the message m. However, he 
can attempt to break the cryptogram, i.e., to discover the 
transmitted message without knowing the key. A universal 
method of breaking a cipher is the so-called brute force 
attack, during which the attacker decrypts the cryptogram 
with all possible keys while analyzing the meaningfulness 
of the obtained results. In this way, he may discover that the 
cryptogram c could have been created by encrypting any 
message from a total of v different messages. The larger the 
value of v, the greater the attacker's uncertainty about which 
of the v possible messages was actually sent. However, if 
the number of possible messages v = 1, then the attacker has 
detected the transmitted message m quite unambiguously 
and so-called has broken the cryptogram c. To make brute 
force attacks more difficult, the number K of keys is chosen 
sufficiently large, with specific key values chosen randomly 
according to a uniform distribution. This is because if 
certain values were more likely than others, the attacker 
would try such keys first in his attack.  

The resistance of ciphers to brute force attack is addressed 
by the secrecy theory. This theory describes the conditions 
under which a cipher is breakable and unbreakable. In this 
context, it should be clarified that mentioned theory only 
makes sense for so-called symmetric ciphers, which are 
cryptosystems whose both keys are secret. The counterpart 
of symmetric ciphers are so-called asymmetric ciphers, 
where the encryption key e is publicly known and only the 
decryption key d is secret. In this case, the indeed 
transmitted message can be determined unambiguously 
from all v possible messages. It is just the message whose 
encryption with the publicly known key e produces the 
original cryptogram c. 

2. Current state 

Ciphers are the subject of a science called cryptology. 
Its origin can be dated back to the 8th century, when the 
Arab scholar Al-Kindi published the first method of 
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breaking cryptograms ([1], p. 17). Since then, experts have 
long won-dered whether there is any such thing as a cipher 
that cannot be broken. In fact, practical experience showed 
that any new cipher was broken eventually. For example, 
the amateur cryptologist and writer E. A. Poe wrote a short 
story in 1843, The Gold Bug, in which he describes the 
breaking of a cryptogram. And through the mouth of the 
protagonist, he utters the phrase “... it may well be doubted 
whether human ingenuity can construct an enigma of the 
kind which human ingenuity may not, by proper application, 
resolve” ([2], p. 63-64). 

The proof of the existence of an unbreakable cipher 
was given by the American mathematician C. E. Shannon 
in his paper [3] in 1949. He called the mentioned type of 
ciphers "perfect secrecy systems". For a cipher to be 
unbreakable, it must satisfy conditions P1 to P3 ([4], p. 68): 
• (P1): N = C = K, where N is the number of possible mes-

sages, C is the number of possible cryptograms, and K is 
the number of possible keys (and hence also the number 
of encryption functions). 

• (P2): The key to encrypt each message is chosen 
randomly according to a uniform distribution. 

• (P3): For each message m and each cryptogram c, there 
is exactly one encryption key that encrypts m into c. 

In relation to condition (P1), it should be noted that in 
the common cryptographic literature, contrary to common 
perception, the term "message" also refers to a sequence of 
symbols that has no meaning in the language. Sequences 
that have meaning in a given language are distinguished in 
cryptography by the term "meaningful message" [5]. 

The best known variant of an unbreakable cipher is the 
Vernam cipher with a one-time key (so-called Vernam’s 
one-time pad, e.g., [6], p. 249). A major drawback of this 
type of cipher is that a key of the same number of symbols 
as the message is required to encrypt the message, and this 
key must be completely random and cannot be reused. 

In common practice, ciphers with shorter keys than 
required by perfect secrecy cryptosystems are used. To 
describe them, Mr. Shannon defined a so-called random 
cipher, for which the following applies:  
• (P4): Messages are sequences of length L symbols from 

an alphabet consisting of B elements. 
• (P5): The total number of messages N = BL, whereby for 

the number M of meaningful messages, M ≤ N. 
• (P6): The decryption of each cryptogram c is modeled by 

randomly selecting a message m according to a uniform 
distribution from all N possible messages. 

For a random cipher, the total number of all messages can 
be expressed as: 

𝑁 ൌ  𝐵 ൌ  2ோ∙ , (1)
where  

𝑅 ൌ logଶ 𝐵 ሾbit/symbolሿ (2)

is the entropy of one alphabet symbol. This quantity tells us 
that at most R bits of information can be represented by one 
alphabet symbol. For the number of meaningful messages, 
the relation is used: 

𝑀 ൌ 2∙ , (3)

where r is the entropy of one symbol of the given language. 
For example, for the English language it holds ([4], p. 77) 
that: 

1.0  𝑟  1.5 ሾbit/symbolሿ . (4)

Closely related to the entropy of the language and the 
entropy of the alphabet is the redundancy D of the language 
for which: 

