
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

687

Manuscript received September 5, 2022
Manuscript revised September 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.9.90

MSMIoT: An Efficient Microservice-based Middleware architecture for
the Internet of Things

Tushar Champaneria1† , Ashwin Makwana2†† and Sunil Jardosh3†††
tac@ldce.ac.in

†Research Scholar, ††Associate Professor, U & P U. Patel Department of Computer Engineering, Chandubhai S. Patel
Institute of Technology, Charotar University of Science and Technology (CHARUSAT), Changa, India.

†††Software Architect, Progress Software, Hyderabad, India

Abstract
The Internet of Things (IoT) is becoming prevalent in the most
promising domains like smart cities, healthcare, industrial
automation, etc. Hence, the scalable and reliable middleware
architecture design is the prime need for the adoption of IoT. An
essential task of middleware is to abstract the underlying
complexity of hardware to the services by facilitating the
developer to develop software and services. The service
orientation middleware approach is promising for addressing the
challenges of the middleware of IoT. Microservices are radically
popular in implementing SOA with different perspectives and
goals. In this paper, we present a MicroService-based Middleware
architecture for IoT (MSMIoT) that is modular and provides an
accessible interface to applications and addresses known
challenges like heterogeneity, scalability, interoperability,
reliability, availability, context awareness, security, transparency,
and abstraction to applications. We evaluated our proposed
architecture for different traffic rates. Finally, the results show that
the proposed architecture outperforms the traditional approach by
a gain of 10-15 % in the case of throughput and a decrease in
latency by 15-20 %.
Keywords:
IoT middleware architecture, middleware challenges, service-
oriented architecture, microservices

1. Introduction

IoT is envisioned as the future of the internet,
where every real-world thing is connected and
communicates. Various technologies like sensors,
communication protocols, and cloud computing play
a vital role in making IoT a reality. IoT has
characteristics like heterogeneity of devices and
connectivity, low resources, sudden interactions
between entities, a massive number of devices, no
fixed infrastructure, context awareness, smartness,
geo-location awareness, and distributed environment
[1][2]. However, due to ultra-large-scale connected
devices, IoT has its own challenges. IoT infrastructure
must have high availability, reliability and must scale
massively, IoT devices, software, protocols, and apps
must have standardization and interoperable. As in

most scenarios of IoT devices moving from one place
to another, dynamic management of devices, i.e.,
Mobility, is also critical. Other significant challenges
are naming and identity management of devices and
services, QoS parameters [3][4], resilience to faults,
performance measurement of devices and services,
security privacy of the user and his data, access control
for users, trust management for data, data
confidentiality, data integrity, data mining, knowledge
creation, and big data, greening of IoT which means
using minimum energy for IoT infrastructure, design
of SOA for IoT, design of middleware [5-14].

Above mentioned characteristics and challenges
raises the requirement for middleware that acts as a
gluing layer between IoT devices and software
applications. It facilitates the programmer to develop
IoT solutions using APIs and abstracts the device layer.
IoT middleware inherits the challenges of IoT like
interoperability, scalability, abstraction provisioning,
spontaneous interaction, Adhoc infrastructure,
multiplicity, security & privacy, and context
awareness. In addition, it includes the detection and
necessary actions on some context management of
data with big data technologies, trust management,
mobility management, random topology, multiplicity,
unknown data point availability, extensibility, and
modularity [15][16][17].

For designing the middleware of IoT, there are
specific key requirements that need to be addressed
like scalability where heterogeneity needs to be
handled at a massive scale, reliability in the case of
fault occurrence, availability within given constraints
and ability to recover from faults, inter- operability
within various actors of IoT whether M2M or M2H,
context awareness to take the right decision at the right
time, security and privacy are essential and major
requirements of IoT middleware which are vertical
across all layers[1].

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

688

The rest of this paper is organized as follows: In
Section II, background and related works of IoT
middleware architectures are presented. In Section III
proposed architecture, with its implementation details
discussed. Section IV evaluates the proposal. Finally,
section IV concludes the work and highlights the
future scope.

2. Background and Related Work

Middleware plays an essential role in
implementing IoT solutions. There are various types
of middleware proposed in the literature, like
message-oriented middleware, context-aware
middleware, robotics middleware, semantic
middleware, and pub/sub middleware. Most of the
middlewares in the literature target a different set of
requirements. Among them, the service-oriented
approach can address major key requirements which
are discussed in the previous section. Service-oriented
middleware is a widely accepted approach and is taken
into consideration for reference.

2.1 SoA Middleware for IoT

To address the above middleware challenges,
various approaches and classifications for middleware
implementation are reviewed in this literature which
include message-oriented middleware, semantic
middleware, resource-oriented, context-aware,
publish/subscribe, and service-oriented middleware
(SOA) architectures [17][18]. SOA presents business
processes and functionality as a service to the
consumer. Service orientation helps to address the key
challenges of the middleware like abstraction,
modularity, interoperability, scalability, heterogeneity,
security and privacy [19]. Service-oriented
architecture can be implemented using SOAP-based
web services and/or RESTFul web services approach.
Middleware architecture for IoT mostly follows SOA
[11][20], as shown in figure 1, which depicts a typical
implementation of service-oriented architecture. From
various studies, it has been well established that SOA
middleware architectures are suitable for the IoT arena.
[21][22][23][24].

As the majority of the web has become RESTFul,
and studies have also shown that the RESTFul
approach in service-oriented architecture helps in
achieving easier integration, faster application
development, less overhead in processing and

communication, easy to use, scalability, programming
smart environment, etc. [25][26][27][28][29].

Fig. 1: Implementation of Service Orientation

2.2 Monolithic v/s Microservices SOA Approach
for IoT

Currently, RESTful-based service-oriented
middleware architectures are typically designed to be
modular but packaged and deployed as a single
application, i.e., a monolithic approach. Figure 2
shows that SOA-based implementation uses three-tier
architecture. SOA, with the monolithic approach,
negatively impacts reliability and scalability,
especially in IoT smart city scenarios with added
business functionalities and feature development. Due
to the lack of interoperability, adopting the new
technologies and frameworks in such monolithic
architecture is not easy. Also, frequent deployment is
cumbersome due to the increase in application size
[30]. In addition to that, a monolithic approach
typically has a larger team size where effective
communication among teams might be an issue.

The solution to such drawbacks and challenges
motivates the adoption of microservices in developing
middleware for the IoT. It is a new paradigm for
implementing a service-oriented architecture. A
microservice is the process responsible for performing
a single independent task that is typically built to
perform a specific business capability. For example,
given an application for recommendations, one
microservice can be responsible for implementing a
search feature while another microservice can be
implemented to perform recommendations or ratings.
Microservices are developed and exist independently,
but ultimately, they are composed together to provide
the overall functionality of an application. Each
microservice has a well-defined interface or API that
informs other microservices how they can be used and
communicated. Microservices can be considered a

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

689

variation of SOA applied on an application scale
rather than an enterprise scale.

Fig. 2: SOA: Monolithic packaging

Microservices aid in addressing the middleware
challenges like handling heterogeneity,
interoperability, reliability, availability, scalability,
and security. Microservices are an evolution of SOA
over time, and it is SOA done well. It is an
architectural pattern and can be considered as a
particular case of service orientation, which helps
realize service orientation in the real sense.
Microservices have characteristics like functional
decomposition, technology agnostic, and polyglot in
the implementation.

 Fig. 3: SOA: Microservices Way

Microservices typically work by dividing the bigger
application into smaller manageable applications,
which interact with each other. As the application is
divided into smaller parts, complexity can be handled
effectively, and modularity is imposed indirectly.
Development & maintenance of the smaller
application is easy compared to a larger system.