𝐷 ൌ 𝑅 െ 𝑟 ሾbit/symbolሿ. (5)

The quantity D expresses how many bits of information the 
language symbol carries less than it theoretically could. 
This theoretical limit is the value of R. For example, for an 
English language with B = 26 alphabet symbols, R = log2 26 
= 4.7 [bit/symbol]. For a language entropy of r = 1.25 
[bit/symbol], the redundancy of the English language is then 
D = (4.7−1.25) = 3.45 [bit/symbol]. This means that the 
information capacity of the symbols in English is used to 
approximately 25 percent because (1−D) = 1−3.45/4.7 = 
1−0.73 ≈ 0.25. The higher redundancy of the language 
translates in practice to the fact that messages must be 
longer to encode the same amount of information. On the 
other hand, such messages are more robust to transmission 
errors. 

Returning to the work [3], for a random cipher it is here 
given an estimate of the length L0 of the cryptogram in 
which an attacker can break the cryptogram by brute force. 
The length  

𝐿 ൌ
logଶ 𝐾

𝐷
ሾsymbolሿ (6)

is called the "unicity distance". In this context, Mr. Shannon 
defined so-called "ideal secrecy systems", which are ciphers 
that an attacker cannot break even if the length L of the 
cryptograms is unlimited. When attacking a cryptogram c 
of this cipher, an attacker finds that more than one 
meaningful message may be encrypted in a given 
cryptogram. The most well-known variant of ciphers with 
ideal secrecy are ciphers that use an artificial language with 
zero redundancy. By relation (6), we see that indeed for 
redundancy D → 0, the limit L0 approaches infinity. 

In addition to ciphers with perfect and ideal secrecy, Mr. 
Shannon also introduced so-called "practical secrecy 
systems". All other ciphers fall into this category, i.e. 
ciphers that are theoretically breakable by brute force. This 
type of cipher is the most widely used, and its security 
against brute force attack lies in the fact that the number of 
possible keys K is sufficiently large. 
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The last major result of secrecy theory is a relation for the 
mean number nk of so-called "spurious keys" ([5], [7]): 

𝑛    2ுሺሻି∙ െ 1, (7)

where H(K) is the key entropy, D is the language 
redundancy and L is the length of the cryptogram. For the 
commonly used method of choosing keys according to a 
uniform distribution, H(K) = log2 K. The quantity nk is the 
mean number of keys that, when decrypted, assign a 
meaningful message to the cryptogram that is different from 
the one actually transmitted. The larger this value is, the 
more possible solutions the attacker will get in a brute force 
attack and his uncertainty about the transmitted message 
will be larger. He gains certainty at nk = 0, where the value 
of L takes on the meaning of L0 from relation (6). 

3. Basic terms 

In the following, we will assume that messages and 
cryptograms are numbers expressed in the same numerical 
system and have the same length. Regarding message 
lengths, it should be noted that in some cases the message 
must be extended with overhead digits before encryption. In 
such cases, the original message including this overhead 
will be considered as the message. If we use a number 
system with B digits and the length of both messages and 
cryptograms is L digits, then there are a total of N = BL 
numbers from the value x = 0 to (N−1). For practical 
reasons, however, we will not distinguish these numbers 
according to the value of x, but according to their order on 
the numerical axis, i.e., according to the value of s = (x + 1) 
∈ A = {1, 2, 3, ..., N}. For the inputs i and outputs o of the 
encryption functions, i, o ∈ A and so there are in total N 
possible inputs and outputs, respectively. We will call the 
variable N the number of inputs/outputs. It should be noted 
here that in this paper we will consider only meaningful 
inputs i as messages. We will call inputs i that do not make 
sense in the language and context used meaningless inputs. 
We will also assume that the set M of all possible messages 
consists of a total of M messages, with 1 ≤ M ≤ N.  

The set of encryption respectively decryption 
functions consists of a total of K functions, which are given 
by the encryption respectively decryption key. Within this 
set, we will distinguish each function by an ordinal number 
k ∈ {1, 2, 3,..., K}. A particular encryption function assigns 
to each input i ∈ A a unique output o ∈ A. Therefore, we can 
represent it as a permutation, i.e., as an ordered N-tuple that 
contains each number from the set A just once. We will 
write the encryption permutation given by the k-th key as Pk 
= (p1 p2 ... pN), where ps ∈ A is the s-th member of the 
permutation. We can then express the encryption as o = E(i, 
k) = pi. For example, for k = 2, let us have the permutation 
P2 = (3 2 5 4 1). Then for i = 3, p3 = 5 and hence E(3, 2) = 
5. The corresponding decryption function is given by the 

inverse permutation Pk
−1 and then i = D(o, k) = po

−1. For our 
example, P2

−1 = (5 2 1 4 3) and hence D(5, 2) = 3. 