Individual services can be developed using different
tools and technologies until they can communicate
using endpoints that leverage reusability and
interoperability. Microservices are reliable because
for each mini-application, a dedicated team is
responsible for each aspect such as development, build
and test, etc. Microservices can be implemented in the
same way as regular web services. It can run on the
physical machine as well as on a virtual machine in the
cloud; hence horizontal scalability can be achieved.
The Updating of an application can be done by
updating each microservices independently that
ensure minimal downtime of an application. The
communication in microservices is typically done
using a message queue rather than direct access. Due
to that, service functionality and data communication
is decoupled which results in achieving scalability and
more functionality can be added. Using microservices,
security can be provided by authentication, access
control policy, and encryption [30]. In a nutshell,
microservice architecture is where the application is
functionally decomposed into multiple, standalone,
independently deployable, and scalable services.
Figure 3 shows SOA implementation using
microservice. Furthermore, the authors of [31]
propose an IoT platform SEnviro Connect that uses
microservice architecture and strives to provide
stability and interoperability to minimize operating
costs. The platform's capabilities are validated by
using the smart farming use case. The above-discussed
middleware design techniques focused on
interoperability and stability, but scalability is
compromised. Hence, we design scalable
microservice-based middleware to overcome the
limitations.

3. Proposed MSMIOT Architecture

This section describes the proposed architecture

along with its components involved. Figure 5 shows
the architecture which has three parts. i) Device layer
ii) Middleware gateway iii) Cloud middleware. The
device layer contains all the sensors and actuators
communicating with the gateway. The middleware
gateway communicates with cloud middleware, and
cloud middleware hosts different microservices &
supporting software. The above middleware
architecture receives data from the device layer via the

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

690

middleware gateway. Various tools, technologies, and
custom code are used to realize the design practically.

3.1 Device Layer

The device layer hosts the sensors & actuators
pool that connects devices to a middleware gateway to
send and receive the data. Sensors that can
communicate directly can send the data to an IoT
gateway. The sensors lacking a communication stack
can be hooked to any computing board (e.g Raspberry
Pi or ESP8266) and send data to the IoT gateway. To
put architecture in action, data ingestion is required.
Therefore, from the device layer, data is generated
continuously and sent to the middleware gateway. For
generating data, two different approaches are used. i)
Actual sensors: Use two sensors of type Temperature
and Humidity sensor, i.e., DHT22, one GAS sensor,
i.e. MQ-2 and PIR sensor. All of the above sensors are
attached to the nodemcu ESP8266 module. All
nodemcu ESP8266 modules (hereafter referred to as
devices) are connected to the router and configured to
read the values from the respective sensor and send
them to the middleware gateway. Devices send the
data to the middleware gateway via the HTTP POST
method. ii) Simulated sensors: Use custom code to
simulate the sensor's data using bounded randomized
data and to reflect the dynamic behavior of data. The
custom code can be configured with the number of
sensors, type of sensors, location, and frequency. The
simulated sensors send the data to the middleware
gateway using the HTTP POST method. Figure 4
shows an example data format sent by devices to the
gateway. It consists of two types of sensor messages,
namely device registration and keep-alive message
and other with sensor details including following

Message: sensors,sensorId=S1 isAlive=True
//To send registration and keep alive message

Message: sensorData,sid=S2,loc=IN-GUJ-W1
val=30
//To send sensors information.

Message: simsensors,sid=S3,loc=IN-GUJ-W3
val=56
//To send data with simulated values..

Fig. 4: Data format used by devices

details: sid i.e., sensor id, i.e., location and val i.e., the
value of sensors.

3.2 Middleware gateway

The middleware gateway is an extension of
middleware that consists of various components. The
middleware gateway is an integral part of the proposed
middleware, and all the devices are connected via it. It
runs on the Raspberry Pi 3B v1.2 single board
computer. It performs various functions like
registering devices that send data, checking whether
the device is connected, receiving data from the
devices, and providing local storage for data
redundancy. In addition, it has a gateway manager
component to communicate to cloud middleware for
sending gateway health and receiving the command.
The middleware gateway consists of a data aggregator,
time-series database, cloud data broker, and gateway
manager.

Each component performs a specific task, i.e., i)
Data aggregator: It receives and merges data from
different sources and prepares the data for sending to
the middleware in the cloud. ii) Time-series database:
The data aggregator sends data to a time-series
database to store time-stamped raw data. Time-
stamped data helps track the data coming from various
devices from the device layer. iii) The cloud data
broker reads the time-series data and sends it over to
middleware services hosted in the cloud for further
processing and communication with the cloud and
sends data to the cloud using a message queue [32]. It
routes the data to a particular predefined queue. iv)
The Gateway Manager: It controls and manages all
gateway components and communicates with the
specific microservices in the middleware. The
gateway manager sends and receives different
information. It registers the gateway to the
middleware in the cloud and keeps track of connected
devices. It sends CPU and memory utilization to the
middleware microservice. It is also responsible for
routing actuation and control messages from
microservices hosted in cloud middleware.
For the realization of the middleware gateway
implementation following components plays an
important role. Firstly, it contains an HTTP listener
service, which listens on a port for data coming from
the physical and simulated sensors and forwards it for
storage.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

691

Figure 5: Proposed MSMIoT architecture

After receiving the data, it will be sent to the time-series
database (e.g., InfluxDB [33]) for storage using line
Protocol format as mentioned in figure 4. Also, data is sent
to the message broker, which sends it to the server message
queue (e.g., rabbitmq [34]) using AMQP. The Gateway
manager service performs the following tasks. It keeps
checking for any disconnected sensor by querying the
sensor database. Its monitors the CPU and memory
utilization of the gateway by using system API and sends it
to the middleware server at a particular interval. It routes
any actuation message coming from cloud middleware to
the appropriate actuator. The gateway manager service first
registers itself using its MAC address and ID with the
middleware server. After that, it can communicate with the
server's gateway management service using bi-directional
WebSockets. While communicating with the server
gateway uses JSON objects. An example of the structure of
the JSON object is shown in figure 6.

 ‘msgType’:’sensorDetails’,
 ‘msg’:
 {‘macaddress’: ‘56:9f:a3:0f:6f:32’,
 ‘gatewayid’ : ‘gateway’,
 ‘noofsensor’ : ‘4’,
 ‘sensorlist’ : [{' sid’:’101’,’stype’:’temperature'},
 {' sid’:’102’,’stype’:’humidity'},
 {' sid’:’103’,’stype’:’gas'},
 {' sid’:’104’,’stype’:’motion'}]
 }

Fig. 6: Structure of JSON Object

The middleware gateway and server communicate
based on the msgType for sending and receiving data
and commands from the gateway to the server and vice
versa.

3.3 Cloud middleware

Cloud middleware contains the components like
stream collector, consumer, databases, and a set of
differential microservices. As discussed in section II,
the idea behind using microservices as the core
middleware functionality is to utilize the advantages
of microservices. It is the heart of the middleware that
hosts a variety of functions. Cloud middleware runs on
a VM hosted in Google Cloud Platform (GCP)
running ubuntu 18.04 LTS server Operating system. It
is essentially a set of components working together to
achieve the goal of middleware. The following are the
essential components: i) Stream collector hosts the
message queue and receives the data from the
middleware gateway in a particular message queue. It
receives the sensorData sent over AMQP by one or
more gateway(s). RabbitMQ server receiving
messages at the exchange on a message queue. ii)
Consumer: Messages the message queue receives
must be consumed. It consumes the data and organizes
it into two different databases, i.e., the time-series
database & NoSql database. The time-series database
captures the raw data. It is the main store of the