For encryption functions, the variable i is the argument 
and the variable o is their value. For decryption functions, 
the opposite is true. However, since the encryption and 
decryption functions form a single unit in terms of purpose, 
we will refer to the variable i (i.e., the input of the 
encryption function) as the input throughout the 
cryptosystem, i.e., even for the decryption function, where 
it acts as the function value. Similarly, we will call the 
variable o (i.e., the output of the encryption function) the 
output o in the case of decryption also, where it plays the 
role of an argument. 

Since the number of all possible encryption or 
decryption functions is equal to the number of all 
permutations, i.e. the value N!, the number of all possible 
keys is also equal to this value. However, by (P1) we know 
that K = N is sufficient for an unbreakable cipher, so we will 
assume that 1 ≤ K ≤ N for the number of keys. 

If we write the individual encryption permutations in 
the form of columns and arrange these columns in 
ascending order by key number, we obtain the encryption 
table E. With its help, for each input i and key k, we can 
find the encryption output o = E(i, k), where i is the row 
number, k is the column number, and the quantity o is the 
content of the table cell in the i-th row and k-th column. 
Similarly, from the inverse permutations, we can construct 
a decryption table D. Using it, for each output o and key k, 
we can find the input i = D(o, k), where o is the row number, 
k is the column number, and i is the content of the table cell 
in the o-th row and k-th column. 

To illustrate the concepts introduced above, consider a 
simple example where the set of inputs and outputs A = {1, 
2, 3, 4, 5}, the set of messages M = {4, 5} and the encryption 
functions are P1 = (2 5 3 1 4), P2 = (3 2 5 4 1) and P3 = (5 1 
2 4 3). From the above specification, it follows that the 
number of inputs/outputs N = 5, the number of messages M 
= 2 and the number of keys K = 3. The inverse decryption 
functions are obtained by inverting the encryption 
permutations. It is then true that P1

−1 = (4 1 3 5 2), P2
−1 = (5 

2 1 4 3) and P3
−1 = (2 3 5 4 1). The encryption and 

decryption table of our demonstration cryptosystem is 
shown in Fig. 2. 

From the encryption table (shown on the left) we can 
easily determine that, for example, for input i = 1 and key 
number k = 3, the output o = E(i, k) = E(1, 3) = 5. The figure 
on the right shows the corresponding decryption table D. 
Using it, we can easily find out what the input was in the 
above encryption. We know that the output o = 5 and the 
key has the number k = 3. Then the output of the decryption, 
i.e., the input during encryption i = D(o, k) = D(5, 3) = 1, 
which is indeed the original message. 
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Fig. 2: Example of an encryption and decryption table 

4. Model 

From the point of view of the resistance of ciphers to 
brute force attack, we are mainly interested in the 
decryption table D. In our example in Figure 2, we see that 
if an attacker intercepts, say, a cryptogram c = o = 1 in the 
channel, he can determine from the corresponding (i.e., first) 
row of the decryption table D what the possible inputs of 
the cipher were. For keys k = 1, resp. 2, resp. 3 these inputs 
could be i = 4, resp. 5, resp. 2. He can exclude the input i = 
2, since it is a meaningless input. Thus, the attacker 
concludes that either message m = 4 or message m = 5 is 
encrypted in cryptogram c = 1. In our cryptosystem, these 
are all possible messages, so the attacker has gained nothing 
by his attack. He already knew that one of all possible 
messages was being transmitted when he eavesdropped on 
the cryptogram. However, if the attacker intercepted the 
cryptogram c = 3, then by analogy he would find that the 
message m = 5 is encrypted in it. This conclusion of his is 
quite unambiguous, since the other possible inputs (i.e., i = 
1 and 3) are not messages. 

The above example shows that the decryption table 
should be constructed in such a way that as many different 
messages as possible can be found in each of its rows. Let 
us now look at this requirement more generally. Let us call 
the number of distinct messages in each row of the 
decryption table the valence of the corresponding output. 
Formally, we will define the valence vo of the o-th output as 
the number of distinct messages obtained by decrypting that 
output with all possible keys. The minimum possible value 
of valence vo = 0. In this case, for all keys, a given output is 
an image of only meaningless inputs, so such an output 
cannot appear in the transmission channel. We will 
therefore call it an absurd output. Another outputs are, for 
at least one key, the image of some message, i.e. their 
valence is at least 1. We will call such outputs cryptograms. 
In terms of the maximum possible value of the valence of 
any output, this value obviously cannot be larger than the 
total number of M messages, and also cannot be larger than 
the total number of K columns of the decryption table. Thus, 
we can write that: 