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

692

device's data received at middleware and stores Line
Protocol. The consumer program monitors the
message queue, extracts messages from it, and stores
them in the time-series database (e.g., InfluxDB). The
consumer also stores data gateway and sensors-related
data in Nosql. iii) Differential Microservices: The next
component in the cloud middleware is a set of
differential microservices hosted in the cloud server.
Various microservices are implemented to process the
data. The following are examples of different
microservices in the middleware. a) Authorization: It
authorizes the service that wants to read and write the
database in middleware. It authorizes other
microservices/users to access the database. It checks
user credentials and service rights to access the
database and authenticate accordingly. b) DB access:
Its facilities the client apps and acts as an intermediary
for reading and writing from and to the database. All
the available database operation is done through this
microservice. It provides an interface to with database
to other microservices. It exposes APIs to interact with
the database and provide access. In the
implementation, two databases are primarily used, i.e.,
NoSQL DB and time-series database, each with
different purposes. NoSQL DB is used to store data
related to the configuration of gateways. Sensors
attached to a particular gateway and no of
microservices and their functions. Time-series
database, on the other end, stores the data of the sensor
coming in from one or more gateway sources. c) Alert
generation: It monitors and receives the alert from the
database management tool, generates an appropriate
message, and sends it to the gateway management
service. It monitors alerts generated from the time-
series database regarding anomalies in data like out-
of-range data readings and continuously missing data
and sends alerts to the telegram bot. It generates the
required actuation message and sends it to an
appropriate actuation service for sending the action
back to the gateway to devices. d) Actuation function:
When any actuation message is received, it routes that
message to the appropriate gateway, which sends the
message to the actuator for the corresponding action.
e) Gateway management functions: Gateway
management microservices are a set of microservices
used for communicating with one or more gateways.
It is essential for communicating with the sensor
devices to and fro. Gateway management functions
include receiving the CPU and memory utilization of
the gateway, the number of sensors connected, the

disconnected sensor information, the alert from the
alert service, and sending alerts and commands
gateway.

Moreover, custom microservices that are
responsible for data and processing can be
implemented and hosted in this layer to the above-
listed services. Using microservices in the middleware
helps to overcome challenges like scalability,
heterogeneity, interoperability and high availability by
duplicating microservices using containerization.
Microservice operates on data and finds the context of
data to make context-aware decisions. Data
management functions can be implemented at this
layer which helps in ensuring fault tolerance.

4. Results

This section covers the performance evaluation
of the MSMIoT. Both deployment and testing of the
MSMIoT are done on the google cloud platform to
evaluate its performance [35]. Table 1 depicts the
specifications and experimentation parameters for the
deployment and testing of the proposed architecture.
On the server-side, microservices and related software
are deployed, and for testing, the JMeter software tool
is used [36]. The test computer has been used to
generate random data and simulate IoT devices as
publishers and users to retrieve the observations using
the web app. Experimentation aims to explore and
evaluate the IoT platform from the scalability aspects.
We have compared our proposed approach with
SEnviro Connect architecture [31].

Table 1: Specification of environment used for
performance analysis.

4.1 Performance Metrics

To assist time-critical applications, the IoT
platform should support the management of thousands
of IoT devices, simultaneously publishing
observations with as little lag as possible. Performance
metrics such as throughput and response time can be

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

693

used as reliable indicators of how scalability is
preserved.

Throughput: It indicates the number of messages
received and processed per second by the IoT platform.
A higher throughput indicates the efficacy of the
proposed architecture.
Latency: It refers to the delay incurred in processing
the requests. The result shows that the proposed
platform processes the requests and responses in a
minimal time.
Figure 7 shows latency analysis of MSMIoT where the
x-axis shows the number of IoT devices and the y-axis
shows the latency in mili-seconds. It shows the impact
of increasing the number of IoT devices operating at
varying rates of message traffic, i.e., λ=5,10,15,20. It
is observed that with the increase in the number of IoT
devices, latency remains low for a lesser number of
IoT devices and increases as IoT devices number
increase. However, Still, MSMIoT outperforms by
approximately 5-10%.

(a) (b)

(c) (d)

Figure 7: Impact of increasing number of IoT devices on
latency for rate a) λ = 5, b) λ = 10, c) λ = 15, d) λ = 20

Figure 8 shows the throughput analysis of MSMIoT
where the x-axis shows the number of IoT devices and
the y-axis shows throughput in terms of messages per
second processed. It shows the impact of increasing
the number of IoT devices operating at varying rates
of message traffic i.e., λ=5,10,15,20. It is observed
that the increase in the number of IoT devices
throughput is higher for less number of IoT devices
and decreases uniformly. Concerning throughput also,
MSMIoT outperforms the traditional approach.

(a) (b)

(c) (d)

Figure 8: Impact of increasing number of IoT devices on
throughput for rate a) λ = 5, b) λ = 10, c) λ = 15, d) λ = 20

4. Conclusion

This paper proposed a generic, scalable, and

reliable microservice-based middleware architecture.
First, we compared our approach with SEnviro
connect approach. Next, we discussed detailing the
components involved in the proposed middleware
MSMIoT. The various use cases of the MSMIoT range
from domains like healthcare, smart cities, smart
homes, etc. The performance evaluation results show
the efficacy of the proposed architecture. The result
shows an improvement in throughput and latency by
almost 10-15%. The future direction motivates for
incorporating the data management functionality in
the MSMIoT framework.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

694

References

[1] Mohammad Abdur Razzaque et al. "Middleware for internet of
things: A survey". In: IEEE Internet of Things Journal 3.1 (2016), pp.
70–95. ISSN: 23274662. DOI: 10.1109/JIOT.2015.2498900.

[2] Ruhul Amin et al. "A light weight authentication proto- col for IoT-
enabled devices in distributed Cloud Computing environment". In:
Future Generation Computer Systems 78 (2018), pp. 1005–1019.

[3] Selma Dilek et al. "QoS-aware IoT networks and protocols: A
comprehensive survey". In: International Journal of Communication
Systems 35.10 (2022), e5156. DOI: https://doi.org / 10. 1002 / dac.
5156. eprint: https://onlinelibrary. wiley. com / doi / pdf / 10. 1002 /
dac. 5156. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/
dac.5156.

[4] Malaram Kumhar and Jitendra Bhatia. "Emerging communication
technologies for 5G-Enabled internet of things applications". In:
Blockchain for 5G-Enabled IoT. Springer, 2021, pp. 133–158.

[5] Andrew Whitmore, Anurag Agarwal, and Li Da Xu. "The Internet of
Things???A survey of topics and trends". In: Information Systems
Frontiers 17.2 (2015), pp. 261–274. ISSN: 13873326. DOI: 10. 1007
/ s10796 -014-9489-2.

[6] Eleonora Borgia. "The Internet of Things vision: Key features,
applications and open issues". In: Computer Communications 54
(2014), pp. 1–31. ISSN: 0140-3664. DOI:
10.1016/j.comcom.2014.09.008. URL: http://dx.
doi.org/10.1016/j.comcom.2014.09.008.

[7] Shancang Li, Li Da Xu, and Shanshan Zhao. "The internet of things:
a survey". In: Information systems frontiers 17.2 (2015), pp. 243–
259.

[8] In Lee and Kyoochun Lee. "The Internet of Things (IoT):
Applications, investments, and challenges for enterprises". In:
Business Horizons 58.4 (2015), pp. 431–440. ISSN: 00076813. DOI:
10.1016/j.bushor.2015.03.008.URL:http://dx.doi.org/10.1016/j.bush
or.2015.03.008.

[9] Louis Coetzee and Johan Eksteen. "The Internet of Things-promise
for the future? An introduction". In: 2011 IST-Africa Conference
Proceedings. IEEE. 2011, pp. 1–9.

[10] John A. Stankovic. "Research directions for the internet of things".
In: IEEE Internet of Things Journal 1.1 (2014), pp. 3–9. ISSN:
23274662. DOI: 10.1109/JIOT. 2014.2312291.

[11] Daniele Miorandi et al. "Internet of things: Vision, applications and
research challenges". In: Ad Hoc Net- works 10.7 (2012), pp. 1497–
1516. ISSN: 15708705. DOI: 10. 1016 / j. adhoc. 2012. 02. 016. URL:
http: / / dx. doi.org/10.1016/j.adhoc.2012.02.016.

[12] Debasis Bandyopadhyay and Jaydip Sen. "Internet of things:
Applications and challenges in technology and standardization". In:
Wireless Personal Communications 58.1 (2011), pp. 49–69. ISSN:
09296212. DOI: 10.1007/s11277-011-0288-5. arXiv: 1105.1693.