0   𝑣    minሼ𝑀, 𝐾ሽ. (8)

In our example, v1 = 2, v2 = 0, v3 = 1, v4 = 2 (there are three 
messages in line 4, but one is there twice) and v5 = 0. Thus 
the output o = 2 and 5 is an absurd output (i.e., it will never 
be transmitted in the transmission channel) and the other 
outputs are cryptograms. Cryptogram c = 3 has a valence 
equal to one and thus by brute force attack the message 
transmitted in it is uniquely detectable. On the other hand, 
cryptograms c = 1 and 4 are so-called unbreakable, since 
any of the M possible messages may be encrypted in them. 
In cryptography, a pessimistic viewpoint is used to assess 
security, so we will evaluate the security of the entire cipher 
according to the worst case, i.e., according to the 
cryptogram that has the smallest valence of all. We will call 
that parameter the minimum valence V of the cipher. For a 
range of values of this quantity, the following is of course 
true: 

 1  𝑉  minሼ𝑀, 𝐾ሽ.  (9)

Our illustrative cipher has a minimum valence V = 
min{2, 1, 2} = 1. In this context, note that in addition to the 
decryption table, the valence V also depends on the message 
set. For the same decryption table, when we change the 
message set to M = {1, 3}, then the outputs o = 1 and 4 are 
absurd, and the valence of the other outputs implies that V 
= min{2, 2, 2} = 2, which is a higher value compared to the 
original example. Thus, it can be concluded that the 
resistance to brute force attack depends not only on the 
cipher itself but also on the message language. 

To maximize the value V, the decryption table should 
be constructed in such a way that each row of the table 
contains as many different messages as possible. To do this, 
it is advisable, among other things, that the messages in the 
rows of the table are not repeated. This leads to the 
requirement that the rows of the decryption table be so-
called K-permutations, which are ordered K-tuples of 
elements from all N possible elements, where each element 
can occur at most once in a given K-tuple. If we recall that 
the columns of the table are permutations, the decryption 
table should take the form of a so-called Latin rectangle 
N×K, where K ≤ N. For a Latin rectangle, it is true that in 
each row and in each column any element ps ∈ A occurs at 
most once (e.g., [8], p. 385). We will call a cipher with N 
inputs and outputs, M messages and K keys, whose 
decryption table consists of a Latin rectangle, a Latin cipher 
with parameters (N, M, K).  

The fact whether modern ciphers can be described by a 
Latin rectangle is not completely obvious from the point of 
view of K-permutations, so we discuss it now. Stream 
ciphers are purposefully constructed so that changing the 
key changes the encryption sequence of the pseudorandom 
generator. Therefore, the same message with a different key 
will be encrypted into a different cryptogram each time, so 
stream ciphers belong in the category of Latin ciphers. In 
the case of modern block ciphers, the message block is first 
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merged with the key by a suitable mathematical operation f 
(usually XOR). For example, in the AES cipher, this is the 
initial operation AddRoundKey (e.g., [9], p. 15). Other 
subsequent operations are constructed such that for a given 
key, each possible message block is assigned a unique block 
of the cryptogram. However, as a consequence of the merge 
operation f, the uniqueness of the assignment holds even in 
the situation where the message block is the same and the 
key changes. It then follows that modern block ciphers also 
belong to the category of Latin ciphers. 

Because of the significant size of the decryption tables 
of modern ciphers and also because of the random 
occurrence of messages in the input set, the valence V of 
these ciphers cannot be determined accurately at present. 
Here we exploit the fact that in the case of the Latin cipher, 
the rows of the decryption table are K-permutations of N 
elements (i.e., inputs), of which M elements have this 
property of being messages. In fact, if we look at the 
decryption table not in terms of the numerical values of the 
inputs, but in terms of whether or not a given input is a 
message, then we conclude that the rows of the table 
become independent of each other and that the occurrence 
of messages in the rows of the table follows a 
hypergeometric distribution. 

The first observation follows from the fact that 
messages occur randomly in column permutations. And 
since the column permutations of the cipher are different 
and independent of each other, then the resulting occurrence 
of messages in the rows is random and independent of the 
occurrence of messages in the other rows.  

The second observation, the fact that the occurrence of 
messages in rows follows a hypergeometric distribution, 
follows from the very definition of the type of distribution 
mentioned. Namely, a hypergeometric distribution de-
scribes the process of selecting K elements randomly from 
a set of N elements without returning, where M elements out 
of all N elements have a certain property that the remaining 
(N−M) elements do not have (e.g., [10], p. 60). In our case, 
the N elements are the possible inputs from which K inputs 
are randomly selected for each row of the decryption table 
and M is the number of messages. The distinguishing 
property of the elements here is whether or not a given input 
is a message. For the probability P(X = v) of a 
hypergeometric distribution, the following holds: 

𝑃ሺ𝑋 ൌ 𝑣ሻ ൌ
൫ெ

௩ ൯ ∙ ൫ேିெ
ି௩ ൯

൫ே
൯

 , (10)

where the variable v is the number of messages in a row of 
the decryption table (i.e. the valence of the corresponding 
output), M is the total number of messages, K is the number 
of keys, and N is the number of inputs/outputs. The values 
of the variable v that have a non-zero probability of 
occurrence are in the interval: 

maxሼ0, 𝑀  𝐾 െ 𝑁ሽ  𝑣   minሼ𝑀, 𝐾ሽ. (11)

The two boundaries of the mentioned interval are plotted in 
Figure 3 and Figure 4, respectively, for the example of 
ciphers with the number of inputs/outputs N = 50. Figure 3 
shows the lower bound Q = max{0, M+K−N} and Figure 4 
shows the upper bound U = min{M, K}. The two bounds 
take the form of parts of two divergent planes. 

 
Fig. 3: Lower bound Q of the valence of outputs for ciphers with N = 50 

 
Fig. 4: Upper bound U of valence of outputs for ciphers with N = 50 

We refer to Figure 5 to illustrate the hypergeometric 
distribution. In the upper part of the figure we see the 
distribution for N = 10, K = M = N/2 = 5, for which the 
valence v is in the range 0 to 5. The bottom of the figure 
then shows the distribution for N = 100, K = M = N/2 = 50, 
where the valence v of the outputs is in the range 0 to 50. 
Note that for large values of N, the probability of many 
valence values is close to zero. For example, for the lower 
graph, for the probabilities of the two extreme values of 
valence v, P(v = 0) = P(v = 50) = 9,9⋅10−30. On the other 
hand, for the mean valence value E = 25, it holds that P(v = 
25) = 0.158. Thus, cryptograms with valence close to the 
mean value occur in large-scale cryptosystems with 
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probabilities that are orders of magnitude higher than the 
probabilities of occurrence of other outputs. 

 

Fig. 5: Examples of hypergeometric distributions 

At the end of the characterization of the hypergeometric 
distribution, we will state the relation for the mean value E 
of the random variable X according to this distribution: 

𝐸 ൌ  
𝑀 ∙ 𝐾

𝑁
 . (12)

We can physically interpret the mean value E of the 
valence of outputs as the Latin cipher assigns to each 
message m a total of K different outputs out of a total of N 
outputs. Then, on average, each of the N outputs is assigned 
a total of E = M⋅K/N messages. An example of the 
dependence of the mean value E of the valence of outputs 
on the number of keys K and the number of messages M for 
ciphers with N = 50 inputs/outputs is shown in three-
dimensional form in Fig. 6.  

 
Fig. 6: Dependence of the mean value E for ciphers with N = 50 

Then in Fig. 7, for the same cipher, we have the dependence 
of the lower bound Q, the upper bound U and the mean 
value E for the situation where M = K to compare. 

 
Fig. 7: Lower bound Q, upper bound U and mean E of the valence of 

outputs for ciphers with N = 50 

We again use a pessimistic approach to assess the security 
of a cipher against a brute force attack, calling the corre-
sponding parameter the lower bound W of the valence of 
ciphers. In relation (11), the pessimistic view is represented 
by the left inequality corresponding to the quantity Q.  Zero 
valence only holds for absurd outputs and so the lower 
bound W for the valence of cryptograms will be: 

𝑊 ൌ maxሼ1, 𝑀  𝐾 െ 𝑁ሽ. (13)

We will now modify this relationship into a function: 

𝑊 ൌ ൜
1, if ሺ𝑀  𝐾ሻ  ሺ𝑁  1ሻ,
𝑀  𝐾 െ 𝑁, if ሺ𝑀  𝐾ሻ  ሺ𝑁  1ሻ,

 (14)

recalling that 1 ≤ M ≤ N and 1 ≤ K ≤ N. 

The probability P(X = W) is always non-zero and so in the 
decryption tables of some ciphers there must be rows that 
correspond to cryptograms with valence W. And since this 
is a non-zero lower bound, the value of W will also be the 
valence V of the corresponding cipher. Ciphers with 
decryption tables that do not have such rows will naturally 
have a higher valence V. However, from a pessimistic point 
of view, any Latin cipher with N inputs/outputs, M 
messages, and K keys is guaranteed to have at worst a 
valence V = W according to relation (14). 