[13] Ala Al-Fuqaha et al. "Internet of Things: A Survey on Enabling
Technologies, Protocols, and Applications". In: IEEE
Communications Surveys and Tutorials 17.4 (2015), pp. 2347–2376.
ISSN: 1553877X. DOI: 10.1109/ COMST.2015.2444095.

[14] Rafiullah Khan et al. "Future internet: the internet of things
architecture, possible applications and key challenges". In: 2012 10th
international conference on frontiers of information technology.
IEEE. 2012, pp. 257–260.

[15] Moumena A. Chaqfeh and Nader Mohamed. "Challenges in
middleware solutions for the internet of things". In: Proceedings of
the 2012 International Conference on Collaboration Technologies

and Systems, CTS 2012 (2012), pp. 21–26. DOI:
10.1109/CTS.2012.6261022.

[16] Soma Bandyopadhyay et al. "A survey of middleware for Internet of
things". In: Communications in Computer and Information Science
162 CCIS (2011), pp. 288–296. ISSN: 18650929. DOI: 10.1007/978-
3-642-21937-5 27.

[17] Ghofrane Fersi. "Middleware for internet of things: A study". In:
Proceedings - IEEE International Conference on Distributed
Computing in Sensor Systems, DCOSS 2015 (2015), pp. 230–235.
DOI: 10. 1109 / DCOSS.2015.43.

[18] Zhen Peng, Jingling Zhao, and Liao Qing. "Message oriented
middleware data processing model in Internet of things". In:
Proceedings of 2nd International Conference on Computer Science
and Network Technology, ICCSNT 2012 (2012), pp. 94–97. DOI: 10.
1109 / ICCSNT.2012.6525898.

[19] Chayan Sarkar et al. "DIAT: A scalable distributed architecture for
IoT". In: IEEE Internet of Things Journal
2.3 (2015), pp. 230–239. ISSN: 23274662. DOI: 10.1109/
JIOT.2014.2387155.

[20] Luigi Atzori, Antonio Iera, and Giacomo Morabito. "The Internet of
Things: A survey". In: Computer Net- works 54.15 (2010), pp. 2787–
2805. ISSN: 13891286. DOI: 10.1016/j.comnet.2010.05.010. URL:
http://dx.doi. org/10.1016/j.comnet.2010.05.010.

[21] Patrik Spiess et al. "Soa-based integration of the internet of things in
enterprise services". In: 2009 IEEE International Conference on Web
Services, ICWS 2009 (2009), pp. 968–975. DOI:
10.1109/ICWS.2009.98.

[22] Dominique Guinard et al. "Interacting with the SOA- based internet
of things: Discovery, query, selection, and on-demand provisioning
of web services". In: IEEE Transactions on Services Computing 3.3
(2010), pp. 223–235. ISSN: 19391374. DOI: 10.1109/TSC.2010.3.

[23] Vale'rie Issarny et al. "Service-oriented middleware for the Future
Internet: State of the art and research directions". In: Journal of
Internet Services and Applications
2.1 (2011), pp. 23–45. ISSN: 18690238. DOI: 10.1007/s13174-011-
0021-3.

[24] Jameela Al-Jaroodi and Nader Mohamed. "Service- oriented
middleware: A survey". In: Journal of Network and Computer
Applications 35.1 (2012), pp. 211–220. ISSN: 10848045. DOI:
10.1016/j.jnca.2011.07.013.URL:http://dx.doi.org/10.1016/j.jnca.20
11.07.013.

[25] Dominique Guinard, Iulia Ion, and Simon Mayer. "In search of an
internet of things service architecture: REST or WS-*? A developers'
perspective". In: Lecture Notes of the Institute for Computer
Sciences, Social- Informatics and Telecommunications Engineering
104
LNICST (2012), pp. 326–337. ISSN: 18678211. DOI:10.1007/978-
3-642-30973-1 32.

[26] Yuchen Yang et al. "A Survey on Security and privacy issues in
Internet-of-Things". In: 4662.c (2017), pp. 1–10. DOI:
10.1109/JIOT.2017.2694844.