5. Discussion 

The lower bound W of the valence of ciphers is the 
main contribution of this paper, so we now discuss it in 
more detail. In Figure 8, we have a three-dimensional repre-
sentation of the values of W as a function of the number of 
keys K and the number of messages M for ciphers with N = 
50 inputs/outputs. From the above graph it can be seen that 
the points of the lower bound W of the valence lie in two 
planes. The horizontal plane includes ciphers with W = 1. 
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These are all cryptosystems for which (M+K) ≤ (N+1) 
according to (14). For other ciphers, it holds that (M+K) > 
(N+1). In this case, the values of W lie in the skew plane 
given by the equation W = (M+K−N). 

 
Fig. 8: Lower bound W of the valence of ciphers with N = 50 as a 
function of the number of keys K and the number of messages M 

Fig. 9 shows a similar graph for N = 10. This graph is 
clearer and we therefore discuss the results on it. The square 
points represent ciphers for which the number of keys is 
equal to the number of inputs/outputs, i.e., K = N = 10. For 
these ciphers, we can use function (14) to derive that W = 
M, i.e., an attacker can use the brute force method to 
determine that any one of all M possible messages may be 
encrypted in any given cryptogram. These are thus 
unbreakable ciphers, which Mr. Shannon called perfect 
secrecy systems. Condition N = K is inconsistent with 
condition (P1), where N = C = K. However, this 
inconsistency is only apparent, since the equality N = C in 
existing secrecy theory expresses the requirement that the 
number of inputs and the number of outputs of the 
encryption function be equal. For Latin ciphers, this 
equality is given by their definition and the requirement N 
= K is therefore sufficient. The equality N = K implies that 
the length of the keys must be equal to the length of the 
inputs/outputs. In addition, the keys must be random and 
unique for each message, so these ciphers, while completely 
immune to brute force attack, are very rarely used. 

For ciphers represented by circular points, 2 ≤ W ≤ 
(M−1). Using the brute force method, an attacker finds that 
in a given cryptogram, any of the W possible messages may 
be encrypted. He does not know which of them was actually 
transmitted, but on the other hand he knows safely that it 
was not transmitted some of the remaining (M−W) 
messages. These partially unbreakable ciphers have been 
named by Mr. Shannon as systems of ideal secrecy. We can 
see from the figure that they require either the use of a large 
number of keys or the removal of the greatest possible 
amount of redundancy from the language used. 
Alternatively, the two can be combined. 

The extremum of the method based on maximizing the 
number of keys is represented by the points on the strong 
dashed line, where K = N−1 = 9. The function (14) then 
implies that the valence of these ciphers is W = M−1. 
Unfortunately, a high number of keys is the same problem 
that perfect secrecy systems have.  

The extremes of the redundancy elimination based method 
are represented by points on a strong continuous line. By 
removing all redundancy, every possible input becomes a 
message, i.e., M = N = 10. Then, according to (14), the 
valence W = K.  Unfortunately, the redundancy elimination 
method is not yet significantly applicable, as there are 
currently no sufficiently powerful and fast compression 
algorithms available for natural languages. 

 
Fig. 9: Lower bound W of the valence of ciphers with N = 10 

The oval points represent ciphers for which W = 1. This type 
of cipher is thus theoretically breakable, and therefore Mr. 
Shannon called them practical secrecy systems. They are 
the most widespread, and their security lies in a sufficiently 
large number of keys. So large that in the time T of the 
cipher's resistance, i.e., the time for which the messages are 
supposed to remain secret, not all the keys can be tested. 
Currently, it is generally recommended that K ≥ 2128 (e.g., 
[11], pp. 59 and 53). 
 
We now show that the model presented above allows us to 
derive all the relevant results of existing secrecy theory. We 
start with relation (7) for the mean value of the false keys 
nk. The value of nk plus the correct key, i.e., (nk+1), is 
effectively the mean number of keys that assign a 
meaningful message to the output. By definition, this value 
should correspond to the mean value of the valence E 
according to relation (12). From the derivation below, 
where we have used the substitutions in (1), (3) and (5), it 
is clear that this is indeed the case. 
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𝑛  1  2ுሺሻି∙ ൌ
2ுሺሻ

2∙ ൌ
𝐾

2ሺோିሻ∙ ൌ 

ൌ
𝐾 ∙ 2∙

2ோ∙ ൌ
𝐾 ∙ 𝑀

𝑁
ൌ 𝐸 . 

(15)

Similarly, it can be shown that by using the mean valence 
value, relation (6) can be derived to determine the unicity 
distance L0. The proof is given in the appendix at the end of 
the paper. The condition that is used here is that to 
unambiguously decipher a cryptogram, its valence must be 
v = 1. If we relate this condition to the mean valence value, 
we obtain the relation (6) just mentioned.  

In this context, we can additionally define a pessimistic 
unicity distance L0 using a lower bound on the minimum 
valence of ciphers. As we already know, a brute force attack 
will lead to an unambiguous result for cryptograms whose 
valence v = 1. Thus, by the lower bound in (14), it must hold: 

𝑀  𝐾 ൌ 𝑁  1, (16)

and after inserting relations (1) and (3) we obtain the 
equation: 

2∙బ  𝐾 ൌ  2ோ∙బ  1. (17)

The value of L0, which is the solution to the above equation, 
tells us that for Latin ciphers (N, M, K) there are 
cryptograms from length L0 onwards that are already 
breakable. For example, for a simple substitution cipher 
where K = 26! and for an English text with R = log2 26 = 
4.7 [bit/symbol] and r = 1.5 [bit/symbol], the solution to 
Equation (17) is L0 ≈ 19 symbols. According to relation (6), 
the analogous value comes out to 26 symbols. However, 
there is no contradiction here. The value according to (17) 
tells us that in some ciphers (N, M, K) there exist 
cryptograms that are breakable from a length of 19 symbols. 
And the value according to (6) tells us that cryptograms are, 
on average, breakable from a length of 26 symbols. So the 
first value is pessimistic and the second is average. 

If we want to find the mean valence of the cryptograms 
instead of the mean valence of the outputs, we have to 
exclude the absurd outputs from relation (12). Since it is 
clear that there are N⋅P(X=0) absurd outputs in N outputs, 
the total number of cryptograms (i.e., outputs with valence 
v > 0) is then equal to C = N⋅[1−P(X=0)]. Using this relation, 
we can then define the sought-after mean valence of the 
cryptograms Z: 

𝑍 ൌ  
𝑀 ∙ 𝐾

𝐶
ൌ  

𝑀 ∙ 𝐾
𝑁 ∙ ሾ1 െ 𝑃ሺ𝑋 ൌ 0ሻሿ

 . (18)

Returning to the lower bound W of the valence of ciphers, 
it has already been mentioned that for larger values of N the 
probabilities of cryptograms with extreme valence values 
are often close to zero. For example, in Figure 10 we have 
a logarithmic plot of the probability pW, which is the 
probability of occurrence of cryptograms with valence W, 

for ciphers with N = 100 and K = 50 versus the number of 
messages M. We see here that for a magnitude M close to 
N/2 the mentioned probability is very small. In particular, 
for example, for M = 51, pW ≈ 5,1⋅10−28. 

It is clear from the figure that for larger values of N the 
lower bound on W is quite pessimistic. Then, a parameter 
that we call the statistical estimate S of the lower bound of 
the valence of ciphers can be useful. The aforementioned 
parameter is based on the fact that the lower bound of the 
valence is increased by the valence of cryptograms whose 
overall probability of occurrence is negligible for a given 
scenario. Let us introduce the quantity pS, which is the 
probability of occurrence of cryptograms with valence less 
than S, i.e., with valence in the range of values W to (S−1). 

 
Fig. 10: Dependence of the probability pW of occurrence of cryptograms 
with valence W on the number of messages M for ciphers with N = 100 

and K = 50 

Let us now have a set of n ciphers in total, each containing 
N outputs. In such a set, there are n⋅N outputs, of which 
there will be on average pS⋅n⋅N such cryptograms whose 
valence v is in the range of W to (S−1). Let us stipulate that 
the number of these cryptograms should be at most 1 on 
average, i.e., in the set of all n ciphers, there will be on 
average at most one such cryptogram whose valence is in 
the range of W to (S−1). Formally, then: 

𝑝ௌ ∙ 𝑛 ∙ 𝑁  1 . (19)

Then, on average, there will be at most one cipher in our set 
with valence V in the range W to (S−1), and the remaining 
(n−1) ciphers will have minimum valence V ≥ S. We call 
this valence the statistical estimate S of the lower bound on 
the valence of ciphers with estimation error δ = 1/n. In 
practice, we find the quantity S by finding the largest such 
integer S ∈ (W, U for the specified parameters N and δ such 
that the probability pS from equation (20) below satisfies 
condition (19). If no such value exists, then S = W. 

𝑝ௌ ൌ  𝑃ሺ𝑋 ൌ 𝑣ሻ.