[27] Eric J Bruno et al. "The Intelligent Internet of Things with Axeda and
Oracle Java Embedded". In: June (2014).

[28] Javier Poncela et al. "Smart cities via data aggregation".
In: Wireless Personal Communications 76.2 (2014), pp. 149–168.
ISSN: 09296212. DOI: 10. 1007 / s11277 -014-1683-5.

[29] Federica Paganelli, Stefano Turchi, and Dino Giuli. "A Web of
Things Framework for RESTful Applications and Its
Experimentation in a Smart City". In: IEEE Systems Journal 10.4

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022

695

(2016), pp. 1412–1423. ISSN: 19379234. DOI:
10.1109/JSYST.2014.2354835.

[30] Long Sun, Yan Li, and Raheel Ahmed Memon. "Sun2017". In:
(2016), pp. 154–162.

[31] Sergio Trilles, Alberto Gonza´lez-Pe´rez, and Joaqu´ın Huerta. "An
IoT platform based on microservices and serverless paradigms for
smart farming purposes". In: Sensors (Switzerland) 20.8 (2020).
ISSN: 14248220. DOI: 10.3390/s20082418.

[32] Khushi Shah, Preet Modi, and Jitendra Bhatia. "Data Processing and
Analytics in FC for Healthcare 4.0". In: Fog Computing for
Healthcare 4.0 Environments. Springer, 2021, pp. 131–154.

[33] InfluxDb. URL: https://www.influxdata.com/ (visited on
05/31/2022).

[34] RabbitMQ. URL: https://www.rabbitmq.com/ (visited on
05/31/2022).

[35] Google Cloud Platform. URL: https://cloud.google.com/gcp (visited
on 05/31/2022).

[36] Apache Jmeter URL: https://jmeter.apache.org/ (visited on
05/31/2022).

Tushar Champaneria has more than ten
years of academic experience and two years
of industrial experience. Since 2011, he has
been working as an Assistant Professor in
the Department of Computer Engineering at
L.D.College of Engineering Ahmedabad,
Gujarat. He received his B.E degree in
Computer Engineering from C.U.Shah
College of Engineering and Technology,
Saurashtra University, in 2006, and his M.E

degree in Computer Engineering from the BITS Pilani, Pilani
campus, in 2008. He is currently pursuing a Ph.D. degree in
computer science at Charotar University of Science and
Technology (CHARUSAT). His research interests include the
Internet of Things, software design, and Natural language
processing. He has published several papers in refereed journals
and conferences in these fields. He is a member of ACM, ISTE,
and CSI.

.

Dr. Ashwin Makwana has more than
eighteen years of academic and research
experience. He is currently working as an
Associate Professor at the Charotar
University Of Science and Technology
(CHARUSAT). He completed his Ph.D. in
Computer Engineering from Charotar
University Of Science and Technology
(CHARUSAT) in 2020. He did his master

of engineering from Dharamsinh Desai Institute of Technology in
2004 and a bachelor of engineering from Gujarat University in
2002. He has worked in different roles at Charotar University of
Science and Technology (CHARUSAT) during his academic
career. His research interests include Semantic Web, AI, Machine
Learning, Deep Learning, and NLP. His research works are
recognized by refereed journals and conferences in these fields.

Dr. Sunil Jardosh has more than ten years
of industrial research experience and three
years of academic experience. He is
currently working as a Software Architect
at Progress Software Hyderabad. He
completed his Ph.D. in Information and
Communication Technology at Dhirubhai
Ambani Institute of Information and
Communication Technology in 2011. He
did his master of engineering from

Dharamsinh Desai Institute of Technology in 2004 and a bachelor
of engineering from L. D. College of Engineering, Gujarat
University, in 2002. Before joining Progress Software Hyderabad,
he worked as an assistant professor in an academic institution and
as a research intern at the institute of plasma research. His research
interests include Databases, Networks, WSN, Architecture Design,
Middleware Design, and the Internet of Things. His research
works are recognized by refereed journals and conferences in these
fields.