ௌିଵ

௩ୀௐ

 (20)
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We compare the dependence of the statistical estimate S of 
the lower bound of the valence and the dependence of the 
lower bound W of the valence of the ciphers in Figure 11. 
Both dependencies hold for ciphers with N = 100 inputs, 
resp. outputs, where the number of messages is the same as 
the number of keys, i.e., M = K. For comparison, the 
dependence of the upper bound U and the mean value Z of 
the valence of the cryptograms in the mentioned ciphers is 
also shown. The dependence of the quantity S confirms the 
fact that the probability of cryptograms with small valences 
is very low for those arguments M and K that are close to 
the value N/2 = 50. For example, for M = K = 50, the value 
of W = 1, but the value of S = 11. This can be explained by 
the fact that the overall probability of occurrence of 
cryptograms with valence from 1 to 10 in our case is equal 
to pS = 1,1⋅10−9. It follows from δ = 1/n = 10−6 that n = 106 
and so, after substituting in pS⋅n⋅N = 1,1⋅10−9⋅106⋅100 = 0,11, 
we see that inequality (18) is satisfied. We can interpret the 
value of S = 11 to mean that if we randomly select 106 Latin 
ciphers with parameters N = 100, M = 50, and K = 50, then 
on average for (106−1) of these ciphers the minimum 
valence V will be at least 11. And on average, only one 
cipher will have a minimum valence that is less than 11. 

 
Fig. 11: Dependence of the statistical estimate S of the lower bound of the 

valence of the ciphers with estimation error δ = 10−6. The dependence 
applies to ciphers with N = 100, whereby M = K 

6. Conclusion 

Overall, it can be stated that the paper extends the 
existing Shannon’s theory of secrecy systems. The 
extension consists in replacing the random cipher by a more 
adequate Latin cipher and in introducing the notion of 
valence of a cryptogram. In the paper, a Latin cipher (M, K, 
N) is a cipher with K keys, N outputs and N inputs, of which 
M inputs make sense in a given language and context, i.e. 
there are M messages. The defining feature of a Latin cipher 
is the property that each of its inputs, when encrypted with 
all possible K keys, takes the form of K mutually distinct 

outputs. Inversely, each output, when decrypted with all 
possible K keys, takes the form of K mutually distinct inputs. 

In this paper, it is shown that all modern ciphers are 
Latin ciphers and so the number of messages v produced by 
decrypting their arbitrary output with all possible keys can 
be modeled by a hypergeometric distribution according to 
relation (10). Decrypting a cryptogram with all possible 
keys is called a brute force attack and the quantity v is called 
the valence of the output. If v = 1, the attacker detects the 
transmitted message from the intercepted cryptogram 
uniquely (so-called a breakable cryptogram). If v = M, then 
the cryptogram is unbreakable because any of the M 
possible messages could have been transmitted in it. And if 
1 < v < M, then any of the v possible messages could have 
been transmitted in the cryptogram and the attacker does not 
know which one. On the other hand, the attacker knows that 
none of the remaining (M−v) messages were transmitted. 
We have called such cryptograms partially unbreakable. 

The mean value E of the valence of the outputs, which 
is given by relation (12), provides an approximate 
assessment of the resistance of cryptograms to brute force 
attack. If E = M, then every cryptogram of the cipher is 
unbreakable, and if E ≤ 1, then on average every randomly 
chosen cryptogram is breakable. A higher cipher security 
guarantee is provided by the lower bound W on the valence 
of ciphers according to relation (14). This quantity tells us 
that every cryptogram of an arbitrary cipher (M, K, N) has 
valence v ≥ W. Using the quantity W, we can thus classify 
not only individual cryptograms but entire ciphers into 
breakable, partially unbreakable, and unbreakable. 

It is further shown in the paper that the proposed model 
allows to derive all previously known insights of the theory 
of secrecy systems, which are perfect or ideal or practical 
secrecy systems, unicity distance and number of spurious 
keys. The model is thus also suitable for pedagogical 
purposes, as an introduction to the theory of secrecy 
systems.  
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Appendix 

The aim of the appendix is to prove that condition: 

𝐸 ൌ  
𝑀 ∙ 𝐾

𝑁
ൌ 1 (A1)

leads to equation (6): 

𝐿 ൌ
logଶ 𝐾

𝐷
 . (A2)

First, in relation (12) for the mean value E, we make 
substitutions according to (1) and (3). We obtain: 

𝐸 ൌ
𝑀 ∙ 𝐾

𝑁
ൌ

2∙ ∙ 𝐾
2ோ∙  . (A3)

After adjusting and inserting (5) we have: 

𝐸 ൌ
𝐾

2ሺோିሻ∙ ൌ  
𝐾

2∙ . (A4)

For the unicity distance L0, (A1) must hold, so: 

𝐸 ൌ
𝐾

2∙బ
ൌ 1 . (A5)

After logarithmizing and modifying the above equation, we 
finally obtain equation (A2), which should have been 
proved. 
 

 
Karel Burda received the M.S. and Ph.D. 
degrees in Electrical Engineering from the 
Liptovsky Mikulas Military Academy in 
1981 and 1988, respectively. During 1988-
2004, he was a lecturer in two military 
academies. At present, he works at Brno 
University of Technology. His current 
research interests include the security of 
information systems and cryptology. 
 

 
 
 
 
 
 
 
 
 
 


